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Abstract: Ultrasonic guided waves are one of the non-destructive inspection techniques used in structural health monitoring for localized damage
detection. Even though propagation, scattering, and dispersion of the Lambwaves have great progress in themonitoring technology of the Lambwave,
the detection, identification, and quantification of structure damage still face challenges because of the complexity of the process in the propagation,
scattering, and dispersion of theLambwave.Machine learningmethods, including shallow learning (support vectormachine (SVM)) and deep learning
(DL)methods (convolutional neural networks (CNNs) and long short-termmemory (LSTM)), in recent years have brought revolutionary opportunities
for decoding the information of the Lamb wave. Therefore, the methodology structure was proposed from dataset collection, data preprocessing
(including feature extraction, feature combination, and feature transformation), data training, and classification. Two different cases of damage
types and damage sizes were designed in a COMSOL environment. The shallow learning method of the SVM model and the DL method of the
CNN-LSTM model were compared with the defined time series features and transformed images. The results showed that both shallow learning
methods and DL methods can be used in the application of signal classification, while the DL method of CNN-LSTM exhibited higher accuracy
in image classification, as compared to the SVM. The robustness of the proposed models has also been verified under noise interference. The
results demonstrated that the DL architecture of CNN-LSTM has the potential to attain greater precision because of better feature extraction and
processing ability than the shallow learning model of SVM. In addition, the performance of signal classification and image classification of SVM
and CNN-LSTM models dramatically decreased as the noise levels increased.
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1. Introduction

Civil engineering structures form the cornerstone of societal
economic advancement. To prevent building failure and enhance
social stability, structural health monitoring (SHM) is essential
for understanding structural working performance [1, 2],
evaluating structural working status, and facilitating immediate
and effective decision-making [3]. Guided wave-based approaches
are frequently able to recognize more minor damage and a little
abnormality in a real-time manner [4], while traditional vision-
oriented methods [5] or vibration-centric approaches [6, 7] are
usually responsive solely to substantial damage.

Apart from signal processing based on physics principles, data-
centric methods have gained recognition in the last 10 years,
including the use of deep learning (DL) and artificial neural networks
(ANNs) [8–10]. In many signal classification systems, waveform-
based deep neural networks are now required [11–15]. These

advanced neural networks directly utilize unprocessed signals as
input in various tasks [16], such as identifying stress levels of
structures, assessing the condition of infrastructure, identifying
structural damage, and detecting structural damage [17], diagnosing
structural damage [18, 19], and monitoring structural health [20, 21].

For example, Yang et al. [22] used the Bayesian technique to
predict the size of the crack. Chen et al. [23] developed an algorithm
for locating structure damage, which increases the model’s accuracy
and reduces the training time. Das et al. [24] developed an OC-
support vector machine (SVM) model for classifying the structure
damage and demonstrated the robustness of the model with more
complex experimental cases. Legendre et al. [25] developed a neural
network automated model for Lamb wave to recognize the metallic
weldments. Su and Ye [26] quantitatively identify structure defects
based on ANNs, whose inputs are also Lamb waves. Veiga et al.
[27] used ANNs to decode and classify ultrasonic waves to
recognize different fault types.

Few studies compare the effectiveness of the features from time-
series signals and images transformed from signals. This study fills the
knowledge gap and compares the training performance of the shallow
learning model of SVM and the DL model of convolutional neural
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network (CNN)-long short-term memory (LSTM) with the same
training datasets. To demonstrate the robustness of these models,
different COMSOL scenarios were designed, and different noise
levels were considered during model training. Our study
innovatively applies ultrasonic guided waves transformation to
image in SHM, addressing unique challenges. While prior research
transformed data types into images, our focus on Lamb waves,
machine learning methods, and noise interference distinguishes our
contribution, advancing signal and image classification techniques
in SHM. We contribute by demonstrating the effectiveness of these
models in classifying Lamb wave signals, showcasing their
robustness and potential for precision in real-world scenarios.

This paper is structured in the following manner. Section 2
presents the methodology of SVM and CNN-LSTM models, feature
calculation and selection, and models’ evaluation. In Section 3,
different cases of the COMSOL model were built and examples of
signals and images were presented. In Section 4, the classification
results of training accuracy, area under the receiver operating
characteristic (ROC) curve (AUC) values, and ROC curves of SVM
and CNN-LSTM models were presented, compared, and discussed.
Further discussion about the effectiveness and robustness of the
proposed methods was discussed in Section 5. Section 6 concludes
with its conclusions at the end.

2. Machine Learning-Infused Approach for
Damage Identification Framework

The structure of methodologies is depicted in Figure 1. In this
study, the time and frequency features of signals were calculated and
trained by two different neural network models, including the
shallow learning model of SVM and the DL model of CNN-
LSTM. To evaluate the superiority of DL models, the training
effectiveness of the CNN-LSTM model was contrasted with that
of the SVM model. Images transformed from signals were input
to SVM and CNN-LSTM models for the purpose of testifying the
effectiveness of feature extraction from images and the results
were compared with signals. Different cases based on the
COMSOL model were designed to evaluate the robustness of the
developed methods. To further discuss the robustness of the
CNN-LSTM DL model, different levels of noise interference were
considered, and more complex cases based on COMSOL models
were designed.

2.1. SVM model

SVM is a renowned machine learning technique in shallow
learning, first introduced by Vapnik [28]. The fundamental
concept underpinning SVM’s categorization is to construct a
hyperplane that separates the training samples into two distinct
categories [17]. By using a kernel function, it maps the input
series into a characteristic space with a higher dimension [17]. In
this study, radius basis function was built as the function of kernel
in the structure of SVM. The separation is then made by
establishing an ideal hyperplane in that feature space and
maximizing the distance between it and the nearest sample points
within each class [17].

A collection of training samples u1, y1Þ; . . . ; ui; yið Þ; 2 RN

that correspond to two categories yi ¼ �1; 1f gð Þ has been taken into
consideration. The goal is to locate the hyperplane to divide the sam-
ples [17, 29]:

v � uþ c ¼ 0; v 2 RN ; c 2 RN (1)

where v is the weight vector and c is the bias term. The feature domain
for the linear classification model is then displayed [17].

f uð Þ ¼ sgn v � uþ cð Þ (2)

Multiple linear classifiers could classify the samples in a two-dimen-
sional (2D) space [17]. The best hyperplane to find is the one with
the highest margin and this is known as the ideal hyperplane [17]. Con-
sequently, all training data meet the following requirements [17, 30].

v � ui þ c � þ1 for yi ¼ þ1 (3)

v � ui þ c � �1 for yi ¼ �1 (4)

The spatial distance between samples and the ideal hyperplane v; cð Þ is
depicted as follows [17].

L v; cð Þ; uið Þ ¼ yi v � ui þ cð Þ
jjvjj � þ1

jjvjj (5)

The maximum distance to the nearest samples should be calculated to
find the ideal hyperplane. Finding the least value of jjvjj is equivalent to

Figure 1
Illustrative representation of the research approach
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finding the maximum distance from Equation (5). As a result, finding
the ideal hyperplane could also be transformed into the problem of con-
vex quadratic programming [17, 31].

min ∅ vð Þð Þ ¼ 1
2
jjvjj2 (6)

Themain approach for identifying the local peaks and valleys of a func-
tionwith equality restrictions is the Lagrangemultiplier. The goal can be
changed into [17, 31]

ϕ v; c;Pð Þ ¼ 1
2
jjvjj2 �

Xn
i¼1

yi yi v
T � ui þ cð Þ � 1½ � (7)

where P ¼ ðΥ 1 � � �Υ nÞT represents the Lagrange multiplier. The
ϕ v;B;Pð Þ must be maximized with regard to ϕ, whereas v and c must
be minimized.

By Zhang et al. [17] and Burbidge and Buxton [31], the decision
function is provided

F uð Þ ¼ sgn
Xn
i¼1

Υ i
�yiK u; uið Þ þ c

 !
(8)

where K u; uið Þ stands for the function of kernel [17, 31].

K u; uið Þ ¼ exp �λjjui � uijj2ð Þ; λ > 0 (9)

Generally, the kernel function can help samples data to project into a
higher hyperplane, which improves the ability of linear classification
[17]. And with the use of the kernel function, SVM may be made
significantly more appropriate for more complex samples, for exam-
ple, non-linear classification [17].

2.2. Fusion model of CNN and LSTM
(CNN-LSTM)

A CNN-LSTM hybrid network was presented in this study and
Figure 2 shows its structure. The goal of the CNN layer is to capture
the features from temporal and spectral domains from the monitoring
signal data and condense the data series. But the only disadvantage of
the CNNnetwork is that it is hard to express the temporal information
of signals, which is significant to time-series signals. In order to
further analyze the time series features, the collected features were
then placed into the LSTM layer. The next sections illustrate how
CNN and LSTM extract features and process those features. Batch
normalization layers were built into CNN-LSTM models to
standardize the outputs from every layer, which reduced the
danger of overfitting and improved the training process’s
robustness. Xu et al. [32] and Andhale et al. [33] have also shown
how the batch normalization layers work.

The CNN is a widely recognized DL method that can process
data in low and high dimensions [34]. The two primary layers in the
CNN structure are the convolutional layer and the average pooling
layer [35].

The role of convolutional layer is to create characteristic maps
by performing convolution and activation operations on the input
vector [36]. Presented in Rani and Devarakonda [37], the
mathematical formula of convolution layer is as follows:

φj ¼ F
X

mi E M
Xi � Kj þ Cj

� �
(10)

where F �ð Þ is the activation function,Xi stands for the input vector,Kj

represents the kernel function, and Cj represents the bias vectors.
The average pooling layer, which comes after the convolutional

layer, is to reduce the spatial dimensions (width and height) of the
feature maps while retaining their depth (number of channels) and
speed up model calculation. The mathematical representation of
the pooling procedure is shown as in Rani and Devarakonda [37]:

ϕj ¼ βj down cj
� �þ BjKj (11)

where the average pooling method is represented by down �ð Þ.
For CNN network, the time series data were put into the input

layer, the convolutional layer was to capture features of input vectors,
and the purpose of the average pooling layer was to decrease the
volume of training samples originating from the convolutional
layer, therefor avoiding overfitting [38]. At last, the trained
samples from CNN structure were flattened into the LSTM layer.

LSTM serves as a powerful tool for handling sequential and
temporal data, particularly in tasks related to categorization and
predictive modeling [39]. One of the important layers of the
LSTM structure is the sequence input layer, which helps inputting
the temporal data. Another critical layer is the LSTM layer, which
has the memorization function during the data calculation process.
The last layer is the output layer. The specific algorithms in
LSTM model are as follows [40].

Input gate (int), forget gate (fort), cell candidate (gt), and output
gate (outt) are four key parts that has been used during the data
processing procedure, the specific algorithms of ever part are as fol-
lows [40]:

int ¼ σg Winxt þ Rinht�1 þ Cinð Þ (12)

fort ¼ σg Wforxt þ Rforht�1 þ Cfor

� �
(13)

gt ¼ σc Wgxt þ Rght�1 þ Cg

� �
(14)

outt ¼ σg Woutxt þ Routht�1 þ Coutð Þ (15)

Figure 2
The architecture of the hybrid CNN-LSTM model
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where int stands for input gate, fort stands for forget gate, gt stands
for cell candidate, and outt stands for output gate; they have been
used during the data processing procedure. t stands for the step of
time, and σg represents the gate activation function. W represents
the matrices of input weights, R represents the matrices of recurrent
weights, and C represents the matrices of bias vector.

The signals collected from COMSOL models were highly time
dependent, and LSTM structure is developed and is good at capturing
time information from time-series signals from CNN layers.

2.3. Features extraction

2.3.1. Definition of features
Time and frequency domain feature parameters were chosen to

better signify the information for the signals, as shown in Table 1.
And y1 stands for the frequency vibration energy, y2 � y4, y6 and
y10 � y13 stand for spectrum dispersion or concentration; and y5
and y7 � y9 represent the position difference of the main frequency

]41 ]; they have been selected based on Chen [41], Shang et al. [16],
and Shang et al. [35].

2.4. Data preprocessing

Grayscale maps, also known as grayscale images (GSIs), are a
common form of input data in various applications, including image

processing and DL. Grayscale maps are essentially 2D
representations of data, where each pixel in the image encodes a
specific value, typically representing intensity or brightness.

Two-dimensional GSIs are 2D data matrices, which can have
much more information than one-dimensional (1D) signals. In
addition, DL models are much good at image processing tasks than
machine learning models based on previous studies. This study
transformed the 1D signal series after feature extraction into the 2D
image on the basis of the phase space reconstruction theory [42] and
the images were used as the inputs of the training models. The pixels
of the time-series signals are filled in order according to the
prearranged series [43]. The time-series signals are used to arrange
the pixel order in the GSI [43].

g i; jð Þ ¼ x i� 1ð Þ � N þ j½ � �min x kð Þ½ �
max x kð Þ½ � �min x kð Þ½ � (16)

where g i; jð Þ represents the pixel intensity at the point i; jð Þ in the image,
i ranges from 1 to N, and j ranges from 1 to N. N2 is assumed to be the
length of the time-series signals, and x kð Þ denotes the value at the posi-
tion indexed by k [43].

Figure 3 shows the process of transforming signals to images
based on Sun et al. [43].

Table 1
Time and frequency domain feature descriptors

Time domain feature descriptors

Feature identifier Expressions Features identifier Expressions

Average value
U ¼ 1

K

PK
j¼1

uj
Kurtosis

β ¼ 1
K

PK
j¼1

u4j

Root mean square (RMS) magnitude
Urms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

PK
j¼1

u2j

s
Variance

σ2
x ¼ 1

K�1

PK
j¼1

uj � U
� �

2

Amplitude square root
Ur ¼ 1

K

PK
j¼1

ffiffiffiffiffiffiffi
uj
�� ��q" #

2 Peak value Umax ¼ max uj
�� ��� 	

Mean absolute amplitude
U
�� �� ¼ 1

K

PK
j¼1

uj
�� �� Minimum point Umin ¼ min uj

�� ��� 	
Skewness /¼ 1

K

PK
j¼1

u3j
Peak-to-peak magnitude Up�p ¼ Umax � Umin

Waveform indicator Wf ¼ Urms

Uj j Peak indicator Cp ¼ Umax
Urms

Pulse indicator Pf ¼ Umax

Uj j Margin indicator CLmar ¼ Umax
Ur

Kurtosis indicator Kv ¼ β

u4rms
Skewness indicator Ss ¼ /

u3rms

Frequency domain feature descriptors

Number Expressions Number Expressions

1
y1 ¼

P
N
n¼1

f nð Þ
N

8
y8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
n¼1

ln4 f nð ÞP
N
n¼1

ln
2 f nð Þ

r
2

y2 ¼
P

N
n¼1

f nð Þ�y1ð Þ2
N

9
y9 ¼

P
N
n¼1

ln
2 f nð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
n¼1

f nð Þ
P

N
n¼1

ln
4f nð Þ

p
3

y3 ¼
P

N
n¼1

f nð Þ�y1ð Þ3
N
ffiffiffi
y2

pð Þ3
10 y10 ¼ y6

y5

4
y4 ¼

P
N
n¼1

f nð Þ�y1ð Þ4
Ny22

11
y11 ¼

P
N
n¼1

ln�y5ð Þ3f nð Þ
Ny26

5
y5 ¼

P
N
n¼1

ln f nð ÞP
N
n¼1

f nð Þ
12

y12 ¼
P

N
n¼1

ln�y5ð Þ4f nð Þ
Ny46

6
y6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
n¼1

ln�y5ð Þ2s nð Þ
N

q
13

y13 ¼
P

N
n¼1

ln�y5ð Þ0:5f nð Þ
Ny6

7
y7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
n¼1

ln2s nð ÞP
N
n¼1

s nð Þ

r
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The dimensions of a GSI are typically defined by its width
(number of columns) and height (number of rows); 256 × 256 is
256 pixels wide and 256 pixels tall.

Grayscalemaps are used to represent data in a visual format, where
variations in intensity or brightness correspond to variations in the
underlying data. Each pixel’s intensity in the GSI represents a
specific value or measurement. The darker pixels typically represent
lower values, while lighter pixels represent higher values. Grayscale
maps are versatile and can be used to represent various types of data,
including but not limited to images, time-series data, and sensor
readings. They provide a convenient way to visualize and analyze
data, making it easier for DL models to extract patterns and features.

GSIs are commonly used as inputs to neural networks, especially in
tasks where color information is not necessary. When used as inputs,
GSIs are often treated as multi-channel images with only one channel,
where each channel corresponds to the grayscale intensity. DL
models, like CNNs, are particularly well-suited for processing GSIs.
In CNNs, the dimensions of the input layer are determined by the
width, height, and number of channels in the image. DL models can
learn to extract meaningful features from GSIs, making them suitable
for a wide range of tasks, including image classification, object
detection, and segmentation.

In the study, the process begins with a raw signal series, a 1D
representation obtained from simulation. Signal processing techniques
are then applied to extract time and frequency features, encompassing
statistical measures and transformations like Fourier transforms. These
features are amalgamated to form a new time series, retaining essential
information from the raw signal. GSIs are subsequently derived from
this time series using methodologies such as phase space
reconstruction. Each pixel in these images corresponds to a value
normalized through a specific equation, ensuring consistent
representation. The dimensions of the GSIs, commonly 256 × 256
pixels, are defined, making them ready for input in tasks like image
classification using DL models. This process enables effective analysis
and pattern extraction from the original signal series.

2.5. Evaluation of model performances

The confusion matrix is a widely used method for handling
classification problems. It provides a means to assess
classification accuracy through the following formula:

Accuracy ¼ Aþ D
Aþ Bþ C þ D

(17)

In this formula, A represents the proportion of correct negative predictions,
B represents the proportion of incorrect positive predictions, C represents
the proportion of precise negative predictions, and D represents the
proportion of precise positive predictions.

The ROC curves were used as the performance evaluation tool
in machine learning and DL [16]. ROC curves are generated by
contrasting the true positive rate with the false positive rate at
various threshold levels [17]. The degree or measure of
separability was described by the AUC [16, 17]. A higher AUC is
associated with superior model performance. The AUC reaches 1
when a model achieves 100% accuracy [16].

3. Datasets Generated from Lamb Wave
Approaches

3.1. Model construction from COMSOL

The COMSOL model was established based on Zhang et al. [17].
Figure 4 depicts the COMSOLmodel of aluminum beam, the thickness
of the plate was 1.6mm, and itsmeasurements were 914mmby 14mm.
The piezo actuator was positioned at the leading edge of the beam, and
the receiver was installed at point A, which was 57 mm away from the
left side. The damage was situated at point C, which was at a distance of
457mm from the left side. To replicate the damage’s shape, a notchwith
an 8 mm thickness passing completely through was created in
COMSOL. The specific model design information can be referenced

Figure 3
Process of transforming 1D time domain signals to 2D grayscale images
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in Zhang et al. [17]. A five-cycle sine function with a Hanning window
of 100 kHz frequency was used to define the excited signal, as shown in
Figure 5.

3.2. Design of scenarios

Two cases were designed in this study. In Case 1, there were
five different types of damage types with the length of 6 mm,

including notch-shaped damage, circular-shaped damage, square-
shaped damage, diamond-shaped damage, and oval-shaped
damage. And these damages were placed at point C, as shown in
Figure 4. In Case 2, the influence of damage size was studied and
different sizes of the oval-shaped damage with 90 degrees were
designed, including 2-mm long, 4-mm long, 6-mm long, 8-mm
long, 10-mm long, and 12-mm long. The detailed information
about the damage design is shown in Table 2. The study utilized a
dataset that was split into training, validation, and test sets.
Specifically, 70% of the data was designated for training, with
15% each allocated for validation and testing. Evaluation involved
using data not previously seen by the models during their training
phase, ensuring that both the validation and test sets included
unseen data. This methodology aimed to assess the models’
capacity to generalize to new and undisclosed data, offering
insights into their overall performance on unfamiliar datasets.
Figure 6 shows the waveform information of the designed cases.

To study the influence of different forms of training inputs, the
time-series signals were transformed into images. Taking the oval-
shaped damage with different sizes (Case 2) as an example,
Figure 7 shows the information of transformed images.

3.3. Signals with noise interference

Contrary to signals gathered from amodeling environment, signals
collected from building sites are seriously polluted by noise. An ideal
environment is one that does not interfere with signals with noise,
such as a simulation environment. Different noise levels would be
added to simulation signals to better represent the real-world
condition to assess the efficacy of the methodology utilized in this

Figure 4
COMSOL model of aluminum beam

Figure 5
Excited guided wave

Table 2
Experimental design for computational modeling

Case Label Defects type Defects size Defects orientation Noise interference

Base State #1 / / /
Case 1: variance due to the defects type State #2 Notch-shaped damage 6 mm long 90 degrees

State #3 Circular-shaped damage 6 mm diameter /
State #4 Square-shaped damage 6 mm long / From 3 dB to 15 dB
State #5 Diamond-shaped damage 6 mm long /
State #6 Oval-shaped damage 6 mm long /

Case 2: variance due to defects size State #7 Oval-shaped damage 2 mm long /
State #8 Oval-shaped damage 4 mm long 90 degrees
State #6 Oval-shaped damage 6 mm long 90 degrees From 3 dB to 15 dB
State #9 Oval-shaped damage 8 mm long 90 degrees
State #10 Oval-shaped damage 10 mm long 90 degrees
State #11 Oval-shaped damage 12 mm long 90 degrees
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study. Figure 8 depicts the signals with various types of noise
interference, using 2-mm oval-shaped damage as an example. The
original signal, which is an ideal signal devoid of noise interference,
is gathered from a simulated environment. Figure 8 illustrates how
difficult it is to distinguish the signal from the noise at 3 dB noise
level. In a 3 dB noise environment, the signal and noise have
approximately equal power, making it difficult to discern the signal
clearly. As the noise levels dropped, the signal improved
dramatically in clarity and strength. The tainted signal was nearly
identical to the original signal when the noise level is 15 dB.

Figure 9 illustrates the images of 2-mm oval-shaped damage on
different noise levels. Compared with the original images, the noised
images have much more contaminated information in the images,
which confused with the useful information. For instance, when
the noise levels increased to 3 dB, the effective information in the
images was totally covered by the noised information. While
when the noise levels decreased to 15 dB, it is clear to see that the
images have the same information as the original images.

4. Results and Discussion

4.1. The classification accuracy of SVM and
CNN-LSTM models with signals and images as
input without noise interference (Case 1)

Toquantitatively evaluate the difference from shallow learning to
DL, this study constructed SVM as shallow learning models and the

CNN-LSTM model as DL models. There are two different types of
input data used to train these models, including signals of time and
frequency feature series and images of time and frequency feature
series. The classification capabilities of SVM and CNN-LSTM
models were compared. Training curve and accuracies were used as
evaluation indicators of the classification performance. Table 3 and
Figures 10 and 11 show the comparison results of the evaluation
indicators of SVM and CNN-LSTM models. When signals of time
and frequency feature series were used as input to train the models,
the two models (SVM and CNN-LSTM) can achieve the best
performance and up to 100% accuracy. But when images of time
and frequency feature series were used as input to train the models,
only the DL model of CNN-LSTM can achieve 100% accuracy,
while the shallow learning model of SVM can only achieve 90%
accuracy. The findings showed that the two models of SVM and
CNN-LSTM can be successfully used at signal classification tasks
and the DL model of CNN-LSTM can be successfully applied in
image classification tasks, while the shallow learning model of
SVM is much bad at image classification tasks.

Figures 10 and 11 show the training progress of SVMandCNN-
LSTM models for both the training and validation sets over 450
epochs with different kinds of input. The term “Classification
accuracy at epoch 0” in Table 3 refers to the accuracy achieved
by the machine learning models (SVM and CNN-LSTM) at the
initial epoch of training. In the context of DL, an epoch is one
complete pass through the entire training dataset during the model
training process. The classification accuracy at epoch 0 provides
insight into how well the models perform right at the beginning of

Figure 6
Plate waveforms with different damages
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the training phase before any iterations or adjustments. It serves as a
baselinemeasure of themodels’ initial ability to correctly classify the
input data into their respective classes. The values presented in this
column indicate the percentage of accurate classifications achieved
by each model at the start of the training process, specifically for the
given input types (signal series with time and frequency features or
images of time and frequency feature series). For the input of signals
of time and frequency feature series, the CNN-LSTM model
outperforms the SVM model in terms of classification accuracy at
the very beginning. For instance, when epoch is at 0, the CNN-
LSTM model’s accuracy on both the training set and the test set
start from 70%, while the accuracy of SVM model is 60%. The
result revealed that the CNN-LSTM hybrid model has better

Figure 7
Images of oval-shaped damage with different damage sizes

Table 3
The classification accuracy for SVM and CNN-LSTM

models with signal series as input

Machine
learning
models Input

Classification
accuracy at
epoch 0

Output
accuracy

SVM Signals of time and
frequency feature
series

60% 100%
CNN-LSTM 70% 100%

SVM Image of time and
frequency feature
series

55% 90%
CNN-LSTM 67% 100%
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Figure 8
The signals of 2-mm oval-shaped damage on different noise levels
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performance than SVM model in the beginning of signal and image
classification tasks.

The accuracies of the training set and test set of SVM and CNN-
LSTM models exhibit a growing trend as the number of epochs
grows. Furthermore, it is evident that for SVM and CNN-LSTM
models, the training accuracies are substantially greater than the
validation accuracies. As shown in Figures 10 and 11, the
accuracy of model training and validation of SVM and CNN-
LSTM models are at their maximum values when the epoch is
over 400. The classification accuracies for both the training set

and the test set are stable at or near their maximum values at the
same time, indicating that the model can adapt to the training set.

The reason why of the difference among SVM and CNN-LSTM
models is as follows. SVM is a traditional classificationmodel, and it is
invented and is good at dealing with 1D time-series signal for this
study, while SVM’s linear decision boundaries have limited
performance on large-scale data and could not be productively used
to capture intricate features in image analysis. As a result, the
application of SVM model on signal processing can realize high
classification both at the beginning and at the end of model

Figure 9
The images of 2-mm oval-shaped damage on different noise levels
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training. For CNN-LSTM hybrid model, it combines three important
layers together, including the convolutional layer, the average pooling
layer, and the LSTM layer, which decides the high performance of
CNN-LSTM model. The convolutional layer has the capability to
capture detailed features of images by sliding window methods and
the average pooling layer can decrease the data dimensionality and
increase the training efficiency of models, while the LSTM layer
can capture temporal information and is good at processing time-
series signal. As a result, the CNN-LSTM hybrid model
outperforms the SVM model in signal and image classification tasks.

4.2. The classification accuracy of SVM and CNN-LSTM
models with noised signals as input (Case 1)

To evaluate the robustness of model training under noise
interference, two models of SVM and CNN-LSTM were trained with

and without noise interference. Time and frequency feature series of
original signals and time and frequency feature series of noised signals
were used as training inputs. Classification accuracies, AUC values,
and ROC curves were used as evaluation indicators of training
performance of SVM and CNN-LSTM models. Table 4, Table 5, and
Figure 12 show and compare the training results of evaluation
indicators. Clearly, the classification accuracies and AUC values of
SVM and CNN-LSTM models showed an upward trend as the noise
levels of signals decreased. For instance, at a noise level of 15 dB, the
classification accuracies of SVM and CNN-LSTM were all 100% and
AUC values of two models were all 1.000, which had the same
values as the models with the input of original signals. The results
have also been demonstrated in Figure 8, where noised signals with
15 dB were almost the same as the original signals. It proved that the
classification accuracies and AUC values of noised signals with 15 dB
should be the highest and should be the same as the performance of

Figure 10
Accuracy of training and validation for SVM and CNN-LSTM models with signal series as input

Figure 11
Accuracy of training and validation for SVM and CNN-LSTM models with images as input
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models with original signals.While when the noise level was 3 dB, 6 dB,
and 9 dB, the classification accuracies of SVM and CNN-LSTM were
almost all below 75% and the AUC values of two models were
almost all below 0.750. It has been verified in Fan et al. [44] that it is
unacceptable when the accuracies were less than 75% and the AUC
values were less than 0.750. As a result, it can be concluded that low

levels of noise interference could improve the performance of machine
learning models.

In addition, the DL models of CNN-LSTM model had better
performance than the shallow learning model of SVM under high
noise interference. For instance, at a noise level of 3 dB, the
accuracy and AUC value of CNN-LSTM model increased by 18%
than that of SVM model. But the training difference narrowed as
the noise levels decreased. For instance, at a noise level of 12 dB,
the accuracy and the AUC value of CNN-LSTM model just
increased by 4% than that of SVM model. The results revealed
that DL models have much more advantages in dealing with
noised signals than shallow learning models. It gives us guidance
for model choosing for noise signal classification in the future.

4.2.1. The classification accuracy of SVM and CNN-LSTM
models with noised images as input (Case 1)

To evaluate the effectiveness of transforming signals to images
and noise interference, SVM and CNN-LSTM models were trained
with and without noise signals. Tables 6, 7 and Figure 13 show and
compare the training results of accuracies, AUC values, and ROC
curves. Firstly, the training performance of SVM and CNN-LSTM
models also showed an increasing trend as the noise levels
reduced. For instance, when the noise level reached 15 dB, the
accuracy and AUC value of the CNN-LSTM model improved by
nearly 156%, compared to when the noise level was 3 dB.
Similarly, the accuracy and AUC value of the SVM model
increased by nearly 203% when the noise level was raised to 15
dB, in comparison to when it was at 3 dB. The results revealed
that noise in image construction could contaminate important
information and features in image processing.

In addition, the DL model of CNN-LSTM outperformed the
shallow learning model of SVM in image classification tasks. For
instance, when images without noise interference and images with
15 dB levels of noise interference were input into SVM and
CNN-LSTM models, the DL model of CNN-LSTM could achieve
100% accuracy and the AUC values were 1.000, while the
shallow learning model of SVM just achieved 90% accuracy and
the AUC value was 0.910. The results can be proved from
Figure 9 that the original images and noised images with 15 dB
noise levels had the same image features. The results also

Figure 12
ROC curve for SVM and CNN-LSTM models on different noise levels

Table 4
The classification accuracy of SVM and CNN-LSTM

models on different SNR

Input SNR (dB)

Accuracy

SVM CNN-LSTM

Time and frequency
feature series
(original signal)

NAN 100.0% 100.0%

Time and frequency
feature series
(noised signals)

3 34.0% 40.2%
6 50.5% 55.0%
9 71.8% 76.5%
12 89.6% 93.0%
15 100.0% 100.0%

Table 5
The AUC values of SVM and CNN-LSTM

models on different noise levels

Input SNR (dB)

AUC

SVM CNN-LSTM

Time and frequency
feature series
(original signal)

NAN 1.000 1.000

Time and frequency
feature series
(noised signals)

3 0.340 0.400
6 0.515 0.555
9 0.720 0.768
12 0.900 0.933
15 1.000 1.000
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demonstrated the advantages of the complex structures of DLmodels
in image processing tasks in comparison to shallow learning model
with linear algorithm.

The study in Case 1 for signal classification and image
classification tasks revealed that both signal classification and
image classification can be effective methods for damage
detection, but for different classification tasks, the choosing of

appropriate training model is a key step because different models
have different network structures, and they are suitable for
different classification tasks.

5. Further Discussion of Pipelines with Different
Kinds of Defects (Case 2)

5.1. The classification accuracy of SVM and
CNN-LSTM models with signals and images as
input under noise interference (Case 2)

To demonstrate the robustness of the developed models, SVM
and CNN-LSTM models were trained with the data from Case 2.
Accuracy and AUC values were calculated to evaluate the
performance of training models. Figures 14 and 15 show and
compare the evaluation indicators. It is obvious to see that the
values of accuracy and AUC for both signal classification and
image classification manifested a rising tendency. Additionally, it
demonstrated a faster growth for both signal and image
classification tasks under high noise interference and a slower
increase under low noise levels. For example, for signal
classification tasks, there had around 51% and 38% increase for
both accuracies and AUC value of SVM and CNN-LSTM models
respectively from 3 dB to 6 dB noise interference, while there
only had around 11% and 6% improve for both accuracies and
AUC value of SVM and CNN-LSTM models respectively from
12 dB to 15 dB noise interference. Similarly, for image
classification tasks, the accuracy and AUC values of both SVM
and CNN-LSTM models increased by approximately 52% and
36%, respectively, from 3 dB to 6 dB of noise interference,
whereas from 12 dB to 15 dB of noise interference, these
improvements were only about 6% and 8%. Shang et al. [16]
conducted a study using the CNN-LSTM model on ultrasonic
signals from field collection, achieving a successful application
with an accuracy of 93.8% at 15 dB. The results demonstrated
that the reduction of noise interference could improve the training
performance of machine learning and DL models to some extent
and could narrow the different of different network structures of
DL models and shallow learning models.

Table 6
The classification accuracy of SVM and CNN-LSTM

models on different SNR

Input SNR (dB)

Accuracy

SVM CNN-LSTM

Time and frequency
feature series
(original image)

NAN 90.0% 100.0%

Time and frequency
feature series
(noised image)

3 30.0% 39.0%
6 45.5% 52.0%
9 64.8% 73.4%
12 85.6% 91.0%
15 90.0% 100.0%

Table 7
The AUC values of SVM and CNN-LSTM

models on different noise levels

Input SNR (dB)

AUC

SVM CNN-LSTM

Time and frequency
feature series
(original image)

NAN 0.910 1.000

Time and frequency
feature series
(noised image)

3 0.300 0.395
6 0.456 0.515
9 0.650 0.732
12 0.866 0.915
15 0.910 1.000

Figure 13
ROC curve for SVM and CNN-LSTM models on different noise levels
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In addition, the results further revealed that SVM linear model
is good at the classification of 1D time series, while it shows poor
performance in image processing tasks. For instance, when the
noise level is reduced to 15 dB, the SVM could achieve 100%
accuracy and the AUC value is 1.000 for signal classification,
while for image classification tasks, only 90% performance was
achieved and the AUC value is 0.900. And the CNN-LSTM
model could be used to do signal and image processing tasks
under light noise interference. For instance, the CNN-LSTM
model could achieve 100% performance at 0 dB and 15 dB
noise interference for both signal and image processing tasks.
The results revealed that both shallow learning models and DL
models are suitable for signal processing under light noise
interference, but for heavy noise interference, DL models can
better capture signal features than shallow learning models. And
DL models are better at image processing than shallow learning

models for both light and heavy noise interference. It further
revealed that the complex network structure of DL models can
better deal with 2D data and even high dimensional data than
shallow learning models.

6. Conclusions

This study demonstrated the effectiveness of the developed
SVM and CNN-LSTM models on damage detection on metallic
plates. Different damage statuses were designed based on
COMSOL models to produce different cases of training data.
Time and frequency feature series and the images transformed
time series were extracted and input into models to SVM and
CNN-LSTM models. Additionally, various noise interference
levels were employed to gauge how robust the developed models
were. It is possible to draw the following conclusions.

Figure 14
The classification accuracy and AUC of SVM and CNN-LSTM models with signals on different noise levels

Figure 15
The classification accuracy and AUC of SVM and CNN-LSTM models with images on different noise levels
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(a) Feature extraction in time and frequency domain and signal
transformation to images are two effective signal preprocessing
methods to improve the damage detection deficiency.

(b) Both time and frequency feature series and the images
transformed time series can be used as effective input to train
SVM and CNN-LSTM models.

(c) The DL model of CNN-LSTM has better performance in signal
and image processing tasks than the shallow learning model of
SVM under noise interference.

(d) The effectiveness and robustness of SVM and CNN-LSTM
models were identified by different cases (Case 1 and Case 2)
and noise interference. The results demonstrated that the
robustness of the DL model of CNN-LSTM is much higher
than that of shallow learning mode of SVM.
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