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Bootstrap Methods for Canonical
Correlation Analysis of Functional Data

Haoyu Yu1 and Lihong Wang1,*
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Abstract: The bootstrap method is a very general resampling procedure for investigating the distributional property of statistics. In this paper, we
present two bootstrapmethodswith the aim of studying the functional canonical components for functional data. The bootstrap Imethod constructs the
bootstrap replications by resampling from the rawdata,while the bootstrap II algorithm sampleswith replacement from the principal component scores.
Simulation studies are conducted to examine the performance of the proposed bootstrap methods. The method is also applied to the motion analysis
dataset, which consists of the angles formed by the hip and knee of each of 39 children over each child’s gait cycle. Numerical simulations and real data
analysis show the good performance of both bootstrapmethods for functional canonical correlation analysis.Moreover, as measured by themean error
and mean squared error, the bootstrap II algorithm performs better in approximating sample canonical components than the bootstrap I method.
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1. Introduction

The development of data storage and computing technology has
facilitated the diversity of data type. The diversified data types, such as
text, graphics, and images, are gradually changing the traditional
statistical analysis and data mining methods. Functional data, as a
special kind of infinite dimensional data, have been attracting a
growing attention, see, for example, Cuevas (2014), Ferraty and
Romain (2011), Goia and Vieu (2016), Horváth and Kokoszka
(2012), Hsing and Eubank (2015), and Ramsay and Silverman (2005).

In recent years, statistical methods applied to finite dimensional
data have been widely extended to functional data. These algorithms
together with Hilbert space analysis support the theory and practice
of functional data analysis (FDA). Classical canonical correlation
analysis (CCA) is one of the important algorithms in statistical
inference to measure the strength of the overall relationships
between two random vectors. It has been widely used in image
recognition, machine learning, pattern recognition, and so on.
Therefore, as indicated in Horváth and Kokoszka (2012), it is
necessary to extend CCA to its functional context.

In the FDA, a main task is to make inference about the probability
distribution of statistics, such as the estimators of the functional canonical
correlations, from a set of realized samples. However, in practice, one
may only be able to obtain relatively small samples, especially in
FDA. This makes the limiting distributional properties of the statistics
inapplicable. When such a problem arises, resampling methodology
turns out to be the only practical alternative (Cuevas et al., 2006;
McMurry & Politis, 2011). The bootstrap technique introduced by
Efron (1979) and Efron and Tibshirani (1993) is a useful resampling
tool for investigating the distributional property of statistics with small

samples. In contrast to multivariate data analysis, there is comparably
less work that has been done on bootstrapping functional data.

Charkaborty and Panaretos (2022) constructed a bootstrap
implementation of a test procedure for the rank of covariance
operator of functional data. Chen and Pun (2019) examined bootstrap
methods to construct a generalized KPSS test for functional time
series. Chowdhury and Chaudhuri (2022) developed a bootstrap
implementation for functional analysis of variance. Cuevas et al.
(2006) presented the bootstrap confidence bands of functional
parameters with several resampling methods for functional data. Kim
and Lim (2022) proposed a classification method based on bootstrap
aggregating for sparse functional data. Paparoditis and Sapatinas
(2016) considered bootstrap-based testing of equality of mean
functions for functional data. Paparoditis and Shang (2023) proposed
a bootstrap procedure for constructing prediction bands of stationary
functional time series. Poskitt and Sengarapillai (2013) and Shang
(2015) proposed bootstrap procedures by randomly sampling with
replacement from the functional principal component (FPC) scores.

For the multivariate CCA, Fan and Wang (1996) and Lee (2007)
developed the bootstrap methods for the estimation of canonical
correlations. But the existing bootstrap methods used in traditional
multivariate CCA cannot be directly applied to the functional
(infinitely dimensional) CCA. For the multivariate case, the standard
bootstrap resampling does not involve functional principal
component analysis (FPCA), while for functional data one needs to
calculate the FPC scores. Therefore, new bootstrap methods based on
FPCA are necessary. However, to our knowledge, no study has
explored the bootstrapping for functional CCA. In this paper, with
the aim of investigating the sample functional canonical components
(FCCs) without increasing the sample size, we present two bootstrap
methods for mimicking the behavior of sample FCC between two
random functions. It is expected that the bootstrap methods will
receive increasing popularity in functional CCA, where the object of
interest is on the distribution of functional estimators.
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Themain contribution of this paper is to propose two techniques
for bootstrapping the estimators of the canonical components for
functional data. Based on the bootstrapped estimators, one can
make inference about the distribution of the sample FCC, the
confidence intervals, and various hypothesis tests of the FCCs.
The bootstrap procedures are addressed in Section 2. Section 3
provides a series of numerical simulations and real data analysis
to evaluate the accuracy of the proposed bootstrap methods.

2. The Bootstrap Procedure

We consider square integrable random functions X 2 H1 and
Y 2 H2, where H1 ¼ L2 T1ð Þ and H2 ¼ L2 T2ð Þ are two L2 Hilbert
spaces with the inner product hx; yi ¼ R

x tð Þy tð Þdt which generates
the norm k � k ,T1 andT2 are, possibly different, subsets of a Euclid-
ean space. Using the notations in Chapter 4.2 of Horváth and
Kokoszka (2012), we define the FCC as follows:

Let µX tð Þ ¼ E X tð Þ½ �, µY tð Þ ¼ E Y tð Þ½ �,

c11 t; sð Þ ¼ E X tð Þ � µX tð Þð Þ X sð Þ � µX sð Þð Þ½ �;

c12 t; sð Þ ¼ E X tð Þ � µX tð Þð Þ Y sð Þ � µY sð Þð Þ½ �;

c21 t; sð Þ ¼ E Y tð Þ � µY tð Þð Þ X sð Þ � µX sð Þð Þ½ �;

c22 t; sð Þ ¼ E Y tð Þ � µY tð Þð Þ Y sð Þ � µY sð Þð Þ½ �;

and

C11 xð Þ tð Þ ¼ R
T1
c11 t; sð Þx sð Þds ¼ E hX � µX ; xi X tð Þ � µX tð Þð Þ½ �;

C12 yð Þ tð Þ ¼ R
T2
c12 t; sð Þy sð Þd ¼ E hY � µY ; yi X tð Þ � µX tð Þð Þ½ �;

C21 xð Þ tð Þ ¼ R
T1
c21 t; sð Þx sð Þds ¼ E hX � µX ; xi Y tð Þ � µY tð Þð Þ½ �;

C22 yð Þ tð Þ ¼ R
T2
c22 t; sð Þy sð Þds ¼ E hY � µY ; yi Y tð Þ � µY tð Þð Þ½ �:

Then the kth canonical components are defined as ρk; ak; bk;Ak;Bkð Þ
withAk ¼ hak;Xi andBk ¼ hbk;Yi, whereρk is the kth canonical cor-
relation, ak and bk are the associatedweight functions, if there exist, by

ρk ¼ hak;C12 bkð Þi
¼ sup ha;C12 bð Þi : a 2 H1; b 2 H2; ha;C11 að Þi ¼ 1; hb;C22 bð Þi ¼ 1f g

subject to the conditions, for k > 1,

hak;C11 aj
� �i ¼ hak;C12 bj

� �i ¼ hbk;C22 bj
� �i ¼ hbk;C21 aj

� �i
¼ 0; j < k:

To estimate the theoretical FCC, one needs to derive the sample
FCC by using a sample of pairs of functions X1;Y1ð Þ; � � � ; XN ;YNð Þ.
The sample covariance operator of the random function X is denoted by

Ĉ11 xð Þ ¼ 1
N

PN
n¼1

hXn � µ̂X ; xi Xn � µ̂Xð Þ; x 2 H1;

where µ̂X tð Þ ¼ N�1
PN
n¼1

Xn tð Þ.
λ̂i and v̂i denote the eigenvalues and eigenfunctions of the sam-

ple covariance operator Ĉ11, and analogously γ̂j and ûj define the

sample covariance operator Ĉ22 of the function Y . The numbers p
and q are determined such that

Pp
i¼1 λ̂i and

Pq
j¼1 γ̂j explain the

required proportion of the total variance. Then, the FPC scores are
computed

ξ̂in ¼ hXn � µ̂X ; v̂ii; i ¼ 1; � � � ; p; ζ̂jn ¼ hYn � µ̂Y ; ûji; j ¼ 1; . . . ; q:

Let ξ̂n ¼ ðξ̂1n; � � � ; ξ̂pnÞT ; ζ̂n ¼ ðζ̂1n; � � � ; ζ̂qnÞT : Based on the pairs
ξ̂1; ζ̂1
� �

; . . . ; ξ̂N ; ζ̂N
� �

, the original functional CCA can be reduced
to the multivariate sample CCA. He et al. (2003) state that the usual
properties of canonical correlations and canonical weights known
from multivariate analysis can extend to the functional canonical
analysis.

Setting m ¼ min p; qð Þ, we obtain the multivariate sample
canonical components ρ̂k; âk; b̂k

� �
, k ¼ 1; � � � ;m, where

ρ̂k ¼ âTk Ĉ12b̂k

¼ max aT Ĉ12b : a 2 Rp;b 2 Rq; aT Ĉ11a ¼ 1;bT Ĉ22b ¼ 1
� �

subject to the conditions

âTk Ĉ11âj ¼ âTk Ĉ12b̂j ¼ b̂T
k Ĉ22b̂j ¼ b̂T

k Ĉ21âj ¼ 0; j < k for k > 1;

where

Ĉ11 ¼ 1
N�1

PN
n¼1

ξ̂nξ̂
T
n ; Ĉ12 ¼ 1

N�1

PN
n¼1

ξ̂nζ̂
T
n ;

Ĉ21 ¼ 1
N�1

PN
n¼1

ζ̂nξ̂
T
n ; Ĉ22 ¼ 1

N�1

PN
n¼1

ζ̂nζ̂
T
n :

Finally, the estimators of FCC are defined as ρ̂k; âk; b̂k; Âk; B̂k

� �
,

where

âk ¼ âTk v̂1; . . . ; v̂p�T ; b̂k ¼ b̂T
k

h h
û1; . . . ; ûp�T ;

Âk ¼ hâk;X1i; � � � ; hâk;XNi�T ; B̂k ¼
� �hb̂k;Y1i; � � � ; hb̂k;YNi�T :

In order to study the distributional property of the sample FCC,
we introduce two bootstrap algorithms. The first one (bootstrap I) is a
direct method, which is similar to the bootstrap method of the
traditional CCA, where we resample from the raw data and
construct the bootstrap replications. This algorithm intuitively
reflects the idea of bootstrap resampling, but one needs to
calculate the FPC for each replication, which increases
computation load. Since Âk ¼ ½hâk;X1i; � � � ; hâk;XNi�T and

B̂k ¼ ½hb̂k;Y1i; � � � ; hb̂k;YNi�T , we only generate the bootstrap real-

izations for ρ̂k; âk; b̂k
� �

.

The bootstrap I algorithm is as follows.
(1) Generate bootstrap replication ℵ� ¼ X�

1 ;Y
�
1ð Þ; � � � ; X�

N ;Y
�
Nð Þf g

by taking i.i.d random draw from the observations
f X1;Y1ð Þ; � � � , XN ;YNð Þg;

(2) Calculate the eigenfunctions v̂�i and û�j of the sample covariance
operators of the X and Y components of ℵ�, respectively, and
compute the corresponding FPC scores

ξ̂�n ¼ ½hX�
n � µ̂�

X ; v̂
�
1i; � � � ; hX�

n � µ̂�
X ; v̂

�
pi�T ;
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ζ̂�n ¼ ½hY�
n � µ̂�

Y ; µ̂
�
1i; � � � ; hY�

n � µ̂�
Y ; µ̂

�
qi�T ; n ¼ 1; � � � ;N:

Let =� ¼ ξ̂�1 ; ζ̂�1
� �

; � � � ; ξ̂�N ; ζ̂
�
N

� �� �
;

(3) Construct the sample canonical components ρ̂�k ; â
�
k; b̂

�
k

� �
of

pairs =�.

Now we introduce the bootstrap II algorithm. The basic idea is to
bootstrap a set of sample FCC by randomly sampling principal
component scores. This idea was also adopted by Poskitt and
Sengarapillai (2013) and Shang (2015). The advantage of this
method is that the principal component is only calculated once
from the original sample, and there is no additional computational
cost. The bootstrap II algorithm is as follows.
(1) Calculate the eigenfunctions v̂i and ûj of the sample covariance

operators of the X and Y components of the raw data
X1;Y1ð Þ; � � � ; XN ;YNð Þf g respectively, and compute the corre-

sponding FPC scores ςn ¼ ξ̂n; ζ̂n
� �

, n ¼ 1; � � � ;N: Let
= ¼ ς1; � � � ; ςNf g;

(2) Generate bootstrap replication=�� by taking i.i.d random draw from
=, where =�� ¼ ς��1 ; � � � ; ς��Nf g ¼ ξ̂��1 ; ζ̂��1

� �
; � � � ; ξ̂��N ; ζ̂��N

� �� �
;

(3) Construct the sample canonical components ρ̂��k ; â��k ; b̂��k
� �

of
pairs =��.

3. Numerical Simulations and Empirical Studies

In this section, we evaluate the performance of two bootstrap
methodologies via simulation. We also apply the proposed
methods for an empirical study of the motion analysis dataset,
which consists of the angles formed by the hip and knee of each
of 39 children over each child’s gait cycle.

3.1. Numerical simulations

In this subsection we concentrate on the bootstrap accuracy for
the sample FCC through simulation studies. The performance of two

bootstrapmethods is evaluated and compared based on the difference
between the original sample FCC and bootstrapped sample FCC.We
calculate the mean error (ME) and mean squared error (MSE) to
measure such a difference, which are given by

ME ¼ 1
MB

XM
i¼1

XB

b¼1

ρ̂�k;b;i � ρ̂k;i

� �
;

MSE ¼ 1
MB

XM
i¼1

XB

b¼1

ρ̂�k;b;i � ρ̂k;i

� �
2
;

where M represents the total number of simulation runs, and B rep-
resents the total number of bootstrap replications.

First, we generate data from the following model with sample
size N ¼ 50:

X tð Þ ¼ t þ ε tð Þ; Y tð Þ ¼ ffiffi
t

p þ ε tð Þ þ η tð Þ; t 2 0; 1½ �; (1)

where ε tð Þ and η tð Þ are mutually independent standard Brownian
motions.

The FPCA forX tð Þ andY tð Þ indicates that the first two principal
components explain 99.9% of the cumulative percentage of total
variance. Therefore, we choose p ¼ q ¼ 2. Another way to pick
the numbers of the principal components is to use the scree test,
which is a graphical method first proposed by Cattell (1966). To
apply the scree method, one plots the successive eigenvalues, see
Figure 1, and finds the place where the smooth decrease of eigenval-
ues appears to level off. This provides the number of most important
principal components. Figure 1 suggests the same p and q values,
p ¼ q ¼ 2, and thenm ¼ 2. That is, we calculate the first two sample
FCCs.

With M ¼ 100 replications, we first compute ρ̂k;i for k ¼ 1; 2,
i ¼ 1; � � � ;M. Next, setting B ¼ 5000, we use the two bootstrap meth-
ods to calculate the first two sample functional canonical correlation
coefficients ρ̂�k;b;i and ρ̂��k;b;i, k ¼ 1; 2, b ¼ 1; � � � ;B, i ¼ 1; � � � ;M.

Figure 1
The scree plot for model (1)
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“ME,” “MSE,” and the average of ρ̂k;i, ρ̂�k;b;i, ρ̂
��
k;b;i over 100 sim-

ulation repetitions and 5000 bootstrap repetitions are reported in
Table 1. Figures 2 and 3 illustrate the histograms and the estimated
densities of ρ̂k, ρ̂�k , ρ̂

��
k and of the differences ρ̂�k � ρ̂k and ρ̂��k � ρ̂k.

Figure 4 depicts the plots of the first two pairs of canonical weight
functions from one simulation run based on the raw sample, boot-
strap I algorithm, and bootstrap II algorithm, respectively.

It can be seen that both bootstrap I and II methods perform well
in approximating the FCCs. The bootstrapped canonical correlation
coefficient ρ̂�k (or ρ̂��k ) has high accuracy in estimating the original
sample FCC. The maximum relative error ρ̂�k � ρ̂kj=jρ̂k



 

 is only
2.46%, while the bootstrap estimates of the second canonical
correlation have a larger error than the estimates of the first canonical

Table 1
ME and MSE between the raw sample FCCs and bootstrap
sample FCCs based on 100 sample replications and 5000

bootstrap replications for model (1)

FCC Raw sample Bootstrap I Bootstrap II

ρ̂1 0.729487 0.729254 0.728938
ME – −2.33e-4 −5.49e-4
MSE – 3.4514e-5 2.1822e-5
ρ̂2 0.397995 0.388201 0.399369
ME – −9.7936e-3 1.3738e-3
MSE – 8.5613e-4 1.4807e-4
Time (ms) 9 328 34

Figure 2
The histograms of the raw sample FCCs and bootstrap sample FCCs for model (1)

Figure 3
The histograms of the differences between raw sample FCCs and bootstrap sample FCCs for model (1)
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correlation. In general, the errors, especially MSEs of bootstrap II
method, are smaller than those of bootstrap I method. This indicates
that bootstrap II is superior to bootstrap I in estimating the FCC.

From Table 1, we see that the average running time of bootstrap
I for each simulation replication is 328 ms, while the average time of
bootstrap II is 34 ms. The time complexity of bootstrap II is
significantly lower than that of bootstrap I.

Figure 2 implies that the FCC based on bootstrap sampling,
especially using bootstrap II procedure, approximately has the
same distribution as the original sample FCC. Moreover, the
histograms and densities suggest that the sample first canonical
correlation coefficient approximately has a normal distribution,
and the differences between raw sample FCCs and bootstrap
sample FCCs shown in Figure 3 are also approximately normally
distributed with zero mean.

In terms of the canonical weight function estimation, both
bootstrap methods have good performance. It is observed from
Figure 4 that the bootstrapped canonical weight functions are very
similar to the original ones, with the same trend and peaks. In
comparison, bootstrap II procedure performs better than bootstrap
I method. Moreover, the computation cost of bootstrap II is lower
than that of bootstrap I.

Next, we consider the model suggested in He et al. (2004). The
processes are defined as follows:

X tð Þ ¼
X
i¼1

21

εiθi tð Þ; Y tð Þ ¼
X
i¼1

21

ηiθi tð Þ; t 2 0;D½ �; (2)

where D ¼ 50, θi tð Þf g is the Fourier basis on 0;D½ �, with

θ1 tð Þ ¼ ffiffiffiffiffiffiffiffiffi
1=D

p
, θ2 tð Þ ¼ ffiffiffiffiffiffiffiffiffi

2=D
p

sinððt � D=2Þ2π=DÞ,
θ3 tð Þ ¼ ffiffiffiffiffiffiffiffiffi

2=D
p

cosððt � D=2Þ2π=DÞ, � � � ,
θ20 tð Þ ¼ ffiffiffiffiffiffiffiffiffi

2=D
p

sin ððt � D=2Þ20π=DÞ,
θ21 tð Þ ¼ ffiffiffiffiffiffiffiffiffi

2=D
p

cosððt � D=2Þ20π=DÞ, and ε ¼ εif g and η ¼ ηif g
are Gaussian vectors with covariance matrices Cov εð Þ ¼ R11,
Cov ηð Þ ¼ R22 and Cov ε; ηð Þ ¼ R12, where R11, R12, and R22 are
diagonal matrices with diag R11ð Þ ¼ diag R22ð Þ ¼ 10� 0:75if g,
i ¼ 0; 0; 0; 1; 2; � � � ; 18, diag R12ð Þ ¼ 7; 3; 1; 0; 0; � � � ; 0f g.

Then, direct calculation yields that the canonical correlations for
X and Y are ρ1 ¼ 0:7, ρ2 ¼ 0:3, ρ3 ¼ 0:1, ρ4 ¼ ρ5 ¼ � � � ¼ ρ21 ¼ 0,
and the canonical weight functions are ak tð Þ ¼ bk tð Þ ¼ ffiffiffiffiffiffi

0:1
p

θk tð Þ
for k ¼ 1; 2; 3, and 0 otherwise.

We generate 50 pairs of X and Y and compute the sample FCCs
and the bootstrapped FCCs using the same procedures as the pre-
vious example.

Table 2 lists the means,MEs, andMSEs for estimates of the first
three canonical correlations obtained by using the raw samples and
the bootstrap samples based on 5000 bootstrap replications over 100
simulation runs, which shows that both bootstrap algorithms provide
fairly accurate estimates for the first three canonical correlations.

In Figure 5, again one finds that the sample canonical
correlation coefficients are approximately normally distributed
with mean equal to the true coefficients, and the bootstrapped
FCC approximately has the same distribution as the raw sample
FCC. Figure 6 displays the pointwise errors of first three pairs of
the estimated canonical weight functions by two bootstrap methods.

Figure 4
The first two pairs of canonical weight functions based on the raw sample, bootstrap I algorithm, and bootstrap II

algorithm for model (1)

Table 2
ME and MSE between the raw sample FCCs and bootstrap
sample FCCs based on 100 sample replications and 5000

bootstrap replications for model (2)

FCC Raw sample Bootstrap I Bootstrap II

ρ̂1 0.691549 0.691697 0.692023
ME – −1.48e-4 4.746e-4
MSE – 4.8709e-5 2.8425e-5
ρ̂2 0.297705 0.297846 0.298742
ME – −1.406e-4 1.037e-3
MSE – 4.0311e-5 3.1642e-5
ρ̂3 0.100058 0.099947 0.099947
ME – −1.11e-4 −1.11e-4
MSE – 3.2068e-5 1.9355e-5
Time (ms) 30 282 69
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Overall, the errors are very small, while bootstrap II method
produces more accurate estimators than bootstrap I in general. As
indicated in Section 2, the reason why bootstrap II outperforms

bootstrap I is that bootstrap I estimates the FPC scores for each
replication, which not only increases computational load but also
causes additional error, while bootstrap II algorithm only

Figure 5
The histograms of the raw sample FCCs and bootstrap sample FCCs for model (2)

Figure 6
The errors of first three pairs of the estimated canonical weight functions using two bootstrap methods for model (2)
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calculates the FPC once from the original sample with no additional
error and computational cost.

Based on these limited simulation studies, our recommendation
is to use bootstrap II, that is, the bootstrap method of randomly
sampling with replacement from the principal component scores
for the functional CCA, because it performs better in
approximating the sample FCCs and the associated weight
functions with the additional benefit that it is computationally less
expensive.

3.2. Empirical example

In this subsection, the proposed bootstrap methods are applied
to the CCA of hip and knee angle while walking. In the process of
walking, the angle formed by the hip joint and the ground is called the
hip angle, and the angle formed by the knee joint and the ground is
called the knee angle. The dataset “gait” contains the hip and knee

angles of each of 39 children over each child’s gait cycle.
Considering the continuity of the movement process, it is
obviously reasonable to connect the hip angles and knee angles of
each child into curves. Time is measured in terms of the
individual gait cycle, so that every curve is given for values of t
in 0; 1½ �. See Ramsay and Silverman (2005) for full details.

Xn tð Þ and Yn tð Þ, n ¼ 1; � � � ; 39, denote the curves of hip angle
and knee angle on the interval 0; 1½ �, which are shown in Figure 7.

It is found that the first two empirical FPCs of the hip angle and
knee angle samples account for more than 99% of the total variation
explained. The scree plot in Figure 8 also suggests selecting the first
two FPCs. Thus, we set p ¼ q ¼ 2 and calculate the first two sample
FCCs. The canonical correlations are ρ̂1 ¼ 0:71148
and ρ̂2 ¼ 0:161603.

Next we use two bootstrap methods to measure the canonical
correlation between X tð Þ and Y tð Þ. Table 3 presents the empirical
mean of the bootstrapped canonical correlations with B ¼ 5000

Figure 7
The angles formed by the hip and by the knee as 39 children go through a gait cycle

Figure 8
The scree plot for the gait data
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bootstrap replications. “ME” and “MSE”, representing the difference
between the original canonical correlations and the bootstrapped
ones, are also shown in Table 3. We see that the FCCs based on both
bootstrap methods are very close to the original FCCs. The maxi-
mum relative error of canonical correlations for bootstrap I is
1.86%, and that of bootstrap II is only 0.26%. Generally speaking,
the performance of bootstrap II is better than that of bootstrap I.

However, for the first canonical correlation, bootstrap I method
has more accuracy than bootstrap II, which may be due to the
possible noise in the gait data. As discussed in Horváth and
Kokoszka (2012), FPCA not only allows us to reduce the
dimension of infinitely dimensional functional data to a small
finite dimension in an optimal way but also is capable of

Table 3
ME and MSE between the raw sample FCCs and
bootstrap sample FCCs based on 5000 bootstrap

replications for the gait data

FCC Raw sample Bootstrap I Bootstrap II

ρ̂1 0.71148 0.711639 0.712672
ME – 1.581e-4 1.1916e-3
MSE – 1.4467e-5 2.3977e-5
ρ̂2 0.161603 0.158594 0.161345
ME – −3.0095e-3 −2.588e-4
MSE – 3.7014e-4 1.8619e-5
Time (ms) 11 94 27

Figure 9
The canonical weight vectors for the gait data

Figure 10
The canonical weight functions for the gait data
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eliminating possible noise in the unknown data generating process.
Since bootstrap I repeats the FPCA in each bootstrapping resample,
bootstrap I may have more accuracy than bootstrap II in practice
where there is possible noise in data, but at a much higher
computational cost based on the running times shown in Table 3.

Figure 9 displays the associated first two pairs of canonical
weight vectors âk and b̂k, k ¼ 1; 2, on the two-dimensional plane.
The weight vectors are divided into four clusters on the two-dimen-
sional plane, representing the two weight vectors of the hip angle and
knee angle, respectively. As shown in Figure 9, the weight vectors
obtained by the two bootstrap methods are very close to those calcu-
lated by the raw sample, especially by the bootstrap II method.

Furthermore, Figure 10 shows the canonical weight functions
obtained by the raw data and by using the proposed two bootstrap
methods. Again we see that the weight functions calculated by the
bootstrap methods are almost the same as those calculated by the
raw sample, with similar trend and peak valley. The simulation
evidence reveals that both bootstrap methods perform well in
approximating the behavior of the sample canonical correlations
and the associated weight functions.

4. Conclusions

The bootstrap schemes for the CCA of functional data are
considered in this paper. Two bootstrap methods are proposed to
estimate the FCCs. These procedures are then applied to the
simulated data and a dataset in empirical example. As measured
by the ME and MSE, the bootstrap II method that samples with
replacement from the estimated principal component scores
performs better in approximating sample canonical components
than the bootstrap I method of resampling from the raw data. For
bootstrap I algorithm, which is similar to the bootstrap method of
the traditional CCA, one needs to calculate the FPC for each
replication, which not only increases computation load but also
causes additional error due to the estimation of the FPC scores in
each replication. But, for bootstrap II algorithm, the main
advantage is that the principal component is only calculated once
from the original sample, so there is no additional error and
computational cost. Therefore, in general the bootstrap method
that samples with replacement from the estimated principal
component scores is better to approximate the sample canonical
components.

However, bootstrap II has its own limitations. Since bootstrap II
resamples from the FPC scores of the raw data, the FPCs should be
fully representative of the original sample. That is, the choice of the
number of principal components is important. We suggest to choose
the number p for which the cumulative percentage of total variance
(CPV) explained by the first p components exceeds at least 95%.
Other ways, such as the scree plot, should also be used in conjunction
with the CPV method.

Overall, from the simulation results, we see that the distribution
of the bootstrapped estimator is approximately the same as that of the
original estimator. This ensures that the proposed bootstrap methods
can be applied to investigate distributional property of sample FCCs
in functional data. In practical applications, the proposed bootstrap
methods can be used to make inference about the sample
functional canonical correlations, such as the estimation of the
distribution of the sample FCC, the construction of confidence
intervals, and the implementation of hypothesis tests of the FCCs.
However, the theoretical investigation on the asymptotic
equivalence of the distributions of the raw sample and bootstrap
sample canonical correlations is not yet available. This topic will
be pursued in the future research.
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