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Abstract: Due to the stochastic nature of environmental loadings, a lot of interest is paid in the discovery of possible damages to the involved
equipment in modern industry. In wind turbines’ blades, the development of a smart structural health monitoring system is essential. In this
paper, a large-scale composite wind turbine blade model is designed and used for the detection of several damage scenarios. The process is
mainly based on the development of monitoring techniques that exploit the capabilities of artificial neural networks. These techniques can
provide the exact position of possible damages, under given external loading scenarios. Moreover, the use of such methods decreases
significantly the need for external intervention and at the same time it increases the accuracy of the whole approach. The above
processes are simulated using the finite element method. The goal is to develop a neural network that realizes the correlation of
measurements with damage patterns. The goal is focused on the solution of inverse problems involving elastically deformable structures,
based on remote mechanical measurements. The correlation between measurements and damages, which is much more complicated in

comparison to image analysis, is studied by means of neural networks.
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1. Introduction

Inverse problems related to damage identification on blades of
wind turbines are studied here. Data for various damage scenarios are
generated by using a high-quality finite element model of the
structure. The correlation of measurements with damage
parameters has been realized by means of back propagation
artificial neural networks (ANNs). The methodology is general
and can be extended to other structural health monitoring tasks.

Wind turbines constitute one of the promising devices for
harvesting of energy and supporting the green energy policy. Both
current designs, namely horizontal and vertical axis wind turbines,
include large rotating parts and several smaller parts, i.e., blades,
joints, etc., subjected to high wind or other dynamic loadings,
which could possibly put at risk the integrity of the whole structure.
The arising damage or fatigue effects can decrease significantly the
lifetime of the critical components of wind turbine structures, such
as the wind turbine blades, and may lead to partial or even total —
sometimes catastrophic — failures of the whole system.

In the present investigation, a composite large-scale wind
turbine blade model will be considered similar to the one
presented in Rentoumis et al. [1]. More specifically, a large-scale
wind turbine blade of span, which equals to approximately 25 m,
is taken into consideration. The location of installation is the
Mount Panachaiko, Peloponnese, Greece. In order to assess the
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integrity of the blade structure, a damage identification algorithm
based on neural networks is considered [2]. The proposed method
belongs to the modern physics-based, data-driven methods for
treating complex direct and inverse problems in mechanics.

The considered blade is hollow, formed by two separate shells; one
on the suction side and one on the pressure side. Aerodynamic principles
and structural aspects direct the design of the airfoil considers [3].

The objective of the present paper is the development of a
procedure for nondestructive crack and damage identification in
wind turbine blades. This methodology can be applied to broader
classes of inverse problems, like distributed damage identification
and flaw detection. Static mechanical behavior is considered with
a finite element model. Several failure scenarios are included in
the model for the creation of the required database of predicted
results. The inverse is solved by means of a back-propagation
trained neural network. The training data are produced by the
numerical model (pseudo-experiments).

Crack detection has attracted a lot of scientific interest, and
several methods have been proposed in the current literature. For
example, in Zhang et al. [4], an automatic system for crack
detection during the inspection of tunnels was proposed. Deep
learning techniques and a heuristic image postprocessing
algorithm were used. From the results, it was shown that this
method can be effectively used as a driver of autonomous
inspection robots. In Li et al. [5], an automatic robotic inspector
for tunnel assessment is proposed. The system consists of an
autonomous mobile vehicle, that is, a crane arm, guided by a
computer vision-based crack detector, and it has been evaluated in
real railway and road tunnels. In Wang and Zhang [6], a new
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method, which is called multidimensional variational
decomposition, was proposed for bearing-crack detection. From
the results, it is shown that this method can deal with
multichannel vibration signals, overcoming the limitations of
existing methods. The proposed system is based on unmanned
aerial vehicle (UAV) — taken images collected from a commercial
wind farm. Automatic detection of cracks on the surface of
defects in piles is presented in Protopapadakis et al. [7]. The
computational study proves the effectiveness of the proposed
method in the identification of the number and location of cracks.

Identification problems belong to the class of the so-called inverse
problems where some parameters of the system are unknown, while
more than necessary data from the response of the system are
available. In the case studied here, unknown parameters are related
to the cracks, while input-output data of the structural system are
available through measurements or simulations. By considering the
structural response, in terms of measured displacements or stresses
as the input of the inverse mapping and the related crack parameters
as the output, the output error identification problem is formulated
and solved. The classical optimization approach is not always
advantageous due to the nature of the problem. More specifically,
for inverse problems, small variations of a certain structural
parameter may lead to either large or small variations in the
structural response depending on the position and/or the type of the
parameter [2]. Due to this, the problem is considered to be an ill-
posed one. Furthermore, due to the nonlinearity of the damage-to-
response mapping, the arising optimization problem is usually
nonconvex, and thus, the possibility of multiple mathematical
solutions exists. In terms of optimization, this corresponds to a
problem with several local minima, and thus, the classical
optimization may stop at local minima and do not solve the sought
inverse problem. In this case, soft computing techniques, such as the
neural network approach, which have the ability to overcome local
minima, can be adopted.

The methodology used here for the treatment of the inverse
problem has been developed and tested for the solution of
academic crack identification problems in two- and three-
dimensional elasticity in Stavroulaki [2]. In the aforementioned
investigation, a two-dimensional specimen is considered that
contains one or more unknown cracks. The cracks are described
by a certain number of parameters, for instance, the length of a
linear crack, and the coordinates of the middle point with respect
to the used global coordinate system. Furthermore, it is assumed
that certain boundary displacements can be measured for various
static, time-periodic, or time-history external loadings. The direct
mechanical problem is solved numerically by the boundary
element method (BEM), while the identification (inverse) problem
is treated by a neural network-based optimization technique. More
details can be found in Jensen [3]. Recent investigations of our
group present the defect identification of concrete piles by using
dynamic test loading and neural networks. For example, Jensen
[3] proposed a genetically optimized neural detector for the
detection of possible defects in concrete piles. The finite element
method was used for the modeling, and from the results, it was
shown that useful information about the type and the position of
these defects can be obtained. In Bouzid et al. [8], a similar
problem is solved by using an ant colony classification algorithm.

Literature on damage identification using mechanical
measurements and neural networks of various types is expanding.
Visual inspection by using photographs or thermography and further
processing with Al methods is an area with considerable activity, as
it can be traced in the review articles [9, 10]. In particular,
applications focused on damage detection on wind blades using
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data-driven, Al and digital twins are reported in the review articles
[11-16]. Modern approaches involve the exploitation of online data
acquisition for SHM, for instance in Alvarez-Montoya et al. [17],
Zhang et al. [18], and Lin et al. [19].

Computational modeling is a convenient tool to create data for
the initial training of a neural network system in order to solve
inverse and damage identification problems. Depending on the
degree of accuracy, the investigation may stop at this phase, as it
is in the present paper, or continue with fine-tuning by using
experimental data. In this context, one has pretrained Artificial
Intelligence (AI) systems based on artificial data that are further
trained with real-life data. Representative works combining
computational modeling by finite element and boundary element
methods for the creation of damage scenarios and inverse analysis
include these papers [20-31].

It should be noted that complicated neural networks and Al
algorithms are applied for the solution of academic crack
identification problems, see Benaissa et al. [32]. Indeed, Al is able to
discover difficult correlations between signal and damage patterns,
like ones appearing in wave propagation and ultrasound produced by
distributed actuators and sensors and nondestructive evaluation
(NDT), see Lomazzi et al. [33], Saha et al. [34], Islam et al. [35],
Shen and Tian [36], Bandara et al. [37], Nazarko and Ziemianski
[38], Yang et al. [39], de Assis and Gomes [40], and Yoon et al.
[41]. From the many applications reported in the literature, one can
mention here, for example, the aircraft icing detection and
characterization problem [42], the prediction of urban gas
consumption [43], the underwater backscatter recognition [44], the
sonar classifier [45], the classification of marine mammals [46, 47],
the financial accounting information processing [48], and the
biomedical application on breast cancer diagnosis [49].

A numerical simulation of finite element and BEM was carried
out on a specific wind turbine blade with realistic damage scenarios,
and from the results, it was shown that the proposed scheme can
identify the type and position of the defects in a much more
complicated structure is considered in the present investigation,
which seems to be the first work using data-driven, neural
network-assisted techniques for the solution of crack identification
problems in complicated structures based on Computer-Aided
Design — Computer-Aided Engineering (CAD-CAE) models. The
method can be used for the solution of much more complicated
tasks, by using more refined tools of deep learning, in view of
modern software developments which allow for easy parametric
analysis and neural network evaluation.

2. The Wind Turbine Blade Design

Several airfoil families are available in the industry. The most
common airfoils for horizontal axis wind turbines (HAWTSs) are
NACA 44XX, NACA 23XXX, NACA 63XXX, and NASA LS
series (NACA denotes the National Advisory Committee for
Aecronautics in the USA, the Federal Agency that created the
standards for the named aerofoils). The performance of the above-
mentioned airfoils suffers from roughness effects resulting from
leading-edge contamination [1]. Furthermore, thick airfoils (with
thickness between 16% and 21%) are mainly used in stall-
regulated wind turbines. Thus, tip-region airfoils are considered
thick enough in order to accommodate overspeed-control
aerodynamic devices and to reduce the weight of the structure. On
the other hand, thin airfoils, i.e., those with thickness between
11% and 15%, are more suited to variable-pitch or variable-rpm
turbines that use full-span blade pitch [1]. In general, the cross
section varies along the length of the blade, with greater thickness
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Figure 1
Illustration of airfoils location along the blade span and illustration of different
pitch angles of airfoils with reference to the root of the blade

-

used near the root in order to withstand structural and dynamic
effects. For this reason, the blade-root airfoil thickness is usually
in the range between 18% and 24%. Large thicknesses, greater
than 26%, should be avoided, as it result in poor performance
characteristics. In 1992, an airfoil family was designed for extra-
large blades for turbines rated at 400-1000 kW. This family,
which is included in stall-regulated rotors, is composed of the
S816, S817, and S818 airfoils. The tip-region airfoil has a CI,
max of 1.1 and a thickness of 16%. The primary outboard airfoil
has a Cl, max of 1.2 and a thickness of 21%, while the root airfoil
has Cl, max of 1.3 and a thickness of 24% [1].

3. Structural Health Monitoring (SHM)

3.1. Assessment of SHM implementation

Structural failures in wind turbines are caused by several
unpredicted reasons, e.g., earthquakes, hurricanes, strong winds,
usage of brakes to avoid uncontrolled rotation, and extremely high
temperatures. For that reason, a suitably defined system, able to
monitor the performance of the whole structure, is necessary. In the
case of wind turbines, this need is ubiquitous due to inaccessibility
reasons (e.g., offshore structures), fatigue, or even because of the

# |NREL Distance from
Airfoil |Root [m]

A |sB18 9

B |s818 10

|c [sa18 1.4

D |sB16 19

E |S817 21.5

F_|S817 22

G |s817

type of loads. An SHM system is a damage identification procedure
for the prediction of possible damages of the host structure and is
composed of three basic elements, i.e., the signal monitoring, the
processing, and the interpretation. Such systems are usually
vibration-based since the dynamic response is rich enough and can
be used for the detection of internal (hidden) damages [50]. Either
eigendynamic characteristics or time-domain response can be used
for SHM. Static response can be used in a controlled monitoring
sense. Provided that a first data-processing step is used in order to
extract eigenshapes from dynamical measurements, the
methodology that uses static response can be used as well in
combination with dynamic data.

A typical wind turbine blade is shown in Figure 1 and a possible
damage on it is depicted in Figure 2. Composite materials that are
used in wind turbines’ blades have certain advantages, i.e., they
improve electrical conductance. However, they exhibit anisotropic
properties that make the mechanism behind failures sophisticated.
This type of material usually suffers by aging and fatigue
Moreover, even a small impact can lead to the creation of cracks,
delamination phenomena on the fibers, etc., in situ sensors with
intelligent algorithms for online damage detection can be
combined in order to achieve high accuracy and reliability for
damage identification and monitoring at the minimum cost [48].

223



Journal of Data Science and Intelligent Systems

Vol. 2

Iss. 4 2024

Figure 2
A typical crack near the trailing edge of the blade structure

4. Artificial Neural Networks

4.1. ANN introduction

An ANN is an approach of machine learning that attempts to
simulate the function of the human’s central nervous system, i.c.,
of the biological neural networks. It is a highly complicated
network of interconnected calculating nodes (artificial neurons),
which are algorithms of computational intelligence. Neural
networks can be used for several applications, such as, among
others, for optimization of control parameters [51] and damage
identification [20].

With reference to Figure 3, the input (x) — output (y) relation is
approximated by a feedforward ANN. A fully connected NN is
considered for simplicity. Weights on the links multiply input
information. At every node, activation functions (sigmoidal in our
case) are used as processing elements. Outputs are approximations
of the unknown mapping for every input, provided that the choice
of network topology (number of layers, nodes, etc.) and weights
are suitable. Topology is defined from the experience of the user,
since no theoretical results exist. Weights are defined through
training.

There are several ways of learning, and thus training of ANNs,
which can be classified into supervised and unsupervised learning.
Supervised learning is the process that combines the existence of
an external trainer and a number of training data for the model.
The most popular method in this direction is the back-propagation
method of errors training method. This method calculates the
derivative of the errors considering network weights. The
derivative is, let’s say, fed to the optimization method, which
updates the weights, and thus the error is minimized.

Training is based on a representative set of training data, which
corresponds to the unknown mapping. Here, training data relate the
measurements directly with the failure characteristics. With fixed
network parameters (topology and activation functions), the inputs
are used and the outputs are calculated. In case an unacceptable
error exists, the weights are adjusted to minimize this error. In this
way, the neural network adapts itself to learn directly the inverse
mapping and in this way it directly solves the inverse problem. In
order to have a fair evaluation of the ANN model, 70% of
examples are used for training and the remaining 30% are used
for evaluation. In this last group, outputs are never used for
training. Therefore, comparison of neural network predictions
with outputs is a fair indication of a successful neural network.
This methodology can be applied for static loadings and
measurements of displacements or deformations, which is the case
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Figure 3
The backpropagation training process

| Input signals

Hidden
layer

Error signals |

here, for harmonic dynamic loadings, for eigenvalues and
eigenmodes, or even for dynamic service loads or testing loadings
such as ultrasounds which are used in nondestructive structural
evaluation.

4.2. ANN for solution of inverse problems

In the present investigation, the model of a blade with an
unknown crack is considered. The crack is characterized by a set
of parameters z = [z}, ... z,]’. Here, the coordinates (x, y) of the
crack are used as identification parameters. The deformation of
the blade for a given static loading b, /=1, .../l and for a given
crack z is given by the vector %(z, b') (loadings are applied on the
different areas of the model, see Figure 4, different crack positions
are incorporated in various places of the model, as it will be seen
in the numerical results). Experimental or numerically calculated
results can be used. A finite element model is used here for the pro-
duction of the results for various crack characteristics. Cracks are
modeled as smeared ones, by considering a lower stiffness near their
place, similarly to the areas of loading depicted in Figure 4.

Let the total number of different loading cases be /;, and the
mechanical response of the structure with a known crack
subjected to the same loading &’ be denoted by %, (z, b'). In this inves-
tigation, the elements of %,(z, b') are produced by a finite element
algorithm. Here, a direct solution to the inverse problem by means
of back propagation-trained neural networks is sought. Due to the
appearance of nonlinearity in the response vector, if the response
is considered as a function of the crack parameters, the classical error
minimization approach may lead to non-convex optimization [2].

A multilayer back propagation error-trained neural network is
used to learn the previously mentioned inverse relation for a given
value of loading vector 4. The couples of data composed of the
vectors %X(z, b') and the corresponding parameter vectors z are used
as training examples. After training, the network reproduces the
relation x — z, 1.e., for a given set of measurements X (different from
the ones used in training), it gives a prediction for the variables char-
acterizing the internal crack [2].

The procedure can be extended to cover time-varying damage
cases, by expanding the database and using a moving window
technique or another suitable type of neural network.
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Figure 4
Areas of static loadings considered on the wind turbine blade

5. Numerical Results

5.1. Wind turbine blade materials

The blade has a sandwich form for both the external surfaces
and the internal spars. The thickness differs from point to point
from 0.035 m to 0.1 m, with ore material at the spars, where
larger stiffness is needed, and external surfaces, where less
material is used.

The model consists of an isotropic elastic polyvinyl chloride
plastic — PVC foam, for the core of the blade, and an orthotropic
elastic epoxy carbon material with enhanced characteristics in
terms of electrical conductance, for the external material. The
latter provides distributed sensing ability, which is very useful in
similar applications. The total mass of the blade is 3.686, 39 kg.
The characteristics and critical values of the materials that were
used are given in detail below. The detailed material properties of
the foam are given in Table 1, while the ones for the epoxy
carbon material are presented in Table 2.

The orthotropic strain limits and the orthotropic stress limits of
the epoxy carbon material are given in Table 3.

Table 1
PVC foam material properties
80
Young’s modulus [Pa] 1.02 x 108
Poisson’s ratio 0.3
Bulk modulus [Pa] 8.5 x 107
Shear modulus [Pa] 3.9231 x 107

Table 2
Epoxy carbon unidirectional — UD material properties
Density [kg/m?] 1490
Young’s modulus (X direction) [Pa] 1.21 x 10"
Young’s modulus (Y direction) [Pa] 0.6 x 10°
Young’s modulus (Z direction) [Pa] 0.6 x 10°
Poisson’s ratio (XY) 0.27

Poisson’s ratio (YZ) 0.4

Poisson’s ratio (XZ) 0.27

Shear modulus (XY) [Pa] 0.7 x 10°
Shear modulus (YZ) [Pa] 0.1 x 10°
Shear modulus (XZ) [Pa] 0.7 x 10°

Table 3
Epoxy carbon UD orthotropic strain and stress limits
Strain [m] Stress [Pa]

Tensile (X direction) 1.67 x 1072 2.231 x 10°
Tensile (Y direction) 32x 1073 2.9 x 107
Tensile (Z direction) 32 %1073 2.9 x 107
Compressive (X direction) —1.08 x 1072 —1.082 x 108
Compressive (Y direction) —1.92 x 1072 —1.0 x 108
Compressive (Z direction) —1.92 x 1072 -1.0 x 108
Shear (XY) 1.2x 1072 6 x 107
Shear (YZ) 1.1 x1072 3.2 x 107
Shear (XZ) 1.2x 1072 6 x 107

More details on the composite structure of the blade, which is
based on classical composite materials made of multiple layers, can
be found in the literature [1].

5.2. Identification of cracks using ANNs

For the development of the SHM scheme, in order to predict the
possible appearance of cracks on the aforementioned blade model,
neural networks were used (see Figure 5). The neural network learns
the inverse relation correlating displacement measurements from
sensors with damage indicators. The data are produced using finite
element modeling. In this work, static deformations are used for given
loads. Various examples have been considered by taking damage
scenarios with different, reduced stiffhesses, at the various areas of the
model which are measured at the positions shown in Figure 6. (see
Figure 4). Training is accomplished by backpropagation error training
algorithm (see Figure 3), by using the previously mentioned
measurement — damage couples of data.

In the present investigation, two different cases are examined.
The failures (cracks) appear on the surface of the wind turbine blade.

Case 1:

For the first numerical experiment, the control points (points of
measurement) on the blade are selected on the central axis of the
surface as shown in Figure 6. More specifically, 44 control points
are employed for the analysis. A static analysis is performed on
the wind turbine in order to obtain the training data for the neural
network which is trained using the back-propagation method. A
total amount of 40 cracks are used for the training process.
Namely, the displacements for each crack are measured at these
points in order to train the neural network for the detection of
cracks. The same points of measurement are also used for the
testing process. The results of the analysis are displayed below.
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Figure 5
Structure of the proposed SHM scheme
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Figure 7
The results from training by the neural network
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real
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The results from the neural network are presented in Figure 7.
Green circles denote the real position of the cracks, while blue
crosses present the predictions of the neural network. From these

results, it is clear that the trained network can predict the positions

of the recurring cracks very effectively.
A fully connected ANN (cf. Figure 3) has been used with

sigmoidal activation functions at the internal nodes. Input layer
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5.000 10.000 (m)
]

2.500 7.500

has 44 entries, equal to the number of measurement points, two
internal layers with 50 nodes in each have been used, and 2
outputs are used, depicting the position of estimated crack. The
deep learning package of MATLAB has been used for ANN
modelling. Training up to an acceptable accuracy needs less than
5 min on a usual PC. Usage of trained ANN needs a couple of
seconds.

In Figure 8, one can see the correlation of inputs and outputs for
both the model and the neural network prediction, as well as the error
of the created system through the deviation of the diagonal line,
which represents the error-free cases. Every point corresponds to a
different damage example used for training or representation of
the neural network model.

A simulation with the use of 10 unknown cracks is performed.
The results are shown in Figure 9. Again, with green circles are
denoted the real position of the cracks, while with blue crosses are
presented the predictions of the neural network.

In Figure 10, one can see the correlation of inputs and outputs
for both the model and the neural network prediction, for case 1.
From the results, it is clear that the fitting is not satisfactory,
although even warning that something deviates from nominal
response could be a useful result within SHM.

Case 2:

For the second case, a set of 105 control points is selected,
covering not only the central axis of the surface as in case 1 but
also the whole surface of the wind turbine blade, as seen in
Figure 11. The same static analysis is repeated in order to obtain
the training data for the neural network. A total amount of 40
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Figure 8

Correlation of inputs and outputs for both the model and the
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neural network prediction
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cracks are used for the training. Namely, the displacements for each
crack are measured at these points in order to train the neural network
for the detection of cracks. The same points of measurement are also
used for the testing process. The number of measurement points is
higher, in comparison to case 1, and evenly distributed along the
length of the blade. The ANN has been modified to accommodate
this case by changing the input entries to 105 and using 100
nodes at each one of the two hidden layers. The results of the
analysis are displayed below.

Figure 9
The results for the first case
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Figure 11
Positions of measurements (control points)
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Figure 12
The results from training by the neural network. Real cracks vs.
prediction on the CAD model
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The results from the neural network are presented in Figure 12.
Again, with green circles are given the real position of the cracks,
while the blue crosses denote the predictions of the ANN. It is
seen that the trained network can predict even more efficiently the
positions of the recurring cracks. The result is expected since
more information is provided to the system for the solution of the
damage identification problem, cf. [2].

In Figure 13, one can see the correlation of inputs and outputs
for both the model and the neural network prediction, as well as the
error of the created system through the deviation of the diagonal line,
which represents the error-free cases. Every point corresponds to a
different damage example used for training or representation of
the neural network model.

The same 10 cracks are used for the analysis, and the results are
shown in Figure 14. The results here indicate that the training of the
network in this second case is more successful.

Finally, in Figure 15, the correlation of inputs and outputs for
both the model and the neural network prediction for case 2 is
depicted. One can observe that the neural network achieves better
fitting in this case.
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Figure 14
The results for the second case
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6. Conclusions

In the present investigation, a correlation system of
measurements and damages was tested. The efficiency of the
proposed scheme lies in the ability of the neural networks to learn
from examples with unknown correlations and to perform
prediction. More specifically, two different cases were examined.
The difference lies in the number and the position of the control
points. In both cases, measured deformations have been used as
input for the damage identification problem. From the results, one
can conclude that a suitably trained neural network can predict
effectively the positions of the recurring cracks, however, only
when the control points are evenly distributed along the surface of
the wind turbine blade (case 2). This is expected, as the neural
network has better performance in interpolation, rather than in
extrapolation.

Previous works on the solution of comparable problems use
relative methodology of neural networks, however, on simpler
academic applications. Thus, more examples, which in turn means
better training, were obtained. In the present investigation, a more
complicated CAD model, closer to a real blade, was considered.
Although the CAD-CAE model used here is near to real
applications, the examples remain academic.

In any case, the proof of concept, which was the objective of the
study, was successful, as with a few data and a simple neural
network, efficient results were obtained. For more complex
applications, a larger amount of training examples might be
needed, along with optimization of the network using deep
learning. More information can be found in the review papers
[52, 53].

It is also worth noting that only static loadings, and a relatively
small amount of measurements, were considered. The next step in the
present investigation can be the optimization of the neural network
characteristics, as well as the consideration of multiple loading which
will be applied across every dimension. Moreover, an extension of
this work to dynamic loadings with more measurements and the
use of modal analysis tools can also be performed.

More complicated Al tools, including deep learning and
decision trees, can be employed for the solution of more
complicated inverse tasks using a fusion of various measurements
(static, dynamic, etc.).

A mixture of initial training based on numerically generated
data, as it has been done in this paper, with experimental
measurements, is also possible. In fact, usage of pretrained neural
networks that can be further refined with additional or
experimental data is a widely adopted methodology in various
modern applications.

Finally, various stages of damage can be considered, and a
plastic neural network approach can be adopted, in order to
identify the degree of damage. The resulting neural network
model is a kind of digital twin that can be used to monitor the
blade throughout its whole life and predict possible damages. In
fact, wind turbines suffer from fatigue damage due to extreme
loading and weather conditions. In turn, SHM and maintenance
tasks become challenging. The application of digital twins in this
area is a topic of current intensive research activity. The neural
network-based metamodels presented here are a useful tool.
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