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Evaluating Economic Impacts of
Automation Using Big Data Approaches
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Abstract:Asautomation is increasingly drivenby advanced technological integration, quantitatively evaluating its economic impacts becomes crucial.
This paper studies the effects of automation on three economic outcomes: transactions, sales, and costs. First, we use big data approaches to distinguish
transaction distribution patterns across various temporal segments. These methods employ survival and mean residual functions to cluster transaction
distributions and customer traffic data over time. Empirical evidence provides distinct clusters, distinguishing high and lowcustomer traffic. Second,we
illustrate how automation can lead to higher forecast accuracy in sales. This approach utilizes stochastic error distance for comparing forecast error
distribution functions. Lastly, we study the impact of automation on costs through a probabilistic model. The results suggest that while labor costs
increase due to retraining and longer hours, a potential reduction in turnover and waste costs can offset these rises. The impacts of automation and the
applicability of methods are demonstrated through Monte Carlo simulations and empirical studies.
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1. Introduction

Automation has increasingly been recognized as a pivotal driver of
economic and industrial transformation. While industries have been
integrating automated processes to increase efficiency, reduce costs,
and enhance accuracy, the magnitude and scope of its impacts vary
(Gunasekaran, 2009; Moore, 2012). This trend is evidenced by the
foodservice and food retailing sectors, critical components of the
global economy, which have recently seen a surge in automation
adoption. According to data from the US Department of Agriculture,
these industries supplied approximately $1.69 trillion worth of food
in 2020. Driven by a combination of substantial market size, labor
force disruptions from unforeseen events such as pandemics, and the
promise of technology, the push toward automated food production
has become more pronounced. Notably, this automation offers
operational efficiency and is regarded as a crucial step toward
achieving greater food security (Huang, 2013). Despite their
significance, comprehensive studies examining the economic impacts
of automation, including sales and costs, are lacking in the literature.

The lack of data with the same frequency and insufficient
production data requires employing probabilistic approaches and
simulation methods to study the impacts of automation. This
paper employs the empirical mean residual function (MRF)
introduced by Ardakani et al. (2020) to distinguish customer
demand during different times of the day and studies the impacts
of automation on customer traffic, sales, and cost. The mean
residual (MR) life, defined as the expected additional lifetime
given that a component has survived, can be expressed in terms of
the failure rate (Gupta & Bradley, 2003) and can be used as a big
data tool for distinguishing distributions. The effect on the

customer traffic, defined as transactions, is examined by
simulating from theoretical distributions best fitted empirical
transaction distribution. The simulation exercise consists of
estimating the probability distribution of the transaction data and
then simulating automation scenarios from known probability
densities. The impact of automation on profit is not
straightforward since automation affects sales and the total cost
differently. An increase in sales and a decline in costs lead to a
rise in profit, but if sales and costs both increase, the change in
profit depends on the magnitudes of changes in sales and costs.
Hence, the two components can be analyzed separately.

This paper identifies the most suitable forecasting model for
sales data to assess the impact of automation on sales forecast
accuracy. While the autoregressive integrated moving average
(ARIMA) is known for its capability to handle non-stationarity in
data (Papoulis & Pillai, 2002), various other statistical and
machine learning models can also be adopted. The key is ensuring
the chosen model provides independent and identically distributed
forecast errors. After determining the most suitable model, we
extract the forecast error, which is the difference between the
actual data and the forecasts. This error provides insight into the
model’s forecast accuracy. The implications of automation are
subsequently examined by comparing the cumulative distribution
function (CDF) of the forecast errors from the most suitable
model against simulated forecast errors considering automation.
The unit step function at zero serves as a reference in this
comparison, grounded on the concept of stochastic error distance
(SED) (Ardakani et al., 2018; Diebold & Shin, 2017).

This paper also studies the impacts of automation on costs. We
consider both labor costs and waste-related expenses. Various
automation scenarios are proposed for labor costs based on
specified confidence levels. Regarding waste costs, we employ a
probabilistic methodology analogous to our approach for customer
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traffic: determining the theoretical distribution from the available
data and simulating the potential impacts of automation based on
this distribution. The data for the empirical analysis are obtained
from a regional foodservice provider. All inside transactions are
considered as a proxy for customer traffic. Sales and waste cost
data for four items are included in the empirical analysis. The
findings suggest that automation increases customer traffic and
improves sales forecasting accuracy. Improving forecast accuracy
allows practitioners to identify sales factors proactively and
highlight potential opportunities to better target demand. The
results also indicate that automation may lead to higher labor
costs because of retraining costs and longer work hours to meet
the higher demand. It is also possible that automation reduces
labor costs due to reducing the turnover ratio. Also, automation
results in a waste decline for low-waste days and a waste increase
for high-waste days. Ideally, we expect higher efficiency and
waste reduction to offset higher installation and operating costs.

This paper is organized as follows. Section 2 employs a big data
tool to distinguish transaction distribution and proposes a
probabilistic method to capture the automation impacts on
customer traffic. Section 3 studies the impact of automation on
sales by measuring sales forecast accuracy. In this section, we
discuss the application of SED for comparing forecast error
distribution functions. Section 4 evaluates the impact of
automation on costs by considering labor costs and the cost of
waste. Section 5 discusses Bayesian methods as a potential
alternative and elaborates on their advantages and limitations.
Section 6 gives some concluding remarks.

2. Automation and Customer Traffic

Customer traffic, quantified by the number of transactions,
directly influences sales and revenues. Understanding this traffic
is crucial for automation, as it aids in aligning with customer
demands for product freshness and minimizing wait times during
peak and off-peak hours. We distinguish these peak and off-peak
periods by examining transaction distributions on an hourly basis.
The random variable transaction T is defined as the nonnegative,
continuous random variable. The distribution of T can be represented
by the CDF F tð Þ ¼ P T � tð Þ, survival function (SF)
F̄ tð Þ ¼ PðT > tÞ, and the probability density function (PDF)
f tð Þ ¼ dF tð Þ=dt. The CDF provides information about the propor-
tion of transactions completed by time t, while the SF offers the like-
lihood that a transaction time exceeds t.

The estimates for the three representations are as follows. The
CDF can be estimated by empirical CDF

F̂ Tð Þ ¼ 1
n

Xn
i¼1

IðTi � tÞ; (1)

where I �ð Þ is the indicator function, and T1; . . . ;Tn are random sam-
ples from the CDF of T. The SF can be estimated by the empirical SF

F̄ tð Þ ¼ 1
n

Xn
i¼1

IðTi > tÞ: (2)

A known estimate of the SF is the Kaplan–Meier estimator
(Kaplan & Meier, 1958) given by

F̄ tð Þ ¼
Y
ti�t

1� di
ni

� �
; (3)

where di is the number of failed transactions that happened at time ti,
and ni is the number of successful transactions up to time ti. Both the
empirical CDF and SF are determined by the data. This makes them
unbiased in the sense that they are not influenced by any prior
assumptions about the distribution of the data. The Kaplan–Meier
estimator is a powerful tool in survival analysis. It provides a way
to estimate the SF in the presence of censored data (Kleinbaum &
Klein, 1996). While the CDF gives the probability that a random var-
iable is less than or equal to a particular value, the SF provides the
probability that it exceeds that value. This dual perspective can be
essential in many applications. The PDF can be estimated using
the nonparametric kernel density estimation. Suppose we observe
independent and identically distributed transactions fTjgnj¼1 with

unknown density f . The kernel density estimator can be written as

f̂h tð Þ ¼ 1
nh

Xn
i¼1

K
Ti � t
h

� �
; (4)

where h is the bandwidth and controls the degree of smoothing and
K �ð Þ is a Gaussian kernel function. The Gaussian kernel function is a
nonnegative function that integrates into one. We can calculate the

numerical moments of f̂h tð Þ. The first moment (mean) of the esti-

mated density,
R�1
1 tf̂ tð Þdt, is the sample mean, and its second

moment,
R�1
1 t2 f̂ tð Þdt, is the variance of the estimated density.

Although the CDF, SF, and PDF illustrate the distribution of
transactions, these representations have restrictions that limit their
ability to distinguish the distribution of T between busy and non-
busy times. An alternative to distinguishing the distribution of T
is the MRF (Sun & Zhang, 2009). The MRF is a nonnegative func-
tion that provides a more pronounced ordering. The visualization
technique for distinguishing distributions following the MRF is
called the MR plot introduced by Ardakani et al. (2020) and further
discussed in Ardakani et al. (2022). Let the residual of T with dis-
tribution function F tð Þ, given that it exceeds a threshold τ, be defined
by T � τ T > τj . The PDF of the residual of T is given by

f ðtjτÞ ¼ f tð Þ
F̄ τð Þ ; t > τ; F̄ τð Þ > 0: (5)

This equation gives the distribution of transactions that exceed a
certain threshold τ. The MRF or mean excess of T with a finite mean
is defined as

m τð Þ ¼ ET>τ T � τ T > τj Þ; τ � 0;ð

where ET>τ denotes the expectation with respect to the residual PDF
introduced in Equation (5). The estimate of the MRF of T defined in
Equation (6) is based on the following representation of the MRF:

m τð Þ ¼ 1
F̄ τð Þ

Z 1

τ

F̄ tð Þdt;

where ¯

(6)

F tð Þ can be estimated using the empirical SF defined in Equa-
tion 2. The MRF represents the expected amount by which a trans-
action exceeds a threshold τ. Details are provided in Ardakani
et al. (2020).
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By plotting the MRF of T, we obtain the MR plots that can help
distinguish busy times with respect to the transactions. The transac-
tion data are fundamentally distinct in nature and frequency.We need
a method that captures the dynamics of transactions and customer
traffic. This involves considering the distribution of transactions over
time. Employing MR and SFs allows a nonparametric approach
without making unnecessary assumptions. We further illustrate the
advantages of MR plots in distinguishing transaction distributions
using the following examples. AssumeT is normally distributed with
PDF

f tð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e�1
2ðt�µ

σ
Þ2 ; (7)

whereµ and σ are mean and standard deviation. Figure 1 presents the
PDF and MR plots of T for five normal distributions with µ ¼ 0 and
σ ¼ 1:4; 1:6; 1:8; 2:0; 2:2. The values for µ and σ are chosen to illus-
trate a range of variations around a central mean of zero. Choosing
µ ¼ 0 is a conventional decision when presenting the normal distri-
bution (Casella & Berger, 2002). Values of σ ¼ 1:4; 1:6; 1:8; 2:0; 2:2
are selected to exhibit a systematic spread and its impact on the dis-
tribution. This range allows us to observe how the MR plots differ-
entiate distributions even when the PDFs appear very similar. As
shown in Figure 1, the PDF plots cannot distinguish or order distri-
butions. The MR plots of T, however, show a stochastic ordering.
The MRF is decreasing in τ and increasing in σ.

Similarly, we can assume T follows a Gamma distribution with
PDF

f tð Þ ¼ βα

Γ αð Þ t
α�1e�βt; (8)

whereΓ �ð Þ is the gamma function, and α and β are the shape and
scale parameters. Figure 2 presents the PDF and MR plots for five
gamma distributions with α ¼ 0:5 and β ¼ 0:8; 0:9; 1:0; 1:1; 1:2.
The shape and scale parameters are selected based on similar reason-
ing as the normal distribution. Choosing α ¼ 0:5 illustrates a sce-
nario where the distribution is right-skewed, common in various
applications, such as queueing theory and financial econometrics
(Johnson et al., 1995). The values of β ¼ 0:8; 0:9; 1:0; 1:1; 1:2 dis-
play a progression, offering an explicit comparison and interpretation

of differences among the MR plots. The MR plots clearly order each
gamma distribution.

The data for the empirical analysis are obtained from a regional
foodservice provider as a proxy of the foodservice industry. The
transaction data span from June 1, 2020, to July 26, 2021, and
consist of 20,204 observations. This dataset is sourced from
multiple outlets across the US Southeast region, provided by the
respective organization. The initial dataset is processed to
eliminate incomplete entries. Furthermore, all data have been
anonymized and do not contain any personally identifiable
information. This dataset offers insights into regional food
consumption patterns, assisting the analysis where the number of
transactions serves as a proxy for customer traffic. We first
confirm that transactions are i.i.d. using the Durbin–Watson test.
The data include all inside transactions. Figure 3 plots the
transaction distributions per hour using the MR plots. The MR
plots reveal three distinct clusters:

• Morning Cluster (5 am–1 pm): This cluster illustrates the peak
hours for transactions, indicating high customer traffic during the
traditional morning to early afternoon hours.

• Afternoon Cluster (2 pm–5 pm and 4 am): Interestingly, this
cluster captures the 4 am slot, which groups more cohesively
with the afternoon transactions than the early morning. One
potential explanation for this result is the nature of customers
who visit foodservice establishments at 4 am. This timeframe
might capture early morning workers, travelers, or night shift
employees who have patterns of purchasing that align more
with the afternoon crowd than the conventional morning
customer traffic.

• Evening Cluster (6 pm–3 am): This cluster captures the evening
to early morning transactions, generally lower than the morning
cluster but still significant.

The MR plot’s strength lies in highlighting such non-obvious
patterns. While traditional methods may focus on the
chronological progression of time, MR plots can reveal customer
transaction behaviors that are temporally displaced but statistically
similar. The MR plots are linear and suggest that transactions
peak during the morning cluster, followed by the afternoon and
evening clusters.

Figure 1
PDF and MR plots of normally distributed transactions with µ ¼ 0 and σ¼ 1:4; 1:6; 1:8; 2:0; 2:2
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Automation would affect customer traffic, but measuring its
impact before adopting automation strategies can be challenging.
We employ a simulation procedure for examining the effects of
automation on customer traffic. The automation effect can be
captured by estimating the PDF of the continuous random variable
transaction T and simulating from the corresponding PDF.

Specifically, the following steps are taken in estimating the
PDF. We first estimate the statistical moments to identify potential
parametric distributions of the data. This step is followed by
examining the PDF and CDF of the transaction data. Next, we use
skewness-kurtosis plots to visualize the choice of potential fitted
parametric distributions. We then apply the maximum likelihood
method to the estimated parametric distribution and assess
goodness-of-fit measures for the chosen distribution to select the
distribution that best fits the data. We finally use Monte Carlo
simulations to analyze the impact of automation.

Although we have primarily utilized frequentist methods, the
Bayesian approach offers a compelling alternative that can be
particularly beneficial under certain conditions. Unlike the
frequentist viewpoint, where parameters are perceived as fixed
quantities, the Bayesian paradigm treats these parameters as
random variables. In this study, the identified empirical
distribution can be equated to a Bayesian prior in some scenarios.

This approach offers the advantage of leveraging prior knowledge,
which can be valuable when data are limited or prior are
particularly insightful. Despite these advantages, Bayesian
methods can be computationally demanding. Choosing between
the frequentist and Bayesian approaches often depends on
objectives, data characteristics, and computational constraints.
Refer to Section 5 for a brief discussion on Bayesian methods.

The empirical densities and CDFs of transaction data can be
seen in Figure 4. In this example, the transaction density is
skewed to the right, and the probability values are concentrated
around a low number of transactions. Visualizing PDF and CDF
of the transaction data is the first step to identifying the
parametric distribution needed in simulations.

To identify a suitable distribution, we compare well-known
theoretical distributions to the empirical transaction distribution in
the higher-order (skewness-squared, kurtosis) space. Skewness-
kurtosis plots proposed by Cullen and Frey (1999) are presented
in Figure 5. The theoretical distributions for the normal, logistic,
and exponential distributions are represented by a single point in
the skewness-kurtosis plot. The theoretical gamma and lognormal
distributions are represented by a line, while the theoretical beta
distribution is represented by a shared area in the skewness-
kurtosis plot. We perform a bootstrap procedure for robustness to

Figure 2
PDF and MR plots of gamma distributions with α ¼ 0:5 and β ¼ 0:8; 0:9; 1; 1:1; 1:2
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Figure 3
MR plots of transactions distinguished by hour
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compute skewness and kurtosis on samples constructed by 5,000
random samples with replacement from the original dataset,
represented by yellow points. While the skewness-kurtosis plot is
a preliminary diagnostic tool, the subsequent decisions are driven
by a combination of fit, practical significance, and computational
feasibility.

We estimate the distribution parameters using the maximum
likelihood estimation (MLE) method presented in Delignette-
Muller and Dutang (2015). Let f ðtjθÞ be the density function of a
parametric distribution, where θ are the distribution parameters. Dis-
tribution parameters θ can be estimated bymaximizing the likelihood

function LðθjtÞ ¼ Qn
i¼1

f ðtijθÞwith n observation. The maximum like-

lihood estimator is then defined as

θ̂ tð Þ¼ argmax
θ

LðθjtÞ: (9)

Table 1 gives the parameter estimates and estimated standard
errors for the three suitable distributions: normal, exponential, and
logistic. The standard errors are reported in parentheses and

computed from the Hessian matrix estimate at the maximum
likelihood solution. The normal distribution’s mean and standard
deviation of transactions are estimated to be 26.54 and 20.87. The
relatively small standard errors for both parameters, 0.206 and
0.146, indicate these estimates are statistically significant. The
exponential distribution is characterized by its rate parameter. The
rate parameter captures the speed of occurrence of events. Here,

Figure 4
PDF and CDF plots of transactions
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Skewness-kurtosis plot of transactions
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Table 1
Parameter estimates of the fitted distributions

Normal Exponential Logistic

Mean SD Rate Location Scale

26.54 20.87 0.037 23.64 11.70
(0.206) (0.146) (0.001) (0.202) (0.097)

SD denotes the standard deviation. Standard errors are reported in
parentheses and are computed from the estimate of the Hessian matrix at
the maximum likelihood solution.
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the rate is estimated at 0.037. The small standard error of 0.001
indicates its statistical significance. For the logistic distribution,
the location parameter is estimated to be 23.64. It indicates the
point where the CDF is 0.5. The scale parameter, measuring the
spread of the distribution, is 11.70. Again, the standard errors are
relatively small, emphasizing the precision of these estimates.

Once the parameters for the potential empirical distributions are
estimated, we decide which fitted distribution is best by considering
the histogram and theoretical densities, empirical and theoretical
CDFs, and Q-Q and P-P plots. The Q-Q plot represents theoretical
quantiles against empirical ones, and the P-P plot represents
theoretical probabilities against empirical ones. Figure 6 provides
these four plots for the distribution of the transactions fitted to the
data. The results suggest that the logistic distribution is preferred
for its better description of the empirical distribution. The findings
suggest that logistic distribution with location parameter µ and scale
parameter s, L µ; sð Þ, as the benchmark. L 23:64; 11:70ð Þ represents
the transaction density in our example.

Logistic density is a well-known distribution widely used in
neural networks and machine learning. Its PDF is symmetric, and
its CDF is known as the logistic function. The PDF and CDF of
logistic distribution are given by

fT tð Þ ¼ e�
t�µ

s

sð1þ e�
t�µ

s Þ2 (10)

and

FT tð Þ ¼ 1

1þ e�
t�µ

s

: (11)

The mean and variance of the logistic density are defined as
E Tð Þ ¼ µ and V Tð Þ ¼ s2π2=3. For the standard logistic distribution
with µ ¼ 0 and s ¼ 1, E Tð Þ ¼ 0 and V Tð Þ ¼ π2=3. The main prop-
erty of the logistic distribution is that its PDF can be written in terms
of the CDF as fT tð Þ ¼ 1=sFT tð Þ 1� FT tð Þð Þ.

Four scenarios are considered to examine the impact of
automation on transactions. Table 2 presents the probability
distributions for four different automation scenarios using the
logistic distribution. Column one shows the estimated distribution.
Columns 2–5 show the different automation scenarios. Scenario 1
represents a lower average transaction and lower transaction
variability due to automation. Scenario 2 presents an automation
outcome with greater average transaction and lower transaction
variability. The reason for lower variability under Scenarios 1 and 2

Figure 6
Histogram, theoretical densities, empirical CDF, Q-Q, and P-P plots of the fitted distributions
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Table 2
Probability distributions for the simulation study

Estimated Scenario 1 Scenario 2 Scenario 3 Scenario 4

L(23.64,11.70) L(20,8) L(28,8) L(20,17) L(28,17)

L α; βð Þ represents logistic distributionwith location and scale parameters
α and β. For each simulation n ¼ 10; 000.
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is that automation reduces customer wait time, allowing greater
customer traffic. Under Scenario 3, automation results in lower
average transactions and greater transaction variability. Scenario 4
represents greater average transactions and greater transaction
variability due to automation. The reason for higher variability
under Scenarios 3 and 4 is that automation allows fresh products
during different times of the day. The parameters are estimated
using the MLE method. The parameter values for our four different
automation scenarios are shown in Table 2.

The automation in Scenario 1 leads to a lower average transaction
(reflected in a reduced location parameter of 20) and diminished
transaction variability (reflected in a reduced scale parameter of 8).
The cause of such changes is automation’s ability to decrease
customer wait times, leading to more efficient transaction flows.
Under Scenario 2, automation increases the average number of
transactions, denoted by a location parameter 28. Nevertheless,
similar to Scenario 1, transaction variability remains low with a
scale parameter of 8. This can be linked to the efficiency gains
from automation that reduce waiting times and draw higher
customer traffic. For Scenario 3, automation leads to a lower
average transaction (location parameter of 20) and higher variability
(scale parameter of 17). This increased variability is due to
automation’s capability to offer fresh products at varied times of
the day. In Scenario 4, automation results in a higher average
number of transactions (location parameter of 28) and greater
transaction variability (scale parameter of 17).

The reason for selecting these specific parameter values across
the scenarios is anchored in business-related views regarding how
automation might shape transaction averages and variability. The
variations across location and scale parameters across these
scenarios capture potential real-world consequences of
automation, from enhancing operational efficiency (lower wait
times) to changing product availability dynamics (freshness
throughout the day). To ensure the robustness of our chosen
distributions and parameters, we further conducted Monte Carlo
simulations. As evidenced in Figure 7, these scenarios provide
insights into potential transaction automation outcomes.

Figure 7 presents the Monte Carlo simulations for various
automation scenarios. The solid black line represents the estimated
empirical distribution, while the four automation scenarios are
shown in color. Under Scenarios 1 and 2, automation leads to an
increase in the number of transactions when the transaction is
lowest. Scenarios 3 and 4 indicate higher probabilities in tails,

indicating that automation leads to an increase in the number of
transactions when the transaction is highest. While our analysis
reveals distinct clusters, our modeling approach takes a holistic
view of the entire day, driven by policy relevance. Policymakers
and industry leaders often implement strategies encompassing an
operational day rather than specific timeframes. We model an
entire day’s transactions as a unified entity for simulations. This
approach offers an overview of transaction patterns.

This section examines the importance of automation in
minimizing customer waiting time. The distribution of these
transactions is divided into peak and off-peak times based on
hourly distributions. Transactions are represented using the
cumulative distribution, survival, and PDFs. To estimate these
functions, the Kaplan–Meier estimator and nonparametric kernel
density estimation are employed. While these conventional tools
are beneficial, the MRF is introduced as a superior measure for
distinguishing between busy and non-busy times. The MR plot
serves as a visualization technique for this purpose. The MR plots
divide transactions into three clusters, revealing specific patterns
in customer behavior. The potential impact of automation on
customer traffic is studied using a simulation-based approach. The
steps involve moment estimation, diagnostic tools, and MLE.

3. Automation and Sales Forecast Accuracy

Automation can lead to higher sales and profit. This section
addresses how automation affects sales by elaborating on
forecasting accuracy measures. Forecasting inherently involves
projecting future values based on historical data, so a different
approach from the transaction analysis is required. For evaluating
the impact of automation on sales, SED allows for studying
forecast errors directly relevant to sales predictions. An automated
tracking system involves more accurate production data collection
and can improve forecasting accuracy. Improving sales forecasting
accuracy is crucial to being proactive of potential factors affecting
sales performances before they happen, and highlight
opportunities to better target demand.

We develop a framework to examine the impacts of automation
on sales. This framework is aligned with Diebold and Shin (2017),
who proposed point forecast accuracy measures based on the
distance of the forecast error CDF from the unit step function.
Ardakani et al. (2018) further elaborate on this concept by
introducing a forecast accuracy measure called mean excess error.

Figure 7
PDF and CDF plots for automation scenarios (n ¼ 10;000 for each simulation)
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The SED F; F�ð Þ is given by

SED F; F�ð Þ ¼
Z 1

�1
F eð Þ � F� eð Þj jde; (12)

where e is the forecast error, F eð Þ is the CDF of e; and F� eð Þ is the unit
step function at 0. A smaller SED indicates more accurate forecasts.
Forecast models can be ranked using the notion of SED. We use this
formulation for finding the forecast accuracy due to automation. The
steps are as follows: First, the historical sales data are used to deter-
mine the most suitable forecasting model. Then, out-of-sample fore-
casts are computed on a rolling scheme, and forecast errors are
obtained. After estimating the error density, the automation forecast
errors are simulated from the distribution. Automation scenarios are
defined based on the simulations. Finally, the error CDF from the
most suitable model and the error CDF from the simulation are com-
pared to the unit step function. Figure 8 summarizes the steps above.

The forecasting procedure involves two phases. First, we
evaluate multiple forecasting models using in-sample data
(training data). After selecting the initial model, we employ a
rolling window forecasting approach for out-of-sample predictions
(test data). Specifically, the following steps are taken:
1. Initial split: The entire dataset is divided into an in-sample

training set and an out-of-sample test set.
2. Model fit: The chosen forecasting model is trained using the

initial in-sample data.
3. Forecasting: Values for the subsequent period are forecasted in

the out-of-sample set.
4. Rolling the window: After one-step-ahead forecasting, the in-

sample data are expanded, and the out-of-sample set is reduced
by the same duration.

5. Iterative update: Steps 2–4 are repeated till the entire out-of-
sample set is forecasted.

The data must be stationary time series to obtain h-step ahead
forecasts for sale items. Stationarity indicates that sales distribution
does not change over time (i.e., stable mean and covariance struc-
ture). The autocorrelation function (ACF) and the partial autocor-
relation function (PACF) are used to determine if the data are
stationary. The ACF and PACF will also be used to determine
potential forecasting models for sales. Let fsgTt¼1 be a sales
sequence. We want a stable mean and covariance structure of the
series over time to meet the covariance stationarity property. The
ACF gives the simple and regular correlation between st and st�τ

and can be defined as

ρ τð Þ ¼ cov st ; st�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var stð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var st�τð Þp ; (13)

where var and cov are the variance and covariance. The PACF pro-
vides the partial correlation, which is the association between st and
st�τ after controlling for the effect of st�1; � � � ; st�τþ1. The sales data
are recorded hourly and consist of 250,250 observations. The ACFs
and PACFs for this dataset are shown in Figure 9. Damped wave pat-
terns indicate the highly autocorrelated sales for four sale items. The
serially correlated data provide biased and inconsistent forecasts.

One way to overcome the serial correlation problem is to use the
first difference series defined as Δs ¼ st � st�1, which is integrated
into ARIMA models. The standard ARIMA(p; d; q) is defined as

1� Ld
� �

st ¼ cþ φ Lð Þst þ θ Lð Þεt ; (14)

where L is the lag operator, fεgTt¼1 is a serially uncorrelated white
noise sequence, and φ �ð Þ and θ �ð Þ are polynomials of order p and
q. To select the optimal orders p; d; q, we follow the algorithm pro-
vided by Hyndman and Khandakar (2008), which takes into account
unit root tests, Akaike information criterion minimization, andMLE.
The algorithm involves (1) performing a unit root test based on suc-
cessive KPSS (Kwiatkowski et al., 1992) for finding the integrated
order d and (2) selecting the autoregressive and moving average
orders p; q via AIC ¼ �2log Lð Þ þ 2 pþ qð Þ, where L is the maxi-
mized likelihood. The most suitable ARIMA model estimates are
presented in Table 3.

It is worth noting that the primary goal of this section is not to
benchmark the forecasting power of ARIMA against other models
for store sales predictions. The primary objective of using
ARIMA in this study is not purely for forecasting but to produce
independent and identically distributed forecast errors. ARIMA is
chosen given its ability to transform non-stationary time series
data into stationary series. In the context of our study, achieving
independent and identically distributed forecast errors is crucial
because it allows for a comparison of error CDF with an ideal
forecast counterpart and also aids in generating realistic simulation
scenarios.

Based on the forecasting models described above, the one-step-
ahead forecasts are computed on a rolling scheme, and the
standardized forecast errors are obtained by splitting the entire
sample into 80% training and 20% test sets. The standardized
forecast error, also known as studentized forecast error, results
from dividing forecast error by its standard deviation. This
normalization satisfies the equal variance assumption.

We fit univariate distributions to standardized forecast errors by
the maximum likelihood of finding automation impacts on sales.
Numerical optimization is used to find the best values. Once the
distribution parameters are estimated, the standard errors are
calculated from the Hessian matrix. Table 4 presents the

Figure 8
Sales forecasting and automation impacts
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parameter estimates and standard errors. The results show a
consistent standard deviation of 1.0 across all items, which
suggests uniform variability in forecast errors. This consistency
can be attributed to the standardization of forecast errors. The
best-fitted distribution for the four items is normal. This result is
intuitive because of the central limit theorem for which the

forecast error distribution in large samples tends toward a normal
distribution.

To examine the impact of automation on sales, we simulate
forecast errors from more concentrated normal densities with
lower standard deviations. Table 5 provides the estimated and
simulated error densities. The impacts of automation are

Figure 9
Autocorrelation and partial autocorrelation functions of sales for four items
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Table 3
ARIMA model estimates for the four sales items

Item (1) Item (2) Item (3) Item (4)
Model ARIMA(0,1,2) ARIMA(0,1,2) ARIMA(4,0,4) ARIMA(0,1,1)

φ1

φ2

φ3

φ4

θ1 −0.31 −0.71 −

0.95
(0.20)
0.33
(0.35)
−0.79
(0.27)
0.06
(0.11)
−0.66 0.39

(0.01) (0.01) (0.20) (0.01)
θ2 −0.14 −0.22 −0.56

(0.01) (0.01) (0.29)
θ3 0.62

(0.19)
θ4 0.12

(0.08)
AIC 86,434 59,307 33,479 46,903
MAPE 87.05 78.56 80.10 1
RMSE 26.70 10.48 10.52 8.60
logL −43,214 −29,650 −16,729 −23,449

Standard errors are reported in the parentheses. φi and θi are the autoregressive and moving average coefficients. The AIC is the Akaike information
criterion. The MAPE and RMSE are the mean absolute percentage error and root mean squared error and logL is the log-likelihood.
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represented by N 0:0; 0:3ð Þ, N 0:7; 0:5ð Þ, N �0:3; 0:5ð Þ, and
N 0:0; 0:4ð Þ for Items (1) to (4), respectively. Figure 10 shows empir-
ical CDF plots of most suitable (red solid), ideal (blue dot-dashed),
and simulated (pink dashed) forecast errors. An error CDF closer to
the idea indicates a higher forecast accuracy. All the simulated error
CDFs are ranked higher, indicating automation would lead to higher
forecast accuracy.

This simulation highlights potential scenarios where
automation can lead to more accurate forecasting. The parameters
for the simulated normal distributions are selected based on a
theoretical understanding that automation reduces the variability in
forecast errors, making the errors more concentrated. The standard
deviations selected for the simulation represent potential
improvements due to automation. These simulated standard
deviations are smaller than the estimated standard deviations from
Table 4. We emphasize the hypothetical nature of these

simulations. These are illustrative scenarios rather than empirically
derived outcomes. A few points are noteworthy.

1. The simulation parameters are chosen to study a range of
scenarios. While these parameters might seem arbitrary, they
are selected to represent potential scenarios.

2. The results in Table 5 and Figure 10 are outcomes of the
simulations to illustrate scenarios where automation might lead
to more accurate forecasting.

3. Alternatively, we can simulate sales data that take into account the
impact of automation and then apply the forecasting scheme.
Such an approach would also introduce additional assumptions.
While our approach models changes in forecast error due to
automation, we acknowledge the value of studying alternative
methods.

Green and Weaver (2008) study various qualitative
methodologies adopted in the foodservice industry for sales
forecasting. They evaluate the IT systems in place and their role

Figure 10
Empirical CDF plots of most suitable, ideal, and simulated forecast errors
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Table 4
Parameter estimates of the fitted error densities

Item (1) Item (2) Item (3) Item (4)

Mean SD Mean SD Mean SD Mean SD

0.0 1.0 0.7 1.0 −0.3 1.0 0.0 1.0
(0.02) (0.01) (0.02) (0.01) (0.03) (0.02) (0.02) (0.02)

The best-fitted distribution for the four items is normal. SD denotes the
standard deviation. Standard errors are reported in parentheses and
computed from the Hessian matrix estimate.

Table 5
Estimated and simulated forecast error densities

Estimated N(0.0,1.0) N(0.7,1.0) N(-0.3,1.0) N(0.0,1.0)

Item (1) Item (2) Item (3) Item (4)

Simulated N(0.0,0.3) N(0.7,0.5) N(-0.3,0.5) N(0.0,0.4)

N µ; σð Þ is the normal density with mean µ and standard deviation σ.
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in forecasting and show a growing trend toward adopting IT systems.
Accurate sales forecasting directly impacted the restaurant’s ability
to manage inventory efficiently and optimize labor costs. Our study
also studies automated tools, complementing by adding quantitative
data and performance metrics of various forecasting models. Tuomi
and Ascencao (2023) also study automation effects in the hospitality
industry through observational studies, expert interviews, and
system evaluations. They argue that the introduction of
automation can augment the efficiency of some roles, but entirely
replacing human staff, especially in luxury settings, could detract
from the overall customer experience. This section focuses on
forecasting automation, which tackles the backend processes and
predictive models. In contrast, Tuomi and Ascencao (2023) focus
on the frontend tasks in the hospitality industry, especially those
involving direct customer interaction.

4. Cost Analysis of Automation

Profit is computed by subtracting total cost from sales. The impact
of automation on profit may be complex since automation affects both
sales and cost. Increases in sales and lower costs lead to a rise in profit,
but if sales and costs increase, the change in profit depends on the
magnitude of changes in each component. The sales component is
discussed in the previous section. This section elaborates on the other
element of profit. Ideally, examining the marginal impact of
automation on cost should be done by including the impact on the
cost function. Estimating the cost function involves regressing cost
on input prices, the number of items produced, and information on
the quantity of fixed inputs used. However, the lack of data on the
quantity of all fixed inputs (e.g., materials, technology, utilities) and
existing different frequencies of the available data make the
regression approach unfeasible. Therefore, the cost analysis involves
estimating the impact of automation separately on labor costs and the
cost of waste.

The cost data are hourly, with 16,851 observations for labor cost
and 18,921 observations for the waste data. Given the importance of
costs in determining profit and the variability associated with
different cost components and data availability, the methodology
for this section is customized. Factors such as wages, benefits,
and payroll taxes influence labor costs. The scenarios formulated
around standard deviations from the mean are motivated by the
literature and the need to capture a broad range of potential
outcomes post-automation (Davenport & Ronanki, 2018). The
range allows for both short-term and long-term effects.

Four scenarios are considered to assess the impact of
automation on labor costs. Let lt be the hourly labor cost at time t
with mean µl and standard deviation σl. Scenarios are estimated
by assuming that automation increases (or decreases) labor costs
by one and two standard deviations. The parameters for different sce-
narios are based on the existing literature. Utilizing one and two stan-
dard deviations provides a balanced approach to capture moderate
and more extreme scenarios of the effects of automation. Including
these specific scenarios helps emphasize the dual nature of automa-
tion’s impact on labor costs—it can increase and decrease. By

considering these standard deviations, we aim to capture this out-
come variability.

After automation, labor costs may increase for two reasons: (1)
The employee may be retrained for a different position and (2)
greater customer traffic because of lower wait time, which may
impact the cost at other levels. Automation may also reduce labor
costs by reducing the worker turnover ratio. Specifically,
Scenarios 1 and 2 are shown by µl � σl and automation Scenarios
3 and 4 are shown by µl � 2σl. Figure 11 presents the scatter plots
and histogram of the labor cost per hour and automation impacts. The
vertical dashed lines represent the mean for each case. Although
higher average labor costs (Scenarios 1 and 3) are attainable in the
short run, lower average labor costs (Scenarios 2 and 4) are expected
in the long run. Automation reduction in labor costs incentivizes tak-
ing steps towards an automated system.

Table 6 compares hourly labor costs under different
automation scenarios. The actual labor costs per hour range
between $10.24 and $18.16. Accounting for a one standard
deviation increase in labor costs due to automation (Scenario 1),
the range lies between $11.60 and $19.52. A decrease by one
standard deviation (Scenario 2) yields costs ranging from $8.89
to $16.81. Considering a more extreme case of a two standard
deviation increase (Scenario 3), the labor costs span from $12.96
to $20.88. A two standard deviation decrease (Scenario 4)
projects the costs between $7.53 and $15.45. These findings
suggest that the long-term expectation of automation is to reduce
labor costs, with Scenario 4 indicating the most substantial
potential reduction. This is consistent with the view that
automation, in the long run, could lead to more efficient
operations, thus reducing labor costs.

The approach of examining the effects of automation on labor
costs using standard deviations is in line with the methods proposed
by Davenport and Ronanki (2018). They emphasize the need for
businesses to understand the impact of artificial intelligence and
automation on their operations. However, our study extends their
work by using hourly labor costs (big data) to show how
automation can influence costs in real-world operational
environments. This adds an empirical dimension to the conceptual
frameworks presented in existing literature. In addition, by
assessing both increases and decreases in labor costs, this study
offers a balanced view of potential outcomes, filling a gap in the
literature that often tends to focus on either the positive or
negative implications of automation.

The relationship between automation and labor costs is studied
in the economics and business literature. For instance, Acemoglu and
Restrepo (2019) theoretically examine how automation technologies
might displace labor in certain tasks while potentially creating new
roles, leading to mixed effects on labor demand. Our findings also
empirically focus on hourly labor costs and consider the real-
world challenges businesses face when data on all factors
affecting costs are not uniformly available. This approach
complements the theoretical frameworks and bridges the gap
between theory and practice.

It is equally essential to evaluate how automation influences
other operational costs. One such significant cost, particularly in

Table 6
Min and max of hourly labor cost for the automation scenarios

Actual Scenario 1 Scenario 2 Scenario 3 Scenario 4

Min Max Min Max Min Max Min Max Min Max

10.24 18.16 11.60 19.52 8.89 16.81 12.96 20.88 7.53 15.45
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manufacturing and production environments, is the cost associated
with waste. The cost of waste, measured as daily waste cost per
item, is usually recorded manually. Figure 12 plots the waste costs
over time. To understand the potential effects of automation on
waste, we identify the theoretical distribution of the data and then
simulate the impact of automation. Specifically, we apply moment

matching estimation (MME) to discern the theoretical distributions
of waste cost. For a detailed explanation of this methodology, see
Venables and Ripley (2013) and Vose (1996). Under the MME,
the moment parameters θ are determined by setting the theoretical
moment equal to the corresponding empirical moment. This match-
ing is followed by the law of large numbers. The theoretical moments

Figure 11
Scatter plots and histograms of labor cost per hour along with automation impacts
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Figure 12
Waste costs for the four items
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is given bymk θð Þ and the empirical (sample) moments are defined as

W̄k ¼ n�1
X
i

wk
i ; (15)

whereW is the waste cost, and k is the number of parameters to esti-
mate. TheMME estimates the parameters θ byminimizing the sum of
squared errors

argmin
θ

X
k

X
i

ðmk θð Þ � wk
i Þ2: (16)

Consistency and asymptotic normality are the large sample
properties of estimator θ̂. See Newey andMcFadden (1994) for proof
of consistency and statistical inference.

The theoretical distribution of the waste cost data is identified
by comparing Q-Q and P-P plots for well-known theoretical
distributions to the empirical waste cost distribution. The Q-Q plot
represents theoretical quantiles against empirical ones, and the P-P
plot represents theoretical probabilities against empirical ones.
Figure 13 presents the histogram and theoretical densities along
with Q-Q and P-P plots for the fitted distributions of waste cost.
The findings suggest that the gamma distribution with shape and
scale parameters α and β best fit the waste cost. The PDF of the
gamma distribution can be written as

f wð Þ ¼ βα

Γ αð Þw
α�1e�βw; (17)

where Γ �ð Þ is the gamma function.
Table 7 presents the estimated gamma distribution for the waste

cost data and four different automation scenarios estimated through
Monte Carlo simulations. We assume automation increases waste
cost but with different variability in the data. Automation
increases average daily waste but produces higher quality
products. Figure 14 plots the estimated distribution for the waste
cost data (solid black line) and the automation scenarios (colored
dashed lines). The findings suggest that automation decreases
waste for low-waste-cost days (i.e., Scenarios 1 and 2) and
increases for high-waste-cost days (i.e., Scenarios 3 and 4).

The four automation scenarios presented in Figure 14 capture a
range of potential impacts automation could have on waste costs.

Table 7
Automation impacts on simulated gamma densities

Estimated Scenario 1 Scenario 2 Scenario 3 Scenario 4

G 1:2; 0:3ð Þ Gð 3:0; 0:2ð Þ G 5:0; 0:2ð Þ G 3:0; 0:4ð Þ G 5:0; 0:4ð Þ
G α;βð Þ is the gamma density with shape and scale parameters α and β.

Figure 13
Histogram, density, Q-Q, and P-P plots for the fitted distributions of waste cost
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Figure 14
PDF and CDF plots for automation scenarios (n ¼ 10;000 for each simulation)
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The choices for shape and scale parameters in the gamma
distributions for each scenario, as listed in Table 7, are driven by
preliminary analyses, empirical observations, and their
correspondence to realistic automation outcomes. Specifically,
Scenarios 1 and 2 focus on the effects of automation on days
with low-waste costs, while Scenarios 3 and 4 emphasize its
impact on days with high waste costs.

Labor and waste significantly influence overall costs. Labor
costs often represent the most significant recurring expense for
foodservice businesses. As the industry faces fluctuating wage
rates, employee turnover, and the constant need for training and
development, labor costs remain at the forefront of financial
considerations. On the other hand, waste costs are critical in
determining operational efficiency and sustainability. Potential
extensions to this research could encompass a more holistic
assessment of automation’s impact, including inventory
management, energy consumption, and customer experience.

This section focuses on analyzing the cost of automation,
mainly labor and waste expenses. Our findings show the potential
cost-saving aspects of automation. This result is consistent with
Rydzik and Kissoon (2022). They study the implications of
automation for tourism workers and emphasize the ethical
considerations and potential socio-economic disparities resulting
from widespread automation in the tourism sector. The recent
literature has employed survey-based approaches to study
behavioral patterns regarding automation’s impact on production
costs. See Mui et al. (2022) for another example in the
foodservice industry. Our study uses quantitative methods and
simulations to cover a broad range of outcomes, addressing a gap
in the literature.

5. Frequentist vs. Bayesian

The frequentist methodology has been the primary choice for
analyzing and inferring distributions in this study. However, given
the interdisciplinary and evolving landscape of statistical
methodologies, it is essential to compare and contrast this with the
Bayesian perspective, which offers a different but complementary
approach to inference (Gelman, 2006; Gelman et al., 2013). In the
frequentist paradigm, parameters are assumed to be fixed
quantities. The data are considered a random sample drawn from
a particular population, and our goal is to use the sample data to
make inferences about these fixed but unknown parameters
(Lehmann & Casella, 2006). In a Bayesian approach, parameters
are random variables, and prior beliefs about these parameters are
expressed through a prior distribution, p θð Þ. When new data, x,
are observed, the Bayesian updates this prior to forming a posterior
distribution, pðθjxÞ, using Bayes’ theorem (Bayes, 1958)

pðθjxÞ ¼ pðxjθÞp θð Þ
p xð Þ :

The empirical distribution identified in our study could be
analogous to a Bayesian prior in specific contexts. In our case,
this distribution serves as an empirical representation of our
sample. However, in the Bayesian paradigm, this would be the
prior belief about the transaction distribution (Bernardo & Smith,
2009). The frequentist techniques we used, including fitting
distributions to empirical data, directly reflect the observed data
patterns and are conventional in many industries, ensuring ease of
interpretation for stakeholders (Efron, 2012). Bayesian methods,

however, allow for the incorporation of prior knowledge and are
particularly powerful when data are sparse or when prior
information is significant (Robert, 2007). They offer a full
probability distribution over the parameters, which can provide
richer insights than point estimates.

The frequentist methods may sometimes not fully leverage prior
information, while Bayesian methods can be computationally
demanding, especially with non-conjugate priors, and may require
advanced sampling methods (Gilks et al., 1995). In industry
settings where rapid decisions are essential, computational
feasibility becomes necessary. Our frequentist methods are designed
for computational efficiency. In contrast, specific Bayesian
approaches, especially with complex priors or large datasets, can
become computationally intensive and may necessitate specialized
algorithms and hardware (Brooks et al., 2011). The choice between
frequentist and Bayesian approaches often depends on the research
objectives, data nature, computational considerations, and the target
audience’s preference.

6. Concluding Remarks

The rise of technology urges industries to adopt automated
systems to target demand and efficiently utilize resources. One
way to increase productivity measured by output per hour is by
adopting automated systems. Automated systems help redistribute
resources and increase efficiency by lowering total costs. In the
foodservice industry, automated systems can use dispensing,
breading, and frying machines with a tracking system.
Retrospectively, automation can be measured by analyzing the
historical data. Historical data, however, are not available before
implementing automation. This paper introduces a probabilistic
view to capture automation impacts prospectively. This forward-
looking view accommodates predictive approaches in achieving
the targets.

This paper examines automation impacts on customer traffic,
sales, and cost through big data approaches and simulation
studies. First, univariate distributions are fitted to the empirical
data to determine parameter estimates of the distributions.
Distribution parameters are estimated by maximizing likelihood
and MME. After selecting the best-fitted distribution, Monte Carlo
simulations are constructed to find automation impacts.
Automation impacts on sales are captured through ranking
forecast models and SED. SED is the distance of the forecast
error CDF from the unit step function. Automation is captured by
simulated forecast errors, which provide a smaller SED, implying
improved forecast accuracy.
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