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Abstract: Processmining enables efficient and exhaustive analysis of business processes based on event data. Processmining tools such as linear
temporal logic (LTL) Checker allow users to verify temporal properties of business processes for traces by providing a description based on LTL.
However, it is difficult formany users to understand and use LTL-basedmathematical notation. Therefore, there is a need for amethod to describe
temporal properties even for those who are not familiar with mathematical notation. Several methods have been proposed to automatically
generate logical expressions to address these issues, but there are still problems related to the data format and the limited scope of the
expressions that can be described. In this study, we proposed a method based on the satisfiability problem (SAT) for event logs in
eXtensible Event Stream format used in process mining, and it is verified how well it can automatically generate temporal properties in
business processes. We conducted experiments using two types of event logs to demonstrate the effectiveness of the proposed method.
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1. Introduction

Process mining Dumas et al. (2018) is a data analysis method that
visualizes event log data, which represent the execution history of
business processes, to support the analysis and improvement of
business operations.

Linear temporal logic (LTL) Checker can verify whether a property
is true for each trace that constitutes the event log of a business process,
using the LTL language based on LTL (Pnueli, 1977). That is, the event
log can be divided into two groups of traces, one satisfying the property to
be checked and the other not satisfying the property, and the event log can
be analyzed from various viewpoints. For example, by using a process
discovery algorithm (Ferreira & Gillblad, 2009; Van derWerf et al.,
2009), a business process model can be automatically generated from
event logs to visualize the flow of business processes. By comparing
business process models created from event logs that satisfy certain
properties with business process models created from event logs that
do not satisfy certain properties, it may be possible to understand the
influence of certain properties on business processes. Various other
analysis methods can be applied after the event log is split, such as
goal-oriented process mining (Ghasemi & Amyot, 2020) and
conformance checking (Dunzer et al., 2019). LTL Checker assumes
that the user writes and understands correct logical expressions.
However, it is difficult for many users to understand and use LTL-
based mathematical notation, and it is difficult to correctly describe
the temporal properties of business processes. Therefore, a method for
describing logical expressions is required for those who are unfamiliar
with logic.

There are several techniques (Chesani et al., 2022; Horita et al.,
2016; Neider & Gavran, 2018) that automatically generate logical

expressions by giving examples of traces where certain properties
are true and others where they are false. However, Chesani et al.
(2022) and Horita et al. (2016) are limited in the logical
expressions it can generate. Their method can only generate logical
expressions according to a predefined template. In addition, Neider
and Gavran (2018) do not target the data format of event logs in
process mining. Their method did not support xes, a common data
format in process mining.

In this study, we propose a method to generate LTL expressions
containing various modal logic operators for eXtensible Event Stream
(XES) event logs, a common data format in process mining. In this
study, the event logs were converted into a format compatible with
methods based on the satisfiability problem (SAT) for generating
logical expressions (Neider & Gavran, 2018). The description
method of the traces given as input values of Neider and Gavran
(2018) is different from the general event log description method
and is written in a language on the alphabet {0,1}. Therefore, we
implemented a tool for one hot encoding of event logs into a
sequence of numbers on the alphabet {0,1}. After conversion to a
sequence of numbers using this tool, the user can select several
positive and negative traces from the event log and generate LTL
expressions containing various modal logic operators by using
SAT-based methods (Neider & Gavran, 2018).

The structure of this paper is as follows. Section 2 introduces the
basic knowledge and related studies. Section 3 describes the proposed
method. Section 4 presents the results and a discussion of the evaluation
experiments using the proposed method. Section 5 summarizes the
study and discusses future works.

2. Preliminaries and Related Research

This section describes the knowledge and research related to
this study.*Corresponding author: Hiroki Horita, Graduate School of Science and

Engineering, Ibaraki University, Japan. Email: hiroki.horita.is@vc.ibaraki.ac.jp

Journal of Data Science and Intelligent Systems
2024, Vol. 00(00) 1–8

DOI: 10.47852/bonviewJDSIS42022166

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0001-6675-257X
mailto:hiroki.horita.is@vc.ibaraki.ac.jp
https://doi.org/10.47852/bonviewJDSIS42022166
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2.1. Linear temporal logic

LTL (Pnueli, 1977) is any system of rules and symbolism for
representing, and reasoning about, propositions qualified in terms
of time (for example, “I am always hungry”, “I will eventually be
hungry”, or “I will be hungry until I eat something”). LTL allows
us to express future events in terms of logical expressions such as
whether a certain condition is eventually true.

LTL uses the variables p1; p2; . . ., the general logical operators
:; ^; _; !, and the modal logical operator○(next),□(globally),
◇(finally), U(until),R(release). Since the three logical operators ○,
□,◇ are unary if ϕ is a logical expression, then ○ϕ is also a logical
expression. Since the two logical operators U andR are binary oper-
ators, if ϕ and ψ are a logical expression, then ϕUψ is also a logical
expression. The logical operators of LTL are listed in Table 1.

2.2. Event log

Process mining tools such as ProM (Process Mining Framework)
use information system logs. A log consists of several traces, and the
traces consist of several events. An activity is also a label that
defines the specific task included in an event. The general event log
in this paper refers to XES , which is an event data storage and
management format defined as an open standard by the IEEE
(Gunther & Verbeek, 2014). Figure 1 shows an example of an XES
document. Each trace and event store a literal attribute with the key
“concept:name”. Each trace is tagged with <trace> and the caseID is
stored as an attribute value. Each event is tagged with <event> and
the activity is stored as an attribute value. The attribute value is
represented by a letter of the alphabet (A, B, C, and D). For
example, a trace with caseID 1 indicates that events A, B, C, and D
are executed sequentially.

2.3. LTL checker

LTL Checker (van der Aalst et al., 2005) uses LTL-based
notation to describe the temporal properties desired by the user
and automatically verifies that the traces to be verified satisfy the
desired properties.

The use of LTL Checker is explained with an example. Table 2
shows the event transitions for each trace in Figure 1. Table 3 shows
the properties desired by the user in the business process, and LTL
Checker can be used to verify that each trace in Table 2 satisfies the
properties in Table 3. As a result of the actual verification of each
property, the trace with caseID 1 satisfies all properties, but the
trace with caseID 2 does not satisfy the property “If B is
executed, C will eventually be executed”. In other words, the
property “□(B!◇C)” in Table 3 can be said to classify traces with
caseID 1 as true and traces with caseID 2 as false.

2.4. Related work

There are several methods to automatically generate logical
expressions in process mining.

Horita et al. (2016) and Chesani et al. (2022) can automatically
generate logical expressions from the event log. However, Horita
et al. (2016) can only use some operators, which limits what can be
described. In addition, Chesani et al. (2022) can only generate
logical expressions that follow the template of the DECLARE model
(Maggi, 2013; Pesic, 2008).

In addition, there are several studies (Camacho & McIlraith,
2019; Gaglione et al., 2021; Neider & Gavran, 2018; Raha et al.,
2022) that aim to explain the temporal behavior of the system in
order to increase the interpretability of the system. In Neider and
Gavran (2018) and Gaglione et al. (2021), a learning algorithm is
proposed for logical expressions based on the satisfiability
problem (SAT). Given an input value, a sample S consisting of
positive and negative examples, the method can automatically
generate a temporal property satisfying the description as a logical
expression of the minimum size. However, this method does not
target the XES event logs used in the process mining.

This study deals with the issue of limited description of
generated LTL formulas in previous studies (Horita et al., 2016;
Chesani et al., 2022) and the issue of not supporting event logs in
XES in previous study (Neider & Gavran, 2018).

3. Proposed Method

In this section, we explain a SAT-based method (Neider &
Gavran, 2018) for dealing with general event logs and explain

Figure 1
Example of XES document

Table 1
LTL modal logic operator

LTL
formula Explanation of formula
○φ φ has to hold at the next state
□φ φ has to hold on the entire subsequent path
◇φ φ eventually has to hold
ψUφ ψ has to hold at least until φ becomes true, which must

hold at the current or a future position
ψRφ φ has to be true until and including the point where ψ

first becomes true; if ψ never becomes true, φ must
remain true forever

Table 2
Example of event log

caseID Event transition

1 A → B → C → D
2 A → C → B → D

Table 3
Examples of properties to be verified

LTL formula Explanation of formula

◇A A has to hold at the next state
□(B!◇C) If B is executed, C will eventually be executed
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how to investigate the expressive ability of the logical expressions
generated using this method. Figure 2 shows an overview of this
method. In Figure 2, the rounded rectangles represent the input/
output elements in the proposed method and the ovals represent
the tasks that handle the elements. The tasks marked with a user
icon indicate that they include tasks that require manual operation
by the user. Each task is executed in the order of 1 to 5 (1 and 2
are executed in arbitrary order).

3.1. Conversion of event logs

The SAT-based logical expression generation method Neider
and Gavran (2018) uses sampleS as the input value, so it is necessary
to convert the event log to sample S. Sample S consists of positive
and negative traces. Positive traces are those that satisfy the proper-
ties of the logical expression they generate, and negative traces are
those that violate the properties of the logical expression they gen-
erate. The description format of Sample S is one hot encoding of
the activities in each trace, separated by ”;”. At each timestamp sep-
arated by ”;” in the trace, an event that was executed is true (1) and an
event that was not executed is false (0). For example, the event log of
Table 2 with one hot encoding is shown in Table 4. A single trace can
be distinguished by a line break, and multiple traces can be distin-
guished into positive or negative traces.

In this study, we implemented a tool for one hot encoding of
event logs for each trace. When the tool is given an event log in
the XES format as input, it can output as intermediate data a
sequence of numbers on the alphabet {0,1}, which is the real data
constituting the sample S (Task 1 in Figure 2).

In order to do one hot encoding of the event log for each trace,
this study introduced a tuple Ti = <TraceID, Encoded_T> for each
trace and a tuple Aj = <ActID, ActivityName, Encoded_A> for each
activity, and variables SumOfTrace and SumOfActivity. Both i and j
are natural numbers, where i 2 TraceID and j 2 ActID, respectively.
Table 5 shows a summary of each variable. A concrete conversion
method using these variables is shown in Algorithm 1. In
Algorithm 1, “ ” indicates substitution, “+” indicates addition in
the case of numbers, and “+” indicates connection in the case of
strings. In Algorithm 1, when Encoded_T of the i-th trace is refer-
enced, it is written as Ti. Encoded_T.

3.1.1. Read information about traces, events, and activities
First, when the event log is given as input, the identifier of each

trace (TraceID), the total number of traces (SumOfTrace), and the
total number of activities (SumOfActivity) are read (line 1). Each
trace and event information are read with the <trace> tag and
<event> tag. The <event> tag assigns an identifier (ActID) to the
activity that is the attribute value. The <trace> tag records the
identifier of each trace (TraceID). After reading the event log, the
total number of traces (SumOfTrace) and the total number of
activities (SumOfActivity) are recorded.

3.1.2. Convert each activity to a numerical sequence
After reading the information required for one hot encoding,

perform the conversion to a numerical sequence for each activity
(Encoded_A) (lines 3–17). For example, given the event logs in
Table 2 as input, the numerical sequence for each activity (A, B,
C, D) is converted, as shown in Table 6. As a specific action,
first, for each activity, list 0 until the total number of activities
(SumOfActivity). However, if counter n matches the identifier
(ActID), it lists 1 instead of 0. In the case of Table 6, identifiers
are assigned to activities A, B, C, and D as A  0, B  1,
C 2, D 3. Since the total number of activities (SumOfActivity)

Figure 2
Overview of the proposed method

Table 4
Numerical sequence converted using Table 2 as input

caseID Event transition Numerical sequence for each trace

1 A → B → C → D 1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1
2 A → C → B → D 1,0,0,0; 0,0,1,0; 0,1,0,0; 0,0,0,1

Table 5
Variables used in Algorithm 1

Variable name Details

TraceID Trace identifier (natural number)
Encoded_T Numeric sequence of traces
ActID Activity identifier (natural number)
Encoded_A Numeric sequence of activity
ActivityName Activity name
SumOfTrace Total number of traces
SumOfActivity Total number of activities

Algorithm 1
Conversion method from event log to numerical sequence
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is 4, the numerical sequence for each activity consists of three zeros,
and only the part corresponding to the identifier (0 on the left end and
SumOfActivity-1 on the right end) consists of ones. In this way, a
numerical sequence Encoded_A can be defined for each activity.

3.1.3. Convert each trace to a numerical sequence
After converting each activity to a numerical sequence

(Encoded_A), the event log is read again and converted into a
numerical sequence for each trace (lines 19–34).

For each event in the trace, identify the activity name
(Aj.ActivityName) and refer to the corresponding activity identifier
j = ActID. Referring to Aj.Encoded_A from the identifier j, the order
of execution of the events is considered as timestamps and distin-
guished by ”;”. By repeating this process, the entire event log can
be one hot encoded for each trace. The final output is T8i.Encoded_T
(0� i< SumOfTrace), which is a pair of the trace identifier (TraceID
= i) and the actual numerical sequence (Encoded_T). With this
conversion process, the input event log is performed in one hot
encoding for each trace.

Table 4 is the result of one hot encoding of the event log in
Table 2 based on the numerical sequence in Table 6. In addition,
all traces converted by this tool are finite.

3.2. Sampling event log and selection of samples

When selecting the sample, the event log is sampled (Task 2 in
Figure 1). This study uses the sampling technique proposed by
Bernard and Andritsos (2021). This is a method of sampling
representative traces using Earth Mover’s Distance (EMD), a
measure of dissimilarity between two multidimensional
distributions. In this study, we use this method because of its
ability to specify the number of traces to be sampled and to
sample traces that are representative of the entire event log.

Bernard and Andritsos (2021) have three methods: a normal
method, an Expected Occurrence Reduction method that
preselects simple representatives, and a Euclidean method that
works in Euclidean space. Since the dataset size handled in the
evaluation experiments is not large, the difference in execution
time between these three methods is small. Therefore, the normal
method was used in this study. The number of traces sampled in
this study was set to 10.

The user arbitrarily selects positive and negative traces from the
intermediate data generated in Section 3.1 to construct the input
values (sample S) (Task 3 in Figure 2).

3.3. Generate logical expressions using SAT-based
method

The satisfiability problem (SAT) is the problem of determining
whether there exists a true-false assignment of ϕ to a variable in con-
junctive normal form such that ϕ is true given a logical expression ϕ.
The satisfiability problem is one of the NP-complete problems. The
SAT solver is a tool to quickly determine whether a propositional

logical expression is satisfiable, and if so, it can output its true/false
assigned value.

The SAT-based learning algorithm (Neider & Gavran, 2018) is
an algorithm that outputs an LTL formula that satisfies the
description of a given sample S. The SAT-based learning algorithm
is characterized by its ability to learn logical expressions of minimal
size and its independence from templates such as DECLARE (Maggi
et al., 2011). To determine the satisfiability of an LTL formula using
the SAT solver, Neider and Gavran (2018) defined constraints that
restrict the syntax of the logical expression and constraints that define
the LTL semantics of the expression. We say that a sample S is sat-
isfiable if we can correctly classify each trace of the samples as pos-
itive or negative in the SAT-based learning algorithm.

For syntactic constraints, Neider and Gavran (2018) focused on
the tree structure of the LTL formula, defining labels for each node and
parent–child relationships among nodes. Figure 3 (Neider & Gavran,
2018) shows an example of a syntax tree and syntax DAG for the LTL
formula (p U □q)_(◇(□q)). Syntax DAG (a directed acyclic graph)
is one of the regular syntactic representation methods in which
common subexpressions are shared. In Figure 3(c), the identifier of
the root of the syntax DAG of the LTL formula is n2 N\{0}, and if
the internal node is i 2{1,2, : : : ,n}, the unique identifier i is assigned
so that the identifier of its children is smaller than i. The syntax con-
straints focused on the syntax DAG are as follows: (1) Each node has
one label. (2) Each node (except node 1) has a left child and a right
child. However, if a node represents a unary operator or an atomic
proposition, the specific child can be ignored. (3) Node 1 is labeled
with an atomic proposition. From these constraints, a syntactically cor-
rect LTL formula can be generated as a candidate solution.

For semantics constraints, Neider and Gavran (2018) introduced
constraints on the modal logic operators in Table 1 to evaluate the
satisfiability of LTL. Constraints on the semantics for evaluating LTL
formulas are as follows: (1) atomic propositions, (2) negation (:), (3) log-
ical disjunction (_), (4) next (○), (5) until (U), (6) logical conjunction (^),
(7) implication (!), (8) globally (□), and (9) finally (◇). By giving
these constraints to the SAT solver, the satisfiability of LTL formula
can be evaluated. Detailed definitions of each constraint are given in
the paper by Neider and Gavran (2018).

For example, consider the output of the solution when the trace
with caseID 1 in Table 4 is positive, the tracewith caseID 2 is negative,
and the operators (constraints) that can be used are restricted to◇ and
U. The size (search depth) n of the expression has a default value of 0,
and the activities are assigned variables based on their identifiers, such
as A “x0”, B “x1”, C “x2”, D “x3”. List these variables and
the operators used. Then, the constraints are input to the SAT solver
to determine their satisfiability. Specifically, it starts with a value of n
of 1 and randomly generates logical expressions of size 1 as candidate

Table 6
Numerical sequence of activities converted using Table 2 as input

Identifier Activity Numerical sequence for each activity

1 A 1,0,0,0
2 B 0,1,0,0
3 C 0,0,1,0
4 D 0,0,0,1

Figure 3
Syntax tree, syntax DAG, and identifiers of the syntax DAG for

the LTL formula (p U □q)_ (◇(□q))
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solutions based on sample description, syntax, and semantic con-
straints. When the size is 1, the syntax constraint makes the generated
expression an atomic proposition, so “x0”, “x1”, etc., are possible can-
didates for the solution. If there is no candidate solution, it is deter-
mined to be unsatisfiable and the value of n is increased by 1, and
a candidate solution is generated again. In this example, when the
value of n is 3, the candidate solution “x0 U x1” that is determined
to be satisfiable is output as the solution.

By giving the sample S selected in Section 3.2 to the SAT-based
learning tool implemented by Neider and Gavran (2018), the logical
expression of the smallest size can be generated automatically (Task 4
in Figure 2). In this study, we assume the automatic generation of
logical expressions in the actual work and do not manipulate the
parameters related to execution.

3.4. Check the output results

It is necessary to manually record and analyze the logical
expressions generated in Section 3.3. This corresponds to Task 5
in Figure 2. In the evaluation experiment, 10 sample traces are
labeled as positive and negative examples by the true or false of a
known LTL formula, and the SAT-based method is used to learn
LTL formulas using these as input. Using this learned expression,
the entire data set is determined to be true or false by LTL
Checker, and the percentage of traces whose true/false results are
consistent with the known LTL formulas is evaluated.

4. Evaluation Experiments

This section describes the purpose and overview of the
experiment, the tools, and event logs used in the experiment,
shows the results of the experiment, and finally discusses the results.

4.1. Purpose and overview of the experiments

A SAT-based method of generating logical expressions is used
by those not familiar with LTL-based mathematical notation to
describe the temporal properties of event logs using various LTL
logic operators. Specifically, the event log in XES format is
converted to the input format used by SAT-based methods to
automatically generate temporal properties. We also investigate
the percentage of correct answers that can be calculated from the
known LTL formulas and generated LTL formulas in order to
verify what properties are generated. To show that the method
proposed by Neider and Gavran (2018) can be used for event logs
in XES format, this study conducted experiments following the
proposed method in Section 3.

The experiment was conducted as follows.
(1) Prepare an event log.
(2) Convert the event logs into the languages on the {0, 1} alphabet

using the conversion algorithm described in Section 3.1.
(3) Sample 10 traces of the prepared event logs using sampling

method (Bernard & Andritsos, 2021).
(4) Manually classify the 10 traces into true traces that satisfy certain

properties and false traces that do not satisfy certain properties.
(5) Generate logical expressions from the true and false trace groups

using Neider and Gavran’s method (Neider & Gavran, 2018).
(6) Classify the event log of (1) into true traces and false traces using

the generated LTL formula.
(7) Compare the results of (6) with the results of classifying the

event log in (1) using the correct LTL formula (known LTL
formula) to obtain the percentage of correct answers.

In this experiment (4), 4 DECLARE templates (Maggi et al., 2011;
Pesic, 2008) and 5 common LTL patterns (Dwyer et al., 1998) were
targeted. The 4 DECLARE templates we selected are existence and
absence constraints from the existence template, and response and
co-existence constraints from the relationship template. These are
used as known LTL formulas in this experiment because, compared
to other templates, they show basic properties such as existence and
execution order with respect to single events and between events.
The 5 general LTL patterns we selected were among the 9 LTL
patterns used by Neider & Gavran (2018) in their evaluation
experiments, which did not overlap with the DECLARE template
and whose expressions were not redundant. For each execution, the
duration was set to 30 min.

4.2. Tools and event logs used in the experiments

In this experiment, we used ProM and SAT-based methods to
learn logical expressions, a tool for sampling traces, and a
transformation tool implemented in this study. The event logs are
classified by LTL Checker, a ProM plug-in, and samples are
selected using a sampling tool and a conversion tool. Experiments
were conducted to generate logical expressions using SAT-based
methods with those samples as input values.

Two datasets, “exercise5.xes” and “Sepsis.xes”, were used in
the experiment. These files are available to anyone on the Web.
“exercise5.xes” is the artificial event log of the review process of
papers by various reviewers handled in the ProM tutorials, with
2297 events, 100 traces, and 20 activities. “Sepsis.xes” is the real-
life event log of sepsis cases recorded by the enterprise resource
planning system of a hospital, with 15190 events, 1050 traces,
and 16 activities.

4.3. Results of experiments

The results of the runs are shown in Tables 7 and 8. The
“Generated LTL formula” shows the logical expressions generated
by each execution. For the 9 logical expressions in this experiment,
only two of the generated LTL formulas matched the known LTL
formulas: existence (Tables 7 and 8, line 1) and absence (Tables 7
and 8, line 2), which are DECLARE templates. For the other 7
logical expressions, there were many cases in which the generated
LTL formulas appeared events that were not related to the events
selected by the known LTL formulas. For example, in execution
against “exercise5.xes”, the known LTL formulas are those related
to “reject” such as □(: reject _ ◇(reject ^ time-out X)), but the
resulting output expression◇accept is related to “accept”. All the exe-
cutions could be performed within the duration, and all of them lasted
less than 1 min.

Using the generated LTL formulas in Tables 7 and 8, we
verified how the generated LTL formulas with a small number of
traces classify the original traces. Specifically, the entire dataset
was determined to be true or false by LTL Checker using the
learned expressions, and the percentage of traces whose true/false
matches with the known LTL formulas was quantitatively
evaluated as the “percentage of correct answers”. Table 9 shows
the distribution of the percentage of correct answers for all logical
expressions generated in this experiment.

As a result, the logical expressions generated by each execution
showed a high concordance rate. excercise5.xes” showed 7
verifications with a 100% concordance rate. There were 5 verifications
for “Sepsis.xes” that showed a concordance rate of 100%. The lowest
concordance rate was 63% for the “Sepsis.xes” verification.
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4.4. Discussion

4.4.1. Known LTL formula and generated LTL formula
The results of the experiments (Tables 7 and 8) show that the

automatic generation of logical expressions using a sample
consisting of 10 traces was able to generate logical expressions that
were consistent with known LTL formulas under some conditions.
In 5 LTL patterns, the generated LTL formulas were sometimes
written as logical expressions of smaller size than the known LTL
formulas. One possible reason why the generated LTL formulas do
not match the known LTL formulas is that some traces in the
positive trace are filled with vacuity (Kupferman & Vardi, 2003).
For example, when the event log is verified using a logical
expression containing an implication (!) such as “A! B”, any trace
in which event A does not exist is considered true. In this case, we say
that the logical expression is vacuously satisfied for a trace where event
A does not exist. Therefore, in this experiment, the sample selectionwas
performed without considering the vacuity detection, which may have
resulted in a large number of candidates for the automatically generated

LTL formulas. This has a significant effect when generating a known
LTL formula, as in this experiment, but is expected to have almost no
effect when generating an unknown LTL formula from a freely given
trace. The user’s specification of events to be verified may also have a
significant effect on the automatic generation of logical expressions. In
this study, we used “Mine Petri net with Inductive Miner” plug-in for
ProM, to specify events in the execution order that indicate the desired
property with reference to the Petri net diagrams generated from each
dataset. However, depending on the event to be specified, it is not pos-
sible to generate a logical expression indicating the desired property.

4.4.2. Percentage of correct answers to generated LTL
formulas

The results of the experiments (Tables 7, 8, and 9) show that the
LTL formulas generated by the proposed method have a high
percentage of correct answers. In particular, the formula that
resulted in 100% showed the same classification results as the
known LTL formula when using the LTL Checker, but with
different properties. Therefore, even the generation of logical
expressions using samples with a small number of traces is likely
to generate logical expressions that characterize the original
traces. If the total number of traces in the event log is large, it is
unlikely that the percentage of correct answers will be 100%
because many unique traces will be included.

4.4.3. Selecting traces
The number of traces sampled in our experiment was very small

(10 traces) and may not have included enough information to
characterize the entire event log. In this study, the EMD value for
each dataset was 0.16 for “exercise5.xes” and 0.31 for “Sepsis.xes”

Table 7
Execution results for “exercise5.xes”

Classification Known LTL formula Generated LTL formula
Correct
answers

Correct answers
(%)

DECLARE ◇time-out X ◇time-out X 100 100%
:(◇time-out X) :(◇time-out X) 100 100%
◇get review 1 ^◇get review X (time-out 1! get review X) U get

review X
100 100%

□(time-out 2!◇time-out X) ◇(reject _ get review 2) 79 79%
LTL pattern ◇collect reviews! (:get review 1 U collect

reviews)
◇time-out 1 100 100%

□(invite reviewers! □(:get review X)) □(¬invite additional reviewer) 100 100%
□(:reject _◇(reject ^ time-out X)) ◇accept 100 100%
◇accept! (get review X U accept) ◇reject 100 100%
□(time-out X! □invite additional reviewer) :(◇invite additional reviewer) 72 72%

Table 8
Execution results for “Sepsis.xes”

Classification Known LTL formula Generated LTL formula Correct answers Correct answers (%)

DECLARE ◇IV Liquid ◇IV Liquid 1050 100%
:(◇IV Liquid) □(:IV Liquid) 1050 100%
◇CRP ^◇Release A ◇Release A 673 64%
□(CRP!◇Release A) ◇Release A 667 63%

LTL pattern ◇Release A! (:ER Sepsis Triage U Release A) □(¬Release A) 1049 99%
□(ER Triage! □(:Release A)) □(¬Release A) 1050 100%
□(:Release A _◇(Release A ^ ER Registration)) □(¬Release A) 1050 100%
◇IV Liquid! (ER Triage U IV Liquid) :(◇IV Liquid) 1018 96%
□(Release A! □IV Liquid) □(¬Release A) 1050 100%

Table 9
Distribution of percentage of correct answers for generated LTL

formula

Percentage range of correct answers exercise5.xes Sepsis.xes

0–60% 0 0
61–80% 2 2
81–99% 0 2
100% 7 5
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(a smaller EMD value means that the sample trace is more
representative of the entire dataset). By clearly defining the
standard for the value of EMD, there is a possibility to specify the
number of traces to be given as a sample for each size of the
dataset. Thus, if the number of traces to be given for each data set
is to be changed, it is necessary to define more clearly the
“smallness” of the number of traces.

4.4.4. Practicality of the proposed method
From Sections 4.4.1 and 4.4.2, it can be seen that logical

expressions generated with inputs consisting of fewer than the
original number of traces do not always show the desired
temporal properties, but they do characterize the original traces.
Therefore, it cannot be said that strict verification is possible, but
LTL Checker can be used to roughly grasp the execution trends of
business processes.

The number of examples traces in this paper is 10. This is for
ease of use. It is believed that more accurate logic formulas can be
generated by increasing the number of example traces. On the other
hand, it is time-consuming to provide many examples. How to
balance effectiveness and practicality is an issue for the future.

5. Conclusion

In this paper, we implemented a tool to convert XES format
event logs into input values called Sample S for a SAT-based logical
expression generation method and proposed a method to generate
logical expression for use in the LTL Checker. Using this method,
logical expressions of temporal properties can be generated from
event logs of business processes.

In the evaluation experiments, we investigated the expressive
power of logical expressions that can be generated from example
event logs in XES. We found that it is likely that a sample
consisting of fewer traces than the total number of traces can be
used to generate logic expressions that characterize the original
traces. We were also able to show the characteristics of the
undesirable results.

In the future, we should investigate the logical formulas
generated by the sample using the person in charge, work time,
etc., and improve the algorithm considering the vacuity of the trace.
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