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Abstract:Datamining techniques have garnered significant attentionwithin the realmof education. In this paper,we present two public available
datasets for adaptive learning and studied predicting algorithms for learning results. First, we present a student dataset characterized by its size and
distinctive attributes. This dataset encompasses various task-related topics interconnected through a learning pathway, thereby enabling
researchers to delve into the data from novel perspectives. Moreover, it encompasses extensive longitudinal student behavioral data, a rarity
that adds substantial value. Spanning the years from 2010 to 2021, our dataset comprises a cohort of 7933 students, 64,344 test scores, and
183,390 behavior records, solidifying its status as a valuable resource for educational research. Second, we proposed methods for predicting
the testing results with and without practice tests. Novel learning features are constructed and various machine learning algorithms are
compared. Finally, in our experiments, we achieved precision rate of 0.703 and recall rate of 0.734 in the prediction of students’ test
outcomes based on behavioral learning data. The robustness of our dataset makes it well-suited for examining the connection between
student behavior and academic performance, developing tailored learning recommendations, and exploring diverse research avenues.
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1. Introduction

Educational data mining (EDM) involves the application of
data mining techniques within the field of education. Various
tasks, including performance prediction and personalized
recommendation, have been proposed and explored in this area.
The accuracy and efficacy of these endeavors, however, heavily
rely on the availability of student data for analysis. Despite the
emergence of datasets like ASSISTments 2009–20101, their
pertinence may have waned over the last decade. Consequently,
there is an imperative need for up-to-date learning behavior data.

One of the major challenges is the lack of learning data. Our
analysis of EDM research highlights a deficiency in the volume of
data utilized in recent studies. For instance, Kaur et al. (2015)
scrutinized a dataset comprising only 152 high school students to
forecast academic performance and discern sluggish learners.
Similarly, Amrieh et al. (2016) harnessed educational data from a
mere 500 students to train an ensemble classifier for academic
performance prediction. You (2016) amassed data from 530
college students enrolled in an online course, identifying
numerous behavioral cues for projecting final course scores.

Table 1 arranges and contrasts the datasets utilized in the
aforementioned studies. The tabulated data disclose that the
number of students in these investigations consistently remains
below 600. Regrettably, all the datasets employed in the research
are proprietary, posing challenges to their reuse for comparative
purposes. The dearth of student data has emerged as a pivotal
constraint within EDM (Zhao et al., 2021). Moreover, the
majority of these datasets originate from high school or university
students, creating a gap in learning data for pupils. To address
this, we are distributing a comprehensive dataset of primary
school students’ learning behaviors, sourced from an adaptive
learning website (www.alin.ai).

EdTech (educational technology) shows great promise but also
grapples with extended deployment timelines among students. One
reason is the multitude of education stakeholders, yet the student’s
learning should remain paramount. Still, test scores typically serve
as the primary metric for assessing the impact of the learning
environment, including most EdTech solutions. This renders
student data exceedingly valuable, especially in the artificial
intelligence/machine learning (ML)-driven era, leading many
organizations to hesitate in sharing their data. Consequently, most
studies are reluctant to make their datasets public. Our aim is to
disrupt this counterproductive incentive cycle by offering two
public datasets for the entire education community, enhancing the
quality of math education for students.
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Our data source is derived from a real-world application – an
online learning company that has been in operation for over 10
years, serving a substantial number of students. As an educational
technology company, Assistive Learning Intelligence Navigator
(ALIN) successfully operates an online adaptive learning platform
that assists students in learning mathematical knowledge. Learning
math requires a lot of practice and timed exercises that test for
both accuracy plus speed. Based on our interviews and anecdotes,
students stress over these exercises and even cry when given tasks
that are too difficult for their current capability. Moreover, we
also will redefine student success away from solely using test
scores to the whole child development approach. This goal
requires a live research platform which we are calling ALIN.ai
that will provide free math lessons with attention training
interspersed throughout the lessons to deal with stress, not just
learn math. It will be used to show objective measures of student
success even without having to teach to the test or score-based
metrics that drive prevailing approaches in today’s education field.

The dataset is collected from the learning platform as students
engage in the learning process. On the ALIN website, experts have
meticulously constructed a knowledge graph by breaking down the
math curriculum into finely grained topics. For example, addition
might be split into FastAdd, LongAdd0, LongAdd, DecAdd,
IntAdd, and other subcategories. Worksheets are timed-drill-
problem sets from a given topic that trains both accuracy and
speed. Assessments or tests are adaptive binary searches to find
the frontier of knowledge of a student from basic skills or core
skills depending on the grade level. Given both accuracy and
speed requirements, reaching mastery of a topic in the learning
platform correlates highly with students’ knowledge. While
students are learning on ALIN, the data of the learning behavior
and results are recorded in the database. The historical learning
data are related to some prescribed learning sequences covering
K-12 up and geometry proofs.

Based on the taxonomy presented in Romero and Ventura’s
Report (2010), ALIN can be categorized as an intelligent tutoring
system (ITS). Unlike conventional systems that merely present
content on the web, ITS represents an innovative approach to
learning, aiming to customize instruction to the unique needs of
individual students. Typically, an ITS comprises four key
components: the domain model, tutoring model, student model,
and interface (Pai et al., 2021). Among these, the domain model
holds particular significance as it encompasses a wealth of

domain-specific expertise, including domain knowledge and
adaptive rules (Alkhatlan & Kalita, 2018).

In our contribution, to solve the lack of student data as described
above, we provide two student datasets publicly in this study. We
hope the datasets will help the researchers to perform wider and
deeper studies relevant to EDM. Utilizing the datasets, a wild
range of research can be executed, such as behavior analysis,
performance prediction, and learning recommendation. To present
the applications of the datasets, we separately conduct two
experiments to predict students’ performance. To enable
reproducibility, we share datasets and baseline models on GitHub2

and IEEE Dataport3.

2. Literature Review

Previous studies have used limited amount of students’ learning
data. In this work, we aim to present a large dataset that can be used to
analyze learning behaviors, learning characters, and predicting
students’ test results using their historical learning data. It is
similar to the task of performance prediction mentioned by
Romero and Ventura (2010). We surveyed some studies published
in recent 10 years, and some similar and helpful works are
described as follows.

Past studies are largely dependent on a small dataset and limited
number of students. Xu et al. (2021) undertook a research endeavor
that involved the amalgamation of online and offline learning data to
explore the predictability of student performance. Their study
demonstrated that online learning data could indeed be harnessed
to predict student achievements, with a focus on assignment-
related attributes as potential predictors. This approach allowed
for the analysis and projection of students’ learning progress
based on general online learning behaviors and, in particular,
behaviors related to assignments. However, their methodology is
limited to conventional ML algorithms. Hamsa et al. (2016) aimed
to discern students’ performance in individual subjects. Their
approach encompassed the construction of a prediction model
utilizing a decision tree in conjunction with a fuzzy genetic
algorithm. Features for the model were extracted from two exams
and academic records spanning specific time periods. Similarly,
Saa (2016) focused on educational data analysis, with a particular
emphasis on students’ performance. The study delved into a range
of factors including personal and social variables, employing
various classifiers to forecast performance. However, these
findings are limited due to the availability of the dataset used in
the study. Public available benchmark test dataset is crucial to this
field. Shahiri et al. (2015) conducted a comprehensive literature
review centered around forecasting student performance. The
investigation examined how prediction algorithms could
effectively identify pivotal attributes from student data. Their
findings underscored the recurring use of attributes like
cumulative grade point average (CGPA) and internal assessments
as integral predictors. Importantly, these findings align with our
perspective, given that our dataset originates from primary school
students, with CGPA akin to the average accuracy of problem-
solving and our system’s tests resembling internal assessments.
Ha et al. (2020) harnessed diverse ML techniques to predict
students’ final grade point average. Their research uncovered a
correlation between student performance and various factors
including academic progress, personal traits, and behaviors
associated with learning activities.

Table 1
Dataset comparison with previous studies

Dataset Students Period Target Accessibility

Kaur et al.
(2015)

152 – High school Private

Amrieh
et al.
(2016)

500 – University Private

You (2016) 530 15 weeks University Private
Hamsa et al.
(2016)

168 – University Private

Saa (2016) 270 – Higher
education

Private

Ha et al.
(2020)

525 2013–2016 University Private

This work 7933 2010–2021 Primary
school

Public

2https://github.com/AdaptiveLearning2022/DataSetALIN2022
3https://ieee-dataport.org/documents/alin-open-dataset-math-adaptive-learning
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Since 2015, deep models have catalyzed the emergence of various
iterations of deep knowledge tracing. In the work of Piech et al. (2015),
recurrent neural networks (RNNs)were employed, utilizing all preceding
student interactions as input to make predictions. Su et al. (2018)
enhanced this approach by incorporating an attention mechanism into
the RNN, enabling the computation of a weighted aggregation of
prior knowledge states. Abdelrahman and Wang (2019) proposed a
hop-LSTM stands for Long Short-Term Memory (LSTM)
architecture designed to capture long-term dependencies in exercise
sequences, while simultaneously delving into the specific concepts
within a student’s knowledge state. Vie and Kashima (2019)
introduced factorization tracing machines (KTM) to monitor students’
learning progress, taking into account auxiliary information such as
multiple skills for each student, leading to improved predictive
performance. More recently, Minn et al. (2022) introduced a concise
and efficient model with interpretable factors like skill mastery, ability
profiles, and problem difficulty to model student performance.
Impressively, their results surpassed those of several deep learning-
based models, despite having a significantly smaller model size.

The above studies revealed some important types of features
and effective algorithms for performance prediction. In the
following parts, we will describe our datasets and explain the
features extracted from the data.

3. Dataset

The data presented in this paper originate from ALIN and are
closely interconnected with ALIN’s learning scenarios. We are
hereby making available two distinct types of datasets: “learning
beyond test” and “learning with test.” Within the first dataset,
information is gathered from 4966 students, encompassing 223,470
statistical metrics derived exclusively from the learning progression.
In comparison, the second dataset encompasses not only learning-
related data (183,390 behavioral records) but also examination data
(64,344 test scores) from a cohort of 5195 students. Subsequent
sections will provide an introduction to these datasets along with an
elucidation of the significance behind each terminology.

3.1. Learning beyond test

Students’ learning process and results are recorded over time.We
applied various statistical functions to the raw sequence of data records
such as maximum, minimum, and average, and we constructed 43

features in total. The features may reflect the characteristics of
different students, such as the amount of exercise done and the
response time during the exercise. The ground truth consists of
averaged correctness and averaged time spent on testing problems.
Due to page limitations, only a portion of the descriptors are listed
in Table 2. The engaged time in the raw data means how much
time a student has spent on learning. The number of works
attempted in the raw data means the number of worksheets finished
by a student, and a worksheet is where a student practices solving
math problems. The problems completed reflect the amount of
work a student has done. The mastered topics refer to those topics
a student has passed with a certain correctness threshold. Related
scenarios can be found on the website. The complete features can
be found in our public repository.

3.2. Learning with test

As previously mentioned, ALIN is utilized by both students and
teachers. Students have the ability to follow their respective teachers,
who can then assign tasks to them. Typically, students are required to
undertake two assessments: one prior to learning and another after a
period of learning, which serves to gauge their progress.

Each assessment comprises multiple sequences, with each
sequence containing a set of topics. Within each topic, a series of
problems is provided for students to solve. During the assessment
process, various metrics are recorded for each student’s
performance on individual topics. These metrics include the total
number of problems attempted, the percentage of correct answers,
the time taken, and other relevant information. The evaluation
mechanism employs rule-based criteria based on topic performance
to assign scores to each sequence within the assessment.
Consequently, the cumulative score of the entire assessment is
calculated by summing up the scores of all sequences it comprises.

To construct the dataset, we specifically chose students who have
completed exactly two assessments. Moreover, there is a prerequisite
that the time interval between these two assessments exceeds 1 week,
thereby allowing ample time for studying and practice. For eligible
students, both their assessment data and learning data were
collected. It is important to note that our data collection solely
encompassed behavioral information recorded during the two
assessments. Subsequently, we matched the assessment data with
the corresponding learning data for each student. The order and
structure of the collected data are visually depicted in Figure 1.

Table 2
Key descriptors derived from raw learning data

Descriptor name Construction method

numberOfTestsCompleted Count completed tests of each student
finishedCoursesNum Count the number of finished courses for each student
averagedEngagedTime Averaged value of engagedTime of each student
minEngagedTime Minimum value of engagedTime of each student
maxEngagedTime Maximum value of engagedTime of each student
averagedNumWorkAttempted Averaged value of numWorksheetsAttempted of each student
averagedNumProbCompleted Averaged value of numProblemsCompleted of each student
averagedNumNewlyMasteredTopics Averaged value of numNewlyMasteredTopics of each student
maxNumNewlyMasteredTopics Maximum value of numNewlyMasteredTopics of each student
averagedWastedTime Averaged value of wastedTime of each student
averagedNumProblemsCorrect Averaged value of numProblemsCorrect of each student
maxNumProblemsCorrect Max value of numProblemsCorrect of each student
minNumProblemsCorrect Min value of numProblemsCorrect of each student
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Using the compiled dataset, we have outlined a set of primary
terms, which are presented in Table 3. Terms labeled with names
prefixed by “test” are extracted from the initial test records,
whereas those beginning with “beh” are derived from learning
behavior records. It is important to note that while students are
generally encouraged to engage in learning and practice activities
during the two assessment periods on the platform, participation is
not mandatory. Consequently, the dataset includes students with
varying degrees of behavior records: some have complete records,
others possess partial records, and a few have no behavior records
at all. When a student undertakes exercises, the system captures
behavior-related information, such as the count of correct/
incorrect/skipped problems. The term “skipped problems” pertains
to unanswered questions, which might occur due to the difficulty
of the problem or time constraints. As previously discussed, a
typical test encompasses a series of sequences, with each
sequence containing multiple topics. Students are required to
complete a worksheet of relevant problems when testing or
practicing a particular topic. Within a test, each topic necessitates
only one worksheet, but during practice sessions, students can
work on numerous worksheets without constraints. Consequently,
terms derived from test data are focused on the topic level, while
terms extracted from behavior data pertain to the worksheet level.
The initial and final data points denote a student’s performance in
the first and last test sequence, respectively. Notably, not every
student possesses all terms, as some students exclusively complete
the two required tests without engaging in learning or practice
activities on the ALIN platform.

Building upon the original terms, we have generated additional
features, as presented in Table 4. These features are drawn from both
test and behavior data, either by topic or by sequence. Furthermore,
the values of these features are normalized to a range between

0 and 1. It is worth mentioning that the normalization process
operates at the sequence level due to variations in scale across
different sequences. Prior to normalization, the dataset is
segmented into distinct groups based on sequenceID, ensuring that
records within each group belong to the same sequence. The
normalization process is then applied independently to each group,
facilitating accurate treatment of values with differing scales.
Armed with these features, our experimental approach involves
training various ML models to predict sequence points and the
overall score in the final test.

Table 3
Primary terms used in the dataset

Term Grain Description

studentID Problem ID of a student
sequenceID Problem ID of a sequence
topicID Problem ID of a topic
testNumProblems Topic Number of problems
testPercentCorrect Topic Correct percent
testTimespent Topic Spent time
testDateCompleted Topic Completed date
firstPoint Sequence Point in the first test
lastPoint Sequence Point in the last test
behNumProblems Worksheet Number of problems
behTimeLimit Worksheet Limitation of time
behNumRight Worksheet Number of right problems
behNumMissed Worksheet Number of missed problems
behNumSkipped Worksheet Number of skipped problems
behTimeSpent Worksheet Spent time
behDateCreated Worksheet Created date
behDateCompleted Worksheet Completed date

Figure 1
Temporal order and data structure (a) Data temporal order (b)

Test data structure (c) Behavior data structure

Table 4
Derived features from the original data

Feature Grain Description

testTopicCnt Test Count of topics
testProbAvgTime Test Average spent time of

problems
testAvgCorrectRate Test Average correct rate of

problems
behTopicCnt Behavior Count of topics
behSheetCnt Behavior Count of worksheets
behTopicAvgSheet Behavior Average worksheets per topic
behTopicAvgTime Behavior Average spent time per topic
behSheetAvgTime Behavior Average spent time per

worksheet
behProblemDone Behavior Count of submitted problems
behNumRight Behavior Count of right problems
behNumMissed Behavior Count of missed problems
behProbAvgTime Behavior Average spent time of

problems
behAvgCorrectRate Behavior Average correct rate of

problems
behTopicDiff Behavior behTopicCnt – testTopicCnt
behProbAvgTimeDiff Behavior behProbAvgTime –

testProbAvgTime
behCorrectRateDiff Behavior behAvgCorrectRate –

testAvgCorrectRate
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4. Challenge

Within the realm of EDM, there exist significant challenges that
are both crucial and intricate to address. These challenges can be
categorized into two main types: social challenges and
technological challenges (Ang et al., 2020). Social challenges
encompass issues such as student performance analysis and privacy
protection. Evaluating a student’s performance and determining
whether they should progress to more advanced content involve
analyzing learning data. Simultaneously, it is essential to safeguard
the privacy of student-related information. On the other hand,
technological challenges encompass practical considerations like
system deployment, data collection, and data preprocessing.

In a related context, Baker (2019) highlighted additional
challenges for the future of EDM during the 9th International
Conference on Learning Analytics and Knowledge. These
challenges revolve around the attributes of forecasting models,
including their transferability, effectiveness, interpretability,
applicability, and generalizability. An ideal model should have the
capacity to transition seamlessly between different learning
systems, demonstrating that intervention groups outperform non-
intervention groups. This model should also trace changes in
knowledge and forecast future student performance across various
learning scenarios.

The challenges faced in our current work mirror those
previously mentioned. Since we are working with student data
derived from an online learning platform, we lack direct control
over student behavior. Consequently, meticulous data collection
and preprocessing are necessary to ensure data quality. Moreover,
given the diversity in student behaviors, it becomes imperative to
develop a generalized model that accommodates the variations
among students. Our ultimate goal involves training a model
capable of predicting student performance while also providing
insights into the model’s decision-making process.

In our experimental phase, we employ two distinct models: a
regression model and the gradient boosted regression trees
(GBRT) model. The aim is twofold: firstly, to predict student
performance utilizing the GBRT model, and secondly, to elucidate
crucial determinants via the regression model. This dual approach
facilitates both prediction and explanation, enhancing our
understanding of student performance factors.

5. Methodology

5.1. Learning beyond test

Regarding the “learning beyond test” dataset, our objective was
to forecast the average correctness and average time spent by students
based on their historical learning behavior. To gain a more insightful
understanding of student attributes, delving into their individual
profiles is crucial. Traditionally, student profiles encompass
fundamental details like gender, location, age, grade level, and the
like. However, by utilizing our suggested descriptors, we can
extract significant labels from the dataset using expert insights,
particularly those garnered from teachers’ experience. For instance,
consider the correlation depicted in Figure 2 between calculation
speed and a diligent work ethic. These descriptors allow us to
create labels that add depth to our analysis.

Another illustrative example is presented in Figure 3. Our
observations reveal that certain students tend to solve math
problems rapidly and with haste. This behavior could be
indicative of a distinct cognitive trait. Notably, the solid box
denotes outstanding students, while the dashed box represents

those with untapped potential. These latter students exhibit a
pattern of expending minimal time on tests while achieving
moderate levels of correctness. It is reasonable to assume that
their scores could substantially improve if they adopt a more
patient and time-intensive approach. When these students already
achieve relatively high test scores, their potential for further
improvement becomes evident, provided they develop greater
patience. As such, the identification of such students holds
considerable significance for tailoring interventions focused on
patience development.

Moreover, leveraging the 43 statistical descriptors, we
employed the K-means algorithm to cluster a total of 4966
students. The choice of K value was determined through
consideration of the silhouette score for clustering results, as
depicted in Figure 4 (a). The optimal silhouette score emerged
with a K value of 3, leading to the formation of three distinct
student clusters. Illustrated in Figure 4 (b), these clusters
encompassed 2823, 1741, and 402 students, respectively. Building

Figure 2
Student distribution in speed vs. hard-working

Figure 3
Student distribution in speed vs. accuracy
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on these cluster outcomes, we conducted a detailed analysis of
descriptor distributions to enhance our ability to forecast test results.

The flowchart of prediction is shown in Figure 5. We select and
compare four predictors, light gradient boost machine (LightGBM),
random forest (RF), deep neural network (DNN), and eXtreme
gradient boosting (XGBoost). Concretely, LightGBM is a ML
algorithm based on the decision tree. RF is an ensemble learning
algorithm that integrates the results of multiple decision trees into
one for prediction. DNN is a fully connected neural network with
an input layer, an output layer, and several hidden layers, and it
can be utilized for classification and regression. XGBoost is a
boosting algorithm that uses a greedy algorithm to search leaf
nodes. These predictors will be trained on the training set and
applied to predict the targets on the testing set. Moreover, the
results of XGBoost will be selected as the baseline and compared
with the results of the other predictors.

5.2. Learning with test

Additionally, one of the primary goals of this study is to predict
students’ test performance using their past test and learning data. To
illustrate this, consider the “learning with test” dataset, wherein each
student has undertaken similar tests on two occasions, and our
prediction target is the performance of their final test.

The assessment of test performance relies on two key metrics:
points and score. Points serve as an evaluation metric for a sequence
based on the corresponding answer outcomes. The value of points is
determined by the count of topics with a perfect 100% correct rate

within the sequence. Furthermore, a test’s score is the summation
of sequence points belonging to it. Since the score can be derived
from sequence points, the task of predicting test results involves
training a model to forecast the point value for each sequence
within a test.

Notably, we hypothesized that the last point may exhibit some
level of correlation with the first point for the same sequence. Our
calculation of the correlation between these two points yielded
approximately 0.718, signifying a significant positive correlation.
This suggests that using the first point as a feature in the
predictive model could be beneficial. This finding aligns with the
observations made in Shahiri et al. (2015).

In order to analyze the distinction between the first and last
points, we computed the difference for each student’s sequence by
subtracting the first point from the last point. This difference
could be positive, negative, or zero. Our rationale was that this
difference might offer insights into the learning behavior shift
between the two tests. However, as previously discussed, behavior
records are available for only a subset of students, leaving others
without such records. Consequently, we divided the dataset into
two subsets: the “With-behavior” set, comprising first test results
and the intervening learning behavior, and the “Without-behavior”
set, encompassing only first test results. Subsequently, we
calculated the difference values and compared their distributions
within these two subsets. The comparative distribution analysis is
presented in Figure 6.

The figure illustrates a notable similarity between the two
distributions, although distinctions become more apparent for
positive difference values. Recognizing that the figure’s
distributions are independent of specific sequences, we sought a
more detailed analysis by correlating sequence information with
the signs of the difference values.

To achieve this, we divided each subset into three distinct
segments based on the signs of the difference values. For instance,
within the With-behavior subset, the positive segment encompasses

Figure 4
Clustering results and student counts (a) silhouette scores (b)

student counts

Figure 5
Prediction flowchart for “Learning beyond test” dataset
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records of students with learning behavior data, where their last point
surpasses the first point for a specific sequence. Within each sign-
based segment of both the With-behavior and Without-behavior
subsets, we organized the records by sequence. For every group
formed in this manner, we calculated the mean and standard
deviation of the difference values. This process resulted in two sets
of mean values and two sets of standard deviation values for each
subset. Each of these values serves as a statistical descriptor for a
particular sequence.

To ascertain whether the value distributions across the two
subsets exhibit significant differences, we computed their p-values
using the paired sample T-test. This statistical procedure gauges
the level of significance in the mean difference between two
datasets. Additionally, we determined the average values for both
the mean and standard deviation lists within each subset. The
summarized statistical metrics are presented in Table 5.

In the table, “Positive” and “Negative” represent the two
segments categorized based on the sign of the point difference.
“Without-behavior” and “With-behavior” are the two subsets
partitioned according to the presence of behavior data. Within
each subset, a list of statistical values (such as mean and standard
deviation) can be computed by grouping sequenceID. For our
analysis, we have retained only those sequenceIDs with more than
10 records. From these lists of statistical values, we have
calculated their average values, which are displayed in italics in
the table. Additionally, the p-values of paired lists have been
recorded in bold type. These p-values indicate the likelihood that
the observations originate from the same distribution. It is
important to note that we do not compare the segment where the

sign is zero, as in this segment, all the first points are equal to the
last points, rendering any comparison meaningless.

The table reveals a significant difference between the “Without-
behavior” and “With-behavior” subsets concerning the mean
indicator when the difference is positive (p-value= 0.03). These
results suggest that students with learning behavior at ALIN have
made more progress than those without behavior data.
Consequently, we intend to develop a model using behavior
features to predict students’ test results.

During data collection, we stipulated that each student must
have taken two tests. Therefore, the test features are not null in
the data structure, while the behavior features may be absent for
many students. To account for this, we divided the dataset into
two subsets: the “With-behavior” set, which contains all features,
and the “Without-behavior” set, which only contains features
relevant to the first test. Consequently, we are considering
building two separate models: the “With-behavior” model and the
“Without-behavior” model. The “With-behavior” model is used to
predict the performance of students with behavior records, while
the “Without-behavior” model is employed for students without
behavior records. Subsequently, we combine the predictions from
these two models and evaluate their performance.

To illustrate themodel-building process, we divided each subset
into three parts: training data, validation data, and test data. The
training data is utilized to train the predictive model, which is
then fine-tuned using the validation data. Finally, the model is
employed to predict the test data. Specifically, if the training data
originates from the “With-behavior” set, both the validation and
test data are also extracted from the “With-behavior” set to ensure
consistency in the types of features. The entire procedure is
depicted in Figure 7.

The entire forecasting process comprises five key steps.
Initially, we extract meaningful features, some of which have been
elaborated upon in the preceding section. These features are
subsequently normalized to fall within the range of 0–1.
Following normalization, the dataset is divided into three distinct
partitions: the training set, the validation set, and the test set.
Subsequently, we employ the training set to train a predictive
model, ensuring that it learns from the data. In parallel, we fine-
tune and optimize the model’s parameters using the validation set
to enhance its predictive accuracy. Finally, we put the optimized
model to use by making predictions for the test set, allowing us to
evaluate its performance on unseen data. This process is visually
depicted in Figure 8.

6. Experimental Results

We conducted two separate experiments utilizing the two
datasets. The first experiment focuses on predicting the average
correctness of tests and the average time spent, solely relying on
learning behavior data. In the second experiment, we aim to
predict both the point of the sequence and the score of the final

Figure 6
Comparison of difference distributions in subsets

Table 5
Comparison of positive and negative segments with and without behavior data

Subset
Part Indicator Without behavior With behavior P-value

Difference Positive Mean 2.15 2.46 0.03
Std. 1.13 1.21 0.21

Negative Mean −2.02 −2.32 0.13
Std. 1.10 1.04 0.37
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test, incorporating learning behavior data and data from the initial
test. The following sections will detail the experimental
procedures and present the evaluation results.

6.1. Prediction beyond test

In this section, our objective was to predict the average
correctness and the average time spent based on students’ prior
learning behavior. To achieve this, we embarked on a multi-step
process.

Firstly, we curated a dataset comprising 4966 students and
extracted pertinent information, including their performance
records and test results from mathematics courses at ALIN. Next,
we employed statistical methods to compute various statistical
descriptors based on each student’s previous learning behavior.
These descriptors encompassed a total of 43 metrics, with 5 of
them being directly related to test performance. These 43
descriptors were considered as the features, while the average
correctness and average time spent served as our prediction
targets. Subsequently, we randomly divided the cohort of 4966
students into two subsets: a training set consisting of 3000
students and a testing set comprising 1966 students.

The parameters and their respective ranges for optimization in
the four prediction models are presented in Table 6. The symbol “

p
”

indicates that the parameter was utilized and fine-tuned in the
corresponding prediction model listed in the respective column.
The optimization of these parameters was carried out through
orthogonal experimental design. For instance, consider the
prediction of average correctness using XGBoost. Table 7
illustrates the orthogonal experimental design involving three
factors with three levels each for optimization, alongside the
evaluation results measured by mean absolute error (MAE).

Additionally, we conducted a mean effect analysis on the MAE
results, examining the impact of different parameter levels. The
results of this analysis are depicted in Figure 9.

To achieve the optimal performance of XGBoost, we
configured the parameters max_depth, learning rate, and
n_estimators at levels 3, 1, and 2, respectively. By referencing
Table 7, we identified the values of max_depth, learning rate, and
n_estimators as 9, 0.1, and 300 for XGBoost. Similarly, the
parameters for LightGBM, RF, and DNN were optimized using
the same approach. The optimal parameter settings for each of
these models in this study are summarized in Table 8.

To assess the performance of the four prediction models, we
employed three evaluation metrics: MAE, root square mean error
(RSME), and R-squared. The results for predicting average
correctness are presented in Table 9. While XGBoost exhibited
the best performance in terms of MAE (1.11), RSME (1.55), and
R-squared (0.99) on the training set, it suffered from overfitting
issues when tested on the validation set, leading to significantly
worse performance. On the testing set, LightGBM emerged as the

Figure 7
Prediction models for students with and without behavior data

Table 6
Optimization parameters and their ranges

Parameter XGBoost LightGBM RF DNN Range

max_depth
p p p

[3, 6, 9]
learning rate

p p
[0.1, 0.3, 0.5]

n_estimators
p p p

[100, 300, 500]
hidden_size

p
[10, 50, 100]

max_iter
p

[1000, 2500,
4000]

Figure 8
Prediction flowchart for “Learning with test” dataset
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top-performing model, achieving MAE, RMSE, and R-squared
values of 8.20, 11.15, and 0.81, respectively.

To provide further insights, we computed the absolute
prediction errors for average correctness on the testing set and
plotted the cumulative distribution function (CDF) curves for the
four models (Figure 10). The CDF curves depict that XGBoost,
RF, and LightGBM generally yielded smaller absolute prediction
errors in comparison to DNN. The prediction outcomes of
XGBoost, LightGBM, and RF on the testing set exhibited
considerable similarity, with DNN displaying the weakest
performance. It is plausible that the constrained number of
training samples may have constrained DNN’s capacity to
demonstrate its full potential, emphasizing that ML models were
better suited for the prediction tasks in this study utilizing the
ALIN dataset.

For the prediction of averaged time spent, the results are
summarized in Table 10, and the CDF curve depicting the
absolute prediction errors is displayed in Figure 11. XGBoost
achieved the highest R-squared value of 0.70, along with an MAE
of 21.07 and an RSME of 29.75, outperforming the other three
models on the training set. However, it is essential to note that the
performance of all four models deteriorated significantly when

evaluated on the testing set. The highest R-squared value achieved
on the testing set was only 0.26, attained by LightGBM. This
decline in performance can be attributed to overfitting issues
experienced by all four predictors.

Predicting the averaged time spent seems to be a challenging
task for traditional ML and deep learning models. Further research
and investigation are warranted to obtain a deeper understanding
of this seemingly random metric, as it may necessitate more
sophisticated modeling approaches in future studies.

6.2. Prediction with test

In this experiment, the learning data is structured as a 2D table,
where each row represents a student’s record for a specific sequence,
and each column contains quantitative features extracted from test or
behavior data. The forecasting targets include the point of each
sequence in the final test and the score of that last test. As
described in earlier sections, a test score is the sum of points earned
across all sequences within it. Therefore, our primary focus is on
predicting sequence points. Given that the dataset primarily
comprises numeric features, we chose two models for training the
forecasting models: the regression model and the Gradient Boosting

Table 7
Orthogonal experimental design and evaluation results for parameters

No. Max_depth Learning rate N_estimator MAE

1 3 (level 1) 0.1 (level 1) 100 (level 1) 8.13
2 3 0.3 (level 2) 300 (level 2) 8.25
3 3 0.5 (level 3) 500 (level 3) 8.86
4 6 (level 2) 0.1 300 7.86
5 6 0.3 500 8.18
6 6 0.5 100 8.64
7 9 (level 3) 0.1 500 7.86
8 9 0.3 100 8.31
9 9 0.5 300 8.67

Table 8
Optimal parameter values of the models

Target Model Max_depth Leaning_rate N_estimator Hidden_size Max_iter

Averaged correctness prediction XGBoost 9 0.1 300 – –

LightGBM 6 0.1 300 – –

RF 9 – 300 – –

DNN – – – 100 2500
Averaged timespent prediction XGBoost 3 0.1 300 – –

LightGBM 3 0.1 100 – –

RF 9 – 500 – –

DNN – – – 100 2500

Table 9
Comparison of the prediction results for averaged correctness

Training set Testing set

Model MAE RSME R2 MAE RSME R2

XGBoost 1.11 1.55 0.99 8.32 11.53 0.80
LightGBM 5.84 7.80 0.91 8.20 11.15 0.81
RF 5.48 7.12 0.92 8.46 11.54 0.80
DNN 8.62 11.45 0.80 9.78 12.89 0.74
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Regression Trees (GBRT) model. The regression model assumes a
linear relationship between input and output, allowing it to capture
relationships between independent and response variables. In
contrast, GBRT is a boosting model that continuously reduces
residual error by learning a series of weak models.

To benchmark the performance of our forecasting models, we
established a baseline where the point of a sequence in the first test
serves as the prediction for subsequent test points. This baseline is
useful when we lack information about the learning process and
need to make predictions with limited data.

In optimizing the forecasting models, we employed different
methodologies. For the regression model, our focus was on
selecting the optimal features. We conducted iterative cycles of
training, prediction, and evaluation to identify the most crucial
features. Initially, we trained a model with each feature,
evaluating its performance. This process was repeated for all
features, and the one yielding the highest performance was chosen
as the baseline. Subsequently, we attempted to enhance the
baseline model by adding new features, evaluating whether each
addition improved performance. We iterated this process, selecting

Figure 10
CDF of absolute error in averaged correctness prediction

Figure 9
Mean MAE values for parameters at various levels

Table 10
Comparison of the prediction results for timespent

Training set Testing set

Model MAE RSME R2 MAE RSME R2

XGBoost 21.97 29.75 0.70 31.28 46.34 0.23
LightGBM 29.87 43.27 0.36 31.27 45.68 0.26
RF 24.36 32.20 0.65 31.25 46.00 0.25
DNN 30.50 44.86 0.31 31.76 46.79 0.22

Figure 11
CDF of absolute error in averaged timespent prediction
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and expanding the most important features until no new addition
improved the baseline’s performance. These features were
considered the optimal combination to a certain extent, and we
utilized them to train the final regressionmodel with the training data.

For the GBRT model, our objective was to select the optimal
parameters, including the maximum tree depth, learning rate, and
number of sub-classifiers. Employing the grid search method, we
identified the parameter combination that yielded the best
performance on the validation data.

In the prediction step, we forecasted the point of each sequence
in the final test for each student. If a sequence lacked behavior
features, we utilized the model trained on the Without-behavior
subset. Conversely, if behavior features were present, we
employed the model from the With-behavior subset for both the
regression and GBRT models. The forecasted results are presented
in Table 11.

Within the table, several evaluation metrics are presented:MAE
represents the mean absolute difference between the forecasted result
and the ground truth. RMSE quantifies the root mean squared
difference between the forecasted result and the ground truth.
R-squared indicates the degree to which the variance in a
dependent variable is explained by the independent variables.

Analyzing the experimental results, it becomes evident that the
MAE value of the baseline model is lower than that of the regression
model. However, the baseline model exhibits the highest RMSE
value. This suggests that for certain students, the gap between the
sequence points in the two tests is substantial, making it
challenging for the baseline model to make accurate predictions.
Consequently, the baseline model achieves the lowest R-squared
value. In contrast, the performance of the regression model falls
between the baseline and GBRT models, with an R-squared value
of 0.52, indicating that the model can explain over half of the
variance in sequence points. Conversely, GBRT delivers the best
prediction performance across all metrics, with an MAE of
approximately 1.33, an RMSE of about 1.92, and an R-squared
value of 0.56.

To comprehend the impact of students’ behavior on their test
results, we present the optimal features of the regression models
alongside their coefficients in Table 12. Two models are
separately trained using the Without-behavior and With-behavior
datasets. The rank signifies the order in which features were
selected during the optimization process.

In the Without-behavior model, the two most influential
features are firstPoint and testAvgCorrectRate. Remarkably, the
coefficient of firstPoint indicates that the results of the first test
can predict up to 76% of the performance on the last test, as the
values of the first and last point are on the same scale.

Conversely, the With-behavior model utilizes nine optimal
features out of a total of fifteen. Three of these features pertain to the
first test, while the remaining six are derived from learning behavior
data. Again, the most crucial feature is firstPoint, with
behProbAvgTimeDiff as the second most important. An intriguing

discovery is that all features related to the problem level exhibit
positive coefficients, whereas those linked to the topic and worksheet
level have negative coefficients. For instance, behProbAvgTimeDiff
represents the difference between behProbAvgTime and
testProbAvgTime. If behProbAvgTime exceeds testProbAvgTime, it
implies that students may be rapidly grasping new knowledge that
may have been swiftly covered in the first test.

Moreover, the negative values associated with topic and
worksheet-relevant features can be attributed to ALIN’s adaptive
algorithm. When a student demonstrates strong proficiency in a
topic, some optional topics and their corresponding worksheets
may be skipped to save time. Conversely, if a student has
completed a large number of worksheets, it may indicate that they
have not mastered the topic thoroughly, leading to lower
expectations for their progress. Consequently, these features
exhibit a negative correlation with the final test scores.

Using the predicted sequence points, we proceeded to calculate the
predicted last test score for each student. This predicted score represents
the sum of the predicted points for each sequence in the test. Our aim
was to assess students’ progress through score prediction. To evaluate
prediction performance, we treated the forecast as a classification task.
Specifically, we compared the predicted score of the last test with the
score of the first test and transformed the absolute scores into relative
labels. Meanwhile, we used the actual score of the last test as the
ground truth. These labels were based on whether a student had
made progress through learning at ALIN. If the predicted last test
score equaled or exceeded the real first test score, we considered the
student to have made progress and labeled it as “True.” Otherwise,
the label was set as “False.”

We considered the situation where the predicted score equaled the
first score as progress for two reasons. First, there is a limitation on test
scores: if a student achieved the maximum scores on the first test, they
could not earn any more points on the last test, even if they had made
progress. Second, the forgetting curve comes into play. If a student does
not engage in any practice, they may forget some knowledge, despite
having previously mastered it (Thalheimer, 2006). Therefore, we
believe that if a student can maintain their scores, they have made
some degree of progress through learning at ALIN.

Furthermore, we compared the predicted labels with the ground
truth and summarized the results in Table 13. The baseline model
achieved the lowest weighted precision, while the GBRT model
obtained the highest. However, the baseline model yielded the
highest weighted recall when compared with the other models. To
strike a balance between precision and recall, we computed the
F1-scores for these models. The F1-score of the baseline model
indicated that the highest recall value did not lead to a desirable

Table 11
Prediction results comparison for sequence point

MAE RMSE R2

Baseline 1.35 2.21 0.41
Regression 1.47 2.01 0.52
GBRT 1.33 1.92 0.56

Table 12
The coefficients of the regression models

Model Rank Feature Coefficient

Without-behavior 1 firstPoint 0.761
2 testAvgCorrectRate 0.417

With-behavior 1 firstPoint 0.686
2 behProbAvgTimeDiff 3.189
3 behSheetAvgTime −4.586
4 testTopicCnt −0.359
5 testProbAvgTime 1.728
6 behTopicAvgSheet −1.866
7 behProblemDone 0.722
8 behProbAvgTime 2.102
9 behSheetCnt −1.406
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result. In contrast, the regression model, with a more balanced
precision and recall, produced a better F1-score. The GBRT
model achieved the best overall forecasting performance, with an
F1-score of approximately 0.708.

7. Conclusion

This paper introduces two real-world datasets derived from
students’ learning behavior and test records on ALIN, an adaptive
learning website. Using these datasets, we conducted two distinct
experiments to predict students’ test results employing different
approaches. In the first experiment, we trained a forecasting
model solely based on students’ learning behavior to predict
average correctness and time spent. In the second experiment, our
goal was to forecast students’ test scores by incorporating both
their learning behavior and previous test results. The experimental
results showcase the potential to discern individual differences
among students and make accurate forecasts using ML models
and data-driven methodologies.

Recommendations

By forecasting future performance based on historical learning
records, we can gain insights into students’ competency levels.
Furthermore, these insights can be harnessed to recommend
personalized learning content and pathways through analytical and
predictive techniques. We propose the creation and utilization of
student profiles to deliver tailored learning pathways.
Additionally, we advocate for the use of our datasets and models
to enhance subjective assessments of learning outcomes, thereby
assisting educators in making more informed decisions.
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