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Abstract: Chemical-enhanced oil recovery (EOR) is a field of study that can gain significantly from artificial intelligence (AI), addressing
uncertainties such as mobility control, interfacial tension reduction, wettability alteration, and emulsifications. The primary objective of this
paper is to introduce an integrated framework for AI and chemical EOR for energy harvest operations. Central emphasis is placed on the
energy transition, with the aim of expediting the development of cleaner energy harvesting systems and attaining the goal of net-zero emission.
To do so, we present how the energy transition is changing the manufacturing of the chemicals for EOR application. For this, the uncertainty
associated with materials’ design and critical role of the simulators for transferring the laboratory experiences into full-field implementations is
discussed. The concept of digitalization and its impact on energy companies are highlighted. The role of digital twin in simulators integration
is discussed, emphasizing how increased data access can help design more tolerant chemicals for harsh reservoir environments using real-time
data. Also, we discuss how the chemical suppliers, research institutes, startups, and field operators can benefit from self-learning and robotic
laboratories for chemicals manufacturing. Moreover, this paper explores how including AI perspectives can improve our understanding of
developing chemical formulations by blending hybrid capabilities. This approach contributes to making energy production more sustainable
and aligning with the goal of zero emissions. A workflow is presented to demonstrate how the integration of AI and chemical EOR can be
used for both hydrocarbon production and other energy transition operations, such as carbon capture, utilization and storage, hydrogen storage,
and geothermal reservoirs. The outcome of this paper stands as a pioneering effort that uniquely addresses these challenges for both academia
and the industry and can open many additional doors and identify topics requiring further investigations.
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1. Introduction

1.1. The background and motivation

Artificial intelligence (AI) is a field that is rapidly transforming
modern life. Integrating AI into various industries is revolutionizing
traditional practices that were operated manually, leading to a
significant boost in the efficiency of outdated methodologies (Agrawal
& Choudhary, 2016). The aviation, auto industry, and particularly the
energy industry have witnessed a remarkable paradigm shift toward
digitization. More specifically, the petroleum industry, with its
complex and dynamic operations aimed at enhanced oil recovery
(EOR), requires innovative solutions that AI can fulfill for these
purposes (Cheraghi et al., 2021; Larestani et al., 2022; Kuzior
et al., 2022).

Due to the complex interactions of chemical EOR methods,
which can involve chemical selection, phase behavior studies,
dynamic and static investigation of materials with brine, crude oil,
and rock, scaling them from core to pilot and pilot to field scales
(Bigdeli & Delshad, 2023), the AI algorithms and data-driven
techniques can be considered as valuable tools for parallel
optimization and decision-making processes (Salimova et al., 2021;
Sun et al., 2021). In recent years, there have been efforts where AI
has been deployed for chemical EOR operations.

In this regard, recent investigations have tried to utilize the
benefits of AI in chemical EOR studies. For example, Ahmadi
and Pournik (2016) employed support vector machines to estimate
recovery factor (RF) and net present values (NPVs) for chemical
flooding models. The parameters utilized for statistical analysis
included surfactant slug size, surfactant concentrations, polymer
drive size, salinity of polymer drive, polymer concentration in
surfactant slug, and the vertical to horizontal permeability ratio.
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Their original dataset comprised 202 data points. Among the various
parameters, surfactant concentration was identified as the most
influential factor on both RF and NPV.

LeVan and Chon (2016) utilized artificial neural network (ANN)
to estimate the performance of alkali–surfactant–polymer (ASP)
flooding, considering 13 parameters, including alkali concentration
in AS slug, alkali concentration in the ASP slug, polymer
concentration in the first polymer slug, polymer concentration in
the ASP slug, polymer concentration in the second polymer slug,
surfactant concentration in the AS slug, surfactant concentration in
the ASP slug, first polymer slug size, AS slug size, ASP slug size,
second polymer slug size, slug size of water pre-flush, and well
distance. The ASP slug concentration and slug size were identified
as the first and second most important parameters. The authors also
provided some economic discussions in their analysis.

Ebaga-Ololo and Chon (2017) reported using ANN for predicting
the performance of different injection stages of two polymer slugs
during polymer flooding. They considered the following variables:
polymer slug size 1, water drive, polymer slug 2, concentration of
polymer slug size 1, concentration of polymer slug size 2, and
injection rate. The results indicated that the size of polymer slug 1
and the injection rate were the most influential parameters.

In a related study, Sun and Ertekin (2020) employed ANN to
optimize the NPV of polymer flooding. The input parameters include
reservoir rock properties, initial conditions (saturation, pressure, and
oil viscosity), polymer properties (viscosity, adsorption, salinity
coefficient), relative permeability coefficients, slug size, pattern size,
injection rate, and most notably, bottom hole pressure.

The same group of researchers (Sun et al., 2021) conducted a
techno-chemical analysis for ASP using ANN. In their studies,
additional parameters such as surfactant characterization parameters,
molecular weight of surfactant, and adsorption of surfactant were
also considered. Some additional parameters, including total acid
number (TAN) and API gravity of crude oil, were also
incorporated. In that work, the authors noted that project location,
available chemical additives, and project times are some additional
objective functions (rather than NPV) that can be considered.

Larestani et al. (2022) used ANN, decision tree, support vector
machine, and gradient boosting for RF and NPV of surfactant–
polymer flooding.

Applications of AI for predicting the performance of low
salinity water in sandstone, including the use of linear regression,
multilayer perceptron, support vector machine, and committee
machine intelligent systems, were explored in a study by Tatar
et al. (2021). Additionally, for carbonate samples, recent research
has utilized ANN, support vector machines, and decision trees for
similar predictions (Salimova et al., 2021).

Furthermore, various AI techniques, including linear regression,
support vector machine, regression decision tree, and ANN, have been
employed by Shakeel et al. (2023) to predict the viscosity of polymer
solutions. As observed, the increasing complexity of chemical EOR
methods necessitates correspondingly complex numerical models.

The primary motivation of this work is, to the best of our
knowledge, to present the recent advances in chemical EOR
technology with emphasis on the new horizons that AI is adding
to the adoption of these methods. While some material properties
and characterization have been the target of previous reviews
(Sheng, 2013; Sheng, 2015; Sheng et al., 2015), and recent papers
have addressed the field application (Bigdeli & Delshad, 2023),
the combination of these methods with AI is lacking in the
literature. Thus, this becomes the focus and motivation of this
paper – to familiarize the reader with recent advancements in the
chemical EOR field with the adaptation of AI techniques.

1.2. An overview of the study

This paper explores the synergy between chemical EOR andAI,
showcasing recent experiences and introducing an integrated
framework for energy harvest operations. Focusing on the carbon
footprint of chemical EOR methods, the study addresses material
uncertainties and highlights the recent advancements. Discussions
include the role of numerical simulators, the transformative impact
of digitalization, new horizons in energy transition for chemical
EOR, the advantages of using intelligent techniques (such as
machine learning and deep learning), and the potential benefits of
self-learning and robotic laboratories. The integration of AI with
chemical EOR is evaluated for sustainable energy production and
zero-emission goals. The workflow illustrates how the combined
power of AI and CEOR can be applied to various energy
transition operations. This paper represents a pioneering effort
addressing crucial challenges in academia and the industry.

1.3. Paper structure

This paper is divided into two parts. The first part encompasses the
background and introduction, which includes an exploration of the role
of AI in chemical EOR applications. A general overview of the study is
presented, and the motivation behind this paper – to familiarize the
reader with recent advancements in the chemical EOR processes
through the adaptation of AI techniques – is highlighted.

In the second part, more in-depth analysis and details of the
most up-to-date studies are introduced. This section stands out as
one of the pioneering works discussing the synergy of chemical
EOR and AI techniques. Topics covered include the carbon
footprint of chemical EOR operations, the digitalization of mature
fields, an intelligent EOR technique incorporating both machine
learning and deep learning, as well as the roles of digital twin and
robotic and self-learning laboratories.

2. The Related Research

The next section will present recent advancements that
comprehensive analysis of how AI has affected the domains of
chemical EOR.

2.1. Carbon footprint of chemical EOR

Energy transition is the main pathway for shifting global energy
systems from fossil to clean fuels while preserving the environment.
Global warming and energy crises necessitate a re-evaluation of
obligatory carbon management within upstream sectors. Furthermore,
the unequal distribution of fossil fuels and the added energy costs
resulting from military conflicts in Europe serve as catalysts,
speeding the energy transition in European nations and consequently,
on a global scale. Several academics have lately proposed employing
chemical EOR and CO2 footprint control to address this problem
(Braun et al., 2022; Dupuis et al., 2021; Dupuis & Philips, 2022;
Ghosh et al., 2022; Farajzadeh et al., 2021; Farajzadeh et al., 2022;
Mogollon et al., 2022). For instance, in the case of carbon capture,
utilization and storage (CCUS), the impact of EOR and carbon
storage in terms of oil RF for a given reserve is defined as follows:

RF ¼ x1 � Oil Produced
OOIP

� �þ x2 � CO2 Injected�ðCO2 ProducedþCO2 Loss
CO2 Theoretical Storage Capacty

h i

where in the above equation the term OOIP is originally oil in place, x1
and x2 are the weighting variables and range from 0 to 1 (sum of x1 and
x2= 1) based on the project’s priority – whether it is an EOR or CCUS
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application. Further details about the amount of CO2 theoretical storage
capacity can be found in Bello et al. (2023).

In pioneering research, Beck (2000) introduced an initial
emissions forecasting approach for offshore oil and gas production.
This methodology aids oil companies in predicting CO2 and NOx
emissions from fields powered by fossil fuels. Skjerve et al. (2022)
devised a high-quality emission forecasting tool, integrating
subsurface and operational data. This tool establishes links between
drainage and operational strategies, particularly concerning
emissions tied to reservoir drainage, such as CO2. These tools are
primarily used to assess the impact of CO2 taxation on decision-
making. Angga et al. (2022) explored CO2 tax effects on recovery
processes in existing fields with waterflooding. A novel procedure
can assess the composition of reinjected gas for CO2-rich Brazilian
fields. This procedure enhances production prediction, gas balance,
and plant design by integrating reservoir and production system
insights. The eCalc™ software, developed by Skjerve et al. (2022),
functions as a tool to calculate energy demands and quantify
greenhouse gas emissions linked to operations in oil and gas
production and processing.

In the work of Farajzadeh et al. (2020), the authors conducted
an exergy analysis to evaluate the exergetic efficiency of CO2

storage through EOR and identified the conditions under which
it proves exergetically effective. Additionally, they presented the
exergy RF. Fast-tracking the integration of innovative energy
sources such as geothermal energy and hydrogen as energy
carriers into the energy grid, coupled with initiatives for methane
emission management, direct air capture, the integration of wind
farms, and the efficient utilization of surplus energy through
hydropower, signifies a collaborative endeavor to reduce
dependence on carbon-based fuels. However, to sustain the
secure supply of global energy, it is necessary to re-evaluate
traditional chemical EOR methods, until the complete energy
transition takes place, to achieve decarbonization goals. The
fabrication of chemicals with optimal performance and
functionality is crucial, in this sense. The chemical EOR and AI
are two valuable technologies that enable researchers to design
novel chemicals, aiding in the consistent production from mature
reservoirs during the ongoing energy transition.

3. Uncertainty of Material Development

A primary challenge for developing chemicals for harsh reservoir
conditions is the uncertainty associated with the fluid flow in porous
media. High pressure, high salinity, high temperature, high capillary
pressure, and complex fracture network are some examples that
require detailed investigations before full-field commercial-scale
implementations. The salinity of surfactant solution and/or shear rate
selection for polymer flooding are some examples that need to be
designed carefully with respect to the condition of a given reservoir
(Bigdeli & Delshad, 2023). Static experimental uncertainties should
also be verified under dynamic conditions, as fluids flow within the
reservoir during the development of a given process for the field.
The outcome of the laboratory experiments can greatly impact the
economics of the EOR methods as candidates for a given reservoir.
Depending on the field development plan, it is essential to
understand the required method and how the uncertainty in the
developed materials can impact the project, as shown in Figure 1.

For gas injection EOR techniques, including miscible gas
injection (such as CO2 injection), steam-assisted gravity drainage
(considering steam quality), and cyclic steam stimulation,
uncertainties arise from the study of phase behavior associated
with the injection gas composition. Determining the minimum
miscibility pressure conditions or assessing the impact of
impurities, such as nitrogen oxides or sulfur oxides, on the phase
envelope, significantly affects the overall performance of injection

Figure 1 shows the maturity of the process versus the 

development schedule (Babadagli, 2020).

fluids. These are some examples of challenges in this field.
For thermal EOR techniques, such as in-situ combustion,

solvent injection, high-pressure air, and steam injection (cyclic or
gravity drainage), the process involves using heat to alter the
undesirable conditions of the reservoir and fluids. This process
involves reducing the viscosity of the oil, upgrading crude oil
with nanoparticles, especially for heavy oils, and understanding
their interactions. These are examples of uncertainties associated
with thermal EOR, where AI can be utilized. Enthalpy, equation
of states, phase equilibrium due to the vapor–liquid interaction,
and crude oil detachment from the surface of the rock (especially

Figure 1
The maturity versus time for different EOR processes and the transformation from the lab to the full-field
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for Carbonate reservoirs) are some of the parameters that can be
altered due to the thermal flux at the reservoir. The combination
of all these parameters contributes to the final recovery, and the
selection of associated materials, such as nanomaterials and
surfactants for hybrid EOR techniques, can be accelerated when
AI techniques are employed and proper databanks from previous
experiments are available.

For other EOR techniques, such as low salinity water, microbial,
electrical heating, or ultrasonic methods, the process of condition
selection presents various uncertainties. These include determining
the type of salts, pH levels, frequency, power requirements,
injection rates and sequences, phase behavior considerations, as
well as methodology screening. Additionally, upscaling from micro
to macro scales poses challenges that AI can be useful to resolve them.

The most important consideration for transferring a newly
developed chemical EOR mixture, such as a customized formulation
comprising several surfactants (in-house synthesized or commercial),
co-solvents, nanoparticles, and alkalis, from laboratory and
theoretical investigations to either a pilot or full-field implementation
is to have a reservoir simulator with capabilities for the specific EOR
process, in addition to an economic model (Bigdeli & Delshad,
2023). Reservoir simulation studies can improve the practical
knowledge of developed research-based materials and show their
weakness/readiness at both pilot and field scales. Another useful
metric for evaluating the developed material is the technical
readiness level, which has been utilized in the oil and manufacturing
industries (Robertson et al., 2019; Rushby et al., 2013). The
upscaling of chemical EOR technologies is also a crucial aspect of
their application. According to Veedu et al. (2010), as chemical EOR
processes are scaled up, the number of linked variables increases
dramatically. For instance, several parameters must be upscaled from
lab measurements to field scale including salinity gradient, surfactant
dilution, dispersion, adsorption, critical micelle concentration, and
capillary desaturation curves. A recent review paper on the capillary
desaturation curves for both sandstone and carbonate rocks can be
found in Siyal et al. (2023). In the case of co-solvent, additional
research is required regarding co-solvent partitioning and its impact
on microemulsion viscosity (Dwarakanath et al., 2008). Designing
new chemicals and formulations and simulation studies from
sequential into parallel implementation can reduce the time required
to advance from screening analysis to full-field implementation from
8 to 4 years (Rotondi et al., 2015).

The complexity of the modeling workflow is further increasing
due to the large number of multi-mechanisms and multi-component
processes associated with chemical EOR, as shown, for instance, in
Figure 2. To compare the performance of various implemented

chemical EOR methods, a water flood can serve as the base case
for efficiency evaluation (Al-Mjeni et al., 2010).

When employing hybrid EOR techniques, such as chemical huff
and puff (Farog et al., 2016) or low salinity surfactant flooding
(Gbadamosi et al., 2022), the interaction of the mechanisms for
each process becomes significantly more intricate. Therefore, the
developed numerical model should be mechanistic.

However, there is uncertainty regarding the sequence in which 

these processes occur. For instance, although several mechanisms for 
low salinity water flooding have been proposed, it remains unclear 
which one occurs first, or which combinations occur 
simultaneously (Bigdeli et al., 2023). Secondly, after selecting the 

appropriate EOR method, it is unclear how to transition between 

upscaling and downscaling at various levels while addressing 

multiple mechanisms. To transfer laboratory measurements into 

simulators for ASP flooding, Moreno et al. (2018) have made 

some recommendations. The findings of Kazemi Nia Korrani and 

Jerauld’s (2022) study indicated that the upscaling of low salinity 

water flooding might not accurately reflect the benefits of the core 

scale. Moreover, the experiences reported by Sarma et al. (2022),
Torrealba et al. (2019), Najafabadi and Chawathe (2016), Babaei 
and King (2013), Dair et al. (2020), Talabi et al. (2019a), Talabi 
et al. (2019b), Moreno et al. (2021), Moreno et al. (2019a),
Moreno et al. (2019b), Moreno et al. (2015), Moreno et al.
(2014), Moreno et al. (2013), and Moreno and Flew (2011) are 

useful for practical upscaling and downscaling practices. This 

information is essential for chemical suppliers and field operators 

as they are facing more risks compared to the lab researchers 

(Bigdeli & Delshad, 2023).

4. Old Versus New Chemical EOR Classification

It is necessary to review the classifications of chemical EOR
before exploring how AI can enhance the accuracy of current
knowledge. Despite the impact of climate change and global
warming on industries, it is imperative to ensure the world’s
energy supply continues to drive the oil and gas upstream sector
to explore new frontiers. These include deep offshore reservoirs,
heavy oil reservoirs, and matured water-flooded fields, all in
pursuit of increased oil extraction.

To achieve this, the price of oil plays a major role in either
expediting or postponing the advancement of chemical materials.
Chemical EOR methods tend to be costlier compared to other
techniques such as water flooding for boosting oil production. The
higher cost is attributed not only to the development of the chemicals
themselves but also to the need for injection and subsequent
separation facilities for these chemicals from the produced fluids
(Bigdeli & Delshad, 2023). As an example, as mentioned by Fink
(2015), chemicals like surfactants, polymers, inhibitors, and
nanomaterials have over 20 applications related to oil and gas fields.
These applications include functions such as drilling mud, corrosion
inhibition, scale inhibition, clay stabilization, bacterial control, filter
cake removal, cement additives, gas hydrate control, fracturing fluids,
water shutoff, demulsifiers, defoamers among others.

Although there has been a huge amount of effort to introduce and
improve the quality of the developed chemical, the conventional
approach to assessing chemical EOR methods is outdated. Surfactant
phase behavior, core flooding, analysis of chemical adsorption and
retention, the residual resistance factor of polymers, filtration ratio of
polymers, and polymer stability are some of the standard
experiments (Dean et al., 2022). By reviewing and updating these
tests, reservoir engineers and field engineers can update the reservoir
simulator models to forecast the final performance of chemicals at

Figure 2
Multi-mechanisms are presented for modeling chemical EOR
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both pilot and full-field scales. This is even more crucial when hybrid
chemical EOR methods are under investigation.

Raffa (2021) recently introduced a new classification of
chemical EOR in comparison with traditional classification.
Hybrid methods, a combination of ASP, surfactant–polymer (SP),
and alkaline–polymer (AP) with nanoparticles, surfactants with
ultra-low interfacial tension (IFT), surfactants, and polymers that
tolerate high pressure and high temperature, low salinity, smart
and engineered water flooding are some new improvements. In
this regard, Bigdeli and Delshad (2023) reported a comprehensive
review paper on the practical applications of chemical EOR
methods and the current experiences of chemical EOR operations
can be transferred from laboratory to full-field operations.

The mineralogy of reservoir rocks, composition of injected brine
and crude oil properties, such as TAN, and equivalent alkane carbon
number (EACN), reservoir temperature, and geochemical interactions
of fluid with reservoir rock minerals, the price of chemicals, and
their availability and quality are a few factors that must be
considered. The increased surface activity particularly in carbonate
reservoirs, chemical reactions, cation exchange, and mineral
dissolution necessitate coupled reactive transport models such as PH
REdox EQuilibrium in C language (PHREEQC) (Kazemi Nia
Korrani, 2014) and chemical flood reservoir simulators.

As an example, Delforce et al. (2022) presented two newmethods
to calculate the EACN with neural network and graph machines. The
information from COSMOtherm, a tool for the quantitative
calculation of solvation mixture thermodynamics based on quantum
chemistry, was employed by neural networks while the graph
machines combined simplified molecular input line entry
specification tools. These studies demonstrate that there are new
methods to select the appropriate experimental conditions in addition
to conventional test tube evaluation of surfactant phase behavior.

The new EOR classification facilitates a better understanding of
the requiredmethods, resulting in the precise selection and application
of newmaterials. Hybrid capabilities can boost innovative approaches
for complex reservoirs, depending on tailored experimental
conditions. Accurate modeling is essential, and the transferability of
these new methods to full-field operations can be questioned.

Complexity and cost, along with limited practical experience,
especially for full-field operations, are challenges. Dependency on
technology, such as ANNs and deep learning, as well as simulators
that can handle all required chemical EOR methods, including
microemulsion flooding and their complex thermodynamic
interactions, poses potential issues. Consideration of multiple factors,
such as reservoir rock mineralogy, brine properties, crude oil
characteristics, quality, and affordability of chemicals, and the facilities
for their injection processes at the surface are some of the advantages
and disadvantages of old versus new chemical EOR classifications.

5. Digitalization of Mature Oil Fields

Manual production methods in mature petroleum fields are
outdated, and digitization should be employed for such fields. The
pace of digitalization and the use of automated systems are rapidly
increasing in other industries that have embraced real-time data-
driven solutions and the Internet of Things (IoT), including
healthcare, finance, and transportation services such as airlines.
Although the idea of digitization, such as supervisory control and
data acquisition, was first proposed in the 1970s (Anton et al., 2017),
most of the oil and gas operators still saw it primarily as an
Information Technology (IT)-based tool (Carvajal et al., 2017).
Managers, engineers, operators, and IT specialists all need to have a
thorough understanding of digitalization when it comes to the

upstream sector, and this connection is established through data. The
performance of monitoring and measurement methods in digital oil
fields is dependent on complex algorithms that integrate surface and
subsurface equipment. Reservoir pressure, temperature, and water/oil/
gas production rates are the major characteristics that these
algorithms are attempting to determine, and the accuracy and rapid
evaluation of these parameters is crucial for making real-time
decisions to manage risks. In chemical EOR projects, the complexity
escalates due to the multitude of parameters that require evaluation,
particularly considering the properties of chemical materials such as
surfactants and polymers, or their blends with co-surfactants and
alkali agents (Henthorne et al., 2011). Properties such as injected
fluid and reservoir pH values, divalent ions in the injected fluids and
initial reservoir brine composition, conductivity, fluid viscosity,
density, and their mixture are only a few examples (Henthorne
et al., 2014).

In addition, for a chemical EOR project to achieve success,
mobile communication is essential across a variety of domains.
This includes sensor data, such as temperature, pressure, and in-
situ saturation of injected fluids in chemical tracer tests, accurate
computational modeling, and handling and transferring vast
volumes of data (big data). Furthermore, the real-time data
acquired from sensors assessing fluid properties at wells, pipes,
and processing equipment can also be used by advanced
computational techniques such as machine learning and deep
learning. Cloud computing can speed up the digitization of oil
fields. In the case of complex fractured reservoirs, experts from
around the world can access the reservoir model for precise
investigations using a cloud-based system. Digitalization enables
managers and major oil and gas companies to grant remote access
to a broader range of experts. A cloud-based system enables the
modeling of offshore reservoirs, allowing production engineers
from the platform to connect with reservoir engineers in remote
offices, efficiently delivering information and modeling results.
Due to the difficulty of accessing the subsea floor, if the fluid
sampling is inaccurate, the predicted characteristics from the
numerical models may lead to inaccurate calculations of oil and
gas volumes, leading to unreliable capital expenditures (CAPEX),
operational expenditures (OPEX), and NPV estimates.

A digital twin is another advanced technology in which a digital
representation is employed to mimic real-world systems. It should be
underlined that the successful deployment of digital twin is highly
dependent on integration processes, the implementation of AI,
machine learning, and deep learning. The coupling of FieldTwinTM

and SLB Olga software is an example of using digital twin
capabilities for flow assurance in subsea field studies (SLB, 2021).
More precisely, digital twin and production system models are
coupled through machine learning augmentation tools, and then the
digital twin can be applied to monitoring, optimizations, and
abnormal situation detection (i.e., what-if scenarios) (SLB, 2024).
This capability empowers production engineers to achieve a higher
level of precision and effectiveness in monitoring extensive fields,
particularly when dealing with tasks such as chemical injection into
mature oil reservoirs. Data analysis (pattern recognition, statistical
analysis, and machine learning), cloud computing operations, and
other technologies considerably expand the complexity of the
digital twin when combined with the existing simulators (SLB,
2023). Although these activities increase the cost of computation
and the effort required to develop software and train model and
engineers, they will provide ample information about remote
locations, such as deep-water reservoirs. As a result, chemical
suppliers will have access to more realistic tools and data for
performance evaluation of their products. When applied to the
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material design and fabrication of a specific reservoir, the data
provided by this set of tools can be incredibly useful.

The required level and sophistication of processing equipment
and the deployed chemicals are the main questions that should be
answered in the process of digitalization. As an example,
according to Fadili et al. (2009), to establish an automated
chemical EOR system, the project should be designed such that
injection and production schedules are continually adapted in
response to variations of chemical concentrations due to surfactant
retention or polymer adsorption in the reservoir. This dynamic
approach is essential for achieving the highest possible
productivity. In ASP flooding, an early water breakthrough
indicates insufficient ASP injection concentration and poor oil
sweep efficiency. This concentration level can be precisely
monitored by AI. Another advantage of using AI in the petroleum
industry is computer vision, a field of AI to capture and extract
information from images and videos, for remote production
tracking, pipeline inspection, drilling plans for geologically
complex areas, and digital rock physics for core and subcore scale
analysis (Balcewicz et al., 2021; Schäfer et al., 2023). The
adoption of digitization by the upstream sector is not a good-to-
have option but a must-have choice for field operators.

For controlling processes, as noted by Fadili et al. (2009), the AI
algorithm should be designed to monitor the transportation of
chemicals in the reservoir (fluid flow) through observation wells
to generate data. The behavior of production wells should be
monitored in terms of water cuts, GOR levels, breakthroughs of
chemicals, and, ultimately, the economics of projects, including
the price of chemicals (both manufacture and deliverability to the
injection point), capacity of surface facilities, and maintenance
costs. These factors can be assigned as the objectives of the AI
algorithms that control the digitization of mature oil fields.

In such a scenario, the previous experience and information on
the characteristics of the reservoir condition through well logs and
well tests become additional advantages for the AI algorithm,
ensuring that production meets the targets of the field
development plans. For more practical information on this topic,
readers can refer to the recent paper by Bigdeli and Delshad (2023).

6. Energy Transition

The governmental commitments to a net-zero future are the key
driving factor for a low-carbon economy. The energy sector can
benefit from adopting AI in a few ways, including better
predictions, improved demand forecasts, asset management,

automation capabilities, and cost savings for stakeholders. Besides
digitalization, the energy transition is also accelerating the ongoing
paradigm shift in geo-energy sciences. This shift is evident in the
growing sophistication of data-driven tools. Consequently, it is
essential for the proper assessment of developed chemicals and
their impact on the digitalization of petroleum fields.

Figure 3 shows paradigm shifts in scientific discoveries
(Agrawal & Choudhary, 2016).

As shown in Figure 3, the fourth paradigm of scientific
discovery is one in which AI and machine learning play a
significant role. This classification is general in nature and not
specifically focused on petroleum engineering. As computational
power and modeling tools improve, data-driven science is
enabling researchers to detect patterns and anomalies in the data
with a considerably greater volume of information. This becomes
particularly important for applications in energy transition when
determining chemical formulations of surfactants and polymers, as
well as their blending with alkaline co-solvents and nanoparticles.
These characteristics are often challenging to ascertain through
experimental investigation across various ranges of pressure and
temperature. The power of AI and machine learning can detect
optimal conditions that may not be easily discerned through
human investigation. In a narrower context, leaders in the
chemical industries are employing AI to achieve business growth
and sustainability, especially considering the COVID-19
pandemic, geopolitical challenges, and fluctuating fuel prices,
which have an impact on supply chain restrictions, the cost of
materials, and the dependability of chemical suppliers. Demand
estimation, tracking raw materials to their sources, real-time order
tracking, delivering and automation at warehouses and ports for
sorting and safety, and supply network optimization are a few
examples of how AI may help chemical suppliers. Cybersecurity
concerns are one of the negative aspects of digitization
considering energy transition. Networking and customer
satisfaction are two other problems that digitization may
encounter as obstacles. Cybersecurity may also receive attention
in the chemical supply industry, from R&D division to customer
services and support.

As the subsurface characterization becomes more complex
(fractures, faults, shale layers, etc.), the process of successfully
implementing a chemical EOR project becomes more challenging.
This is primarily due to the limited access to real-time data for a full
reservoir characterization. AI can detect bottlenecks and obstacles
more efficiently in maintenance chemical EOR applications for
energy transition purposes. In such a situation, having access to prior

Figure 3
Four paradigm shifts in scientific discovery
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AI can accelerate multiple complicated activities simultaneously
with the use of other technologies like the IoT, sensors, and distributed
ledger technology (blockchain) (Kuzior et al., 2022). For instance,
SLB’s (2024) ultra-high pressure and high-temperature sensors
enable operators to work at temperatures of 250 °C and pressures of
up to 35000 psi. These technologies are essential to produce
materials in deeper and hotter reservoirs because they can provide
laboratory technicians with real-time data to develop chemicals that

information and experiences is essential for raising the success rate.
However, it should be emphasized that chemical EOR methods have 

less full-field experience than EOR techniques like water flooding 

and thermal EOR techniques (Cheraghi et al., 2021). Major oil and 

gas companies are transferring themselves into energy companies,
such as BP, Chevron, Baker Hughes, SLB, and Total Energies,
which can leverage digitalization, particularly AI and ML, for pattern 

recognition and anomaly detection in the large datasets they acquire.
Seasonal energy demand, forecast weather conditions, infrastructure 

maintenance, and energy price fluctuation are some examples of how 

AI can expedite the energy transition, in addition to the development 
of chemical formulations (Cheraghi et al., 2021; Kuzior et al., 2022;
Ugoyah & Igbine, 2021).

are more appropriate for such harsh conditions.
In the upstream sector, the consequences of the energy

transition can be observed in four main areas where reservoir
engineering and chemical EOR technologies can be beneficial:
carbon capture, storage, and utilization; geothermal reservoir;
hydrogen production; and methane emission management. As can
be seen from Figure 4, the energy transition and its domains are
heavily influenced by AI.

7. Intelligent EOR

Due to the energy crisis of the 1970s, EOR studies have become
a firmly established field of science and application within the
upstream sector (Drumond Filho, 2017). Researchers and
managers are attempting to leverage and combine the benefits of
various chemical EOR methodologies through hybrid approaches.
In comparison to other EOR methods, such as thermal and gas
injection, less scholarly focus has been given to the use of AI and
ML in chemical EOR technologies. According to Cheraghi et al.
(2021), there are fewer publicly available data and field examples
to confirm this. In general, the application of data-driven

modeling covers multiple disciplines, including subsurface
characterization and petrophysics, drilling, production, reservoir
studies and EOR, reservoir management, facility, and pipeline
remediation (Balaji et al., 2018). In addition to geology,
petrophysics, and reservoir data, the chemical EOR data required
for AI include chemical concentrations, adsorption, dilution,
partitioning (for alkaline and surfactant), relative permeability,
residual oil reduction, flood mechanisms, duration of pre-flush,
post-flush, slug size, and injection fluid composition. For further
reading, readers can refer to Han et al. (2022), Al-Murayri et al.
(2019), and Khanifar et al. (2019).

To illustrate how AI can be used for EOR methods, some
examples are provided here. Intelligent petroleum engineering was
the subject of the work reported by Mirza et al. (2022). In that work,
it was argued that machine learning and data-driven modeling are
two essential tools to transition the petroleum industries into
digitalization. Intelligence geoscience, intelligent reservoir
engineering, intelligent production engineering, and intelligent
drilling engineering are the domains that are covered by authors.
Large data volumes, various data formats, inconsistent and unreliable
data sources, and a quick rate of data flux are issues with machine
learning adoption in the petroleum industry. The petroleum industry
is not able to effectively utilize machine learning technology as
quickly as other engineering disciplines due to reservoir model
uncertainty, the preparation of raw data, and data processing time
delays. The authors argued that one approach to resolving this issue
is to use a hybrid model to give additional insight into the necessary
model and be based on physical principles when a pure data-driven
solution cannot be applied in this field.

ANN has also been applied to waterflooding of heterogeneous
models. ANN, adaptive neuro-fuzzy inference system, and support
vector machine were used to determine the accuracy of the model
and the RF was reported as a function of Dykstra–Parsons
permeability variation coefficient, mobility ratio, permeability
anisotropy ratio, water cut, wettability indicator, and oil/water
density ratio (Kalam et al., 2022).

More examples of using AI for the implementation of EOR
methods can be found in Huang and Chen (2021) for steam-
assisted gravity drainage, in Nasr et al. (2021) for silica
nanofluids, in Larestani et al. (2022) for surfactant–polymer
flooding, and in Dang et al. (2020) for low salinity surfactant
flooding. These examples show that ML, particularly ANN, can

Figure 4
Diverse energy transition domains influenced by various AI technologies

Energy 
Transition 

Hydrogen 

Methane 
Emission 

Management 

CCUS

Geothermal Artificial 
intelligence 

Machine 
Learning 

Deep 
Learning  

Artificial 
Neural 

Network 

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 2 2024

71



be employed for the optimization of chemical EOR, even when
dealing with a large number of associated variables.

Selecting an EOR strategy for a particular field is another
application of ML. In this regard, different authors demonstrated
how ML can be used for this purpose (Ahmadi & Bahadori, 2016;
Alvarado et al., 2002; Cheraghi et al., 2021; Dang et al., 2020;
Giro et al., 2019; Huang & Chen, 2021; Huerta & Meza, 2022;
Kalam et al., 2022; Larestani et al., 2022; Nasr et al., 2021;
Suzanne et al., 2022; Tarrahi et al., 2015; Thomas et al., 2023).

These examples demonstrate that AI can serve as a powerful
tool for selecting various EOR methods, including chemicals that
are in development, tailored to a specific reservoir pressure,
temperature, and water salinity.

Microfluidic devices can hasten the development of novel
chemicals that are identified by AI for EOR applications. These
devices have several advantages over traditional equipment. First,
they require a small sample volume, the experiments are faster
and less expensive. Furthermore, these techniques have proven to
be resilient in withstanding the harsh reservoir conditions of high
pressure, salinity, and temperature. Additionally, their pores can
be designed with varying degrees of precision and resolution.
Additionally, this sort of equipment is operator-independent and
popular to use. Microfluidic devices can be used for testing oil
recovery from conventional reservoirs and heavy oil in addition to
carbon capture and storage. Polymer, surfactant, foam stability,
thief zone detection, fracturing fluid properties, water/oil
separation, and inhibitor performance analysis are examples of
microfluid testing related to chemical EOR. For different
applications of microfluidics in chemical EOR operations, readers
are referred to Kenzhekhanov et al. (2022), Valavanides et al.
(2022), Vazquez et al. (2022), Yu et al. (2021a), Yu et al.
(2021b), Wang et al. (2020), Liang et al. (2020), Ren et al.
(2020), Du et al. (2019), Yuan et al. (2019), Quaglio et al. (2019),
Al Shehhi et al. (2017), Xu et al. (2017), Bazazi et al. (2017), and
Moiré et al. (2016).

8. Robotic and Self-Learning Labs

The use of robotics in petroleum engineering is not a novel idea;
drones, automated rigs, production monitoring, and other similar
applications have all made use of this technology. A comprehensive
review of the robotic applications for onshore and offshore sites can
be found in Shukla and Karki (2016a) and Shukla and Karki
(2016b), respectively. The robotics application in the experimental
and screening stages of designing chemical processes, however,
is novel.

A robotic arm and high-throughput formulator are two specific
examples of robotic equipment that can be used for designing
chemicals at the laboratory scale (Jacobs, 2022). A robotic arm
and a high-throughput formulator are especially useful for
investigating the phase behavior of microemulsions and
surfactants. This is because they can maintain more stable
conditions, which are necessary for visualizing the generated
emulsion phases. The chemical formulation design is not limited
to EOR or IOR applications, but it can be used for well
construction (drilling fluids, muds, and cement additives), well
completion (acidizing and fracture fluids), midstream (water
treatment, H2S removal, corrosion inhibitors), and flow assurance.
Depending on the required level of accuracy, the robotic arm and
high-throughput formulator can increase the quality of
manufactured chemicals.

An example of advanced robotic technology and automated
workflows for waterflood core testing is reported by BP (Griffiths

et al., 2015) where the key elements of the automated workflow
include (1) sample preparation robots, (2) automated robotic
coreflood, and (3) effluent analysis laboratory. For each step,
measurements and timelines are provided.

The integration of advanced laboratory workflow, combining AI
technology with a coreflood simulator for special core analysis services
(SCAL),was the focus of the study presented inMathew et al. (2021). In
this work, a framework was developed for the determination of the
capillary pressure and relative permeability based on mathematical
models. The advantage is to generate multiple capillary pressure and
relative permeability curves. It should be noted that the framework
was only developed for steady-state drainage experiments. A
combination of machine learning and micro-CT images to determine
the residual oil in carbonate reservoirs can be found in Rizk et al.
(2022) where CPU-solver uses the lattice Boltzmann method on
carbonate rock digital images, and the AI-based workflow estimates
the residual oil saturation.

As machine learning and AI grow in several fields of study, self-
learning laboratories are among the most cutting-edge and effective
solutions for resource, time, and material optimizations. Although
chemical engineering applications make up most self-learning
laboratories, their benefits are still useful for energy transition
goals. To discover and optimize the physical/chemical processes,
closed-loop automated experiments are followed by an iterative
decision-making algorithm. In such cases, machine learning and AI
become crucial tools for assistance (Bennett & Abolhasani, 2022).

As shown in Figure 5, the process flow of a closed-loop self-
learning laboratory may be divided into experiments, processing,
model building, and prediction.

The benefit of adopting self-learning laboratories is that they can
handle different time-scale operations and the optimization of enormous
datasets (Abolhasani &Kumacheva, 2023; Hippalgaonkar et al., 2023).
When the chemical EOR operations are utilizing self-learning
laboratories – that collaborating with robotic arms and high-
throughput formulators – the accuracy of the developed materials
can improve significantly. The availability of data for both chemical
EOR operations and specific conditions of designing materials is the
sole problem that could serve as a barrier to the continued
deployment of such an automated system. The role of materials
science should be clarified to recognize how chemical quality can be
improved for chemical EOR operations. More information about the
roadmap to implement, current statues, and limitation and future
opportunities of self-learning laboratories for both chemical and
materials science is reported in Bennett and Abolhasani (2022).

Figure 6 shows how chemical EOR operations and AI can be
integrated. AI may be utilized as an interface between the
manufacturing unit and the petroleum production system. In this
case, the AI can monitor the field’s response in terms of the amount
of oil, gas, water, and chemical output, and based on that
information, it can determine whether the desired goal has been
achieved. The AI can instruct material sciences manufacturing
facilities to update or reexamine the developing materials using their
knowledge of physics, chemistry, engineering, and mathematics,
depending on how well the designed materials are performed in the
field. Once the chemicals are optimized, the AI can then inject them
into the field. The digitalization of the field is crucial in such a
process, according to what has been discussed earlier in the
digitalization sections. It should be emphasized that the integrated
workflow is not only applicable to hydrocarbon production but may
also be used for energy transition operations such as carbon capture
and storage, hydrogen storage, geothermal reservoir development, or
operations involving methane emission monitoring and reduction.
The presented workflow is useful for each scenario.
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9. Discussion on Gap and Future Research

The application of AI in chemical EOR represents a promising
avenue for advancing the efficiency and sustainability of oil
extraction processes. However, several critical gaps and challenges
exist, shaping the direction of future research in this domain.

One notable challenge is the limited field experiences and
datasets available for chemical EOR compared to other established
techniques like thermal or gas injection. This scarcity of real-world
data hinders the ability to effectively tune AI models for optimal
performance. Future research should prioritize expanding field trials
and collaborations to gather more extensive datasets, enabling the
development of robust and accurate AI models tailored specifically
to chemical EOR.

Environmental considerations, particularly the carbon footprint
of chemical manufacturing, emerge as another crucial aspect.

Although there are limited publications addressing this concern,
future development in AI-assisted EOR must integrate carbon
emissions considerations as a potential restriction. Aligning AI
strategies with sustainability goals and conducting comprehensive
environmental impact assessments are essential for shaping the
future landscape of chemical EOR applications.

Furthermore, the absence of standardized protocols for selecting
AI techniques in chemical EOR poses a significant challenge. Most
studies focus on reporting RFs and NPV, neglecting the diversity of
available AI techniques. To address this gap, future research should
focus on developing guidelines that provide a systematic approach
for selecting the most appropriate AI technique based on the
specific requirements of each method.

The integration of AI education into the training of the new
generation of students is critical. Beyond traditional reservoir
engineering courses, students should be equipped with knowledge

Figure 5
Process flow of a closed-loop self-learning laboratory
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in AI, machine learning, and deep learning to bridge the gap between
theoretical knowledge and practical application. This additional
educational requirement poses challenges in finding experienced
users who can effectively apply accurately trained models in real-
world scenarios.

The uncertainty associated with material development, especially
for hybrid EOR methods, adds complexity to the problem. New
guidelines, screen tables, and workflows need to be developed to
accommodate these evolving challenges and facilitate the integration
of novel materials into chemical EOR strategies.

The traditional classification of chemical EOR is considered
outdated, urging the need for new guidelines, screen tables, and
workflows that align with the development of new materials. The
classification should be updated to reflect the evolving landscape
of chemical EOR technologies.

The digitalization of mature fields requires substantial investment
and technological updates. Cloud computing, digital twin technology,
and advanced simulators operating at the field scale are essential for
enhancing the precision of modeling and upscaling. The pace of
digitization is closely tied to oil prices and the final cost of developed
chemicals. Furthermore, the energy transition can be supported by
producing oil with chemicals that have a lower carbon footprint,
emphasizing the need for sustainability in oil extraction processes.

Intelligent EOR, a field focusing on data-driven techniques,
must be recognized as a distinct area of study by both industry
and universities. This recognition is crucial for fostering the
development of a new generation of studies that outperform
traditional EOR techniques relying solely on laboratory
investigations and physics-based models.

Robotic and self-learning labs emerge as powerful tools for field
operators, managers, engineers, and researchers to investigate new
chemicals with higher precision. These technologies can significantly
enhance the understanding and application of chemicals in EOR
processes, contributing to more efficient and effective oil recovery
strategies.

Real-time data and sensor-derived information are identified as
additional fields that can accelerate the adoption of AI in chemical
EOR operations. Integrating these technologies will enhance
monitoring, control, and decision-making processes, making chemical
EOR more adaptive and responsive to dynamic reservoir conditions.
Future research should focus on developing advanced real-time
monitoring systems and optimizing sensor-derived information for
improved AI-driven decision support in chemical EOR operations.

10. Conclusions

This work addressed how the energy transition is affecting
existing knowledge, limits, and practices of energy harvesting
with a focus on the integration of AI and chemical EOR operations.

The following conclusions and recommendations are presented
as the final insights of the paper:

• The carbon footprint of chemical EOR methods should be
carefully considered as it can act as a barrier or constraint to the
development and injection of complex chemical mixtures, such
as blends of surfactant(s), co-solvent(s), and polymer.

• The uncertainty associated with the performance of the chemicals
in harsh reservoir conditions needs to be clarified. Numerical
reservoir simulators play a crucial role in scaling up laboratory
investigations into pilot and full-field applications.

• Mathematical modeling of the multiple mechanisms and components
involved in hybrid EOR methods, as well as the sequence of their
occurrence, should be made clearer. Traditional classifications of

chemical EOR methods should be updated to incorporate
considerations related to energy transitions and achieving net-zero
emissions.

• Digital twin technology, AI, machine learning, cloud computing,
and the IoT are examples of digitalization in the petroleum field.
The importance of real-time data and sensor-derived information is
essential in this context.

• Areas such as underground hydrogen storage, geothermal reservoir
engineering, CCUS, and methane emissions mitigation are critical
aspects of the energy transition. These areas can benefit from the
application of AI technologies, while chemical EOR enables
continuous production from mature reservoirs. This concept can
be termed as “Intelligent EOR,” involving the integration of data-
driven techniques with the traditional science of EOR to advance
our current knowledge.

• The utilization of robotic and self-learning labs, for the development
of chemical formulations comprising surfactants, polymers,
nanomaterials, and alkaline substances blended with reservoir
simulators, can usher in a new era of investigations. These
investigations can greatly assess the performance of chemical
suppliers and field operations.
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