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Abstract: Intrusion and prevention technologies perform reliably in harsh conditions by fortifying many of the world’s highest security sites
with few defects in high performance. This paper aims to contribute by designing an intrusion/preventive system using a window-based
convolutional neural network (CNN), an integrated recurrent neural network (RNN), and autoencoders (AutoE) to detect and test the
performance of the intrusion detection system. The data packets were converted to images where the pixels were used as input. The
CNN architecture shows a three-layer model with high predictive performance. The result shows high performance on CNN as
compared to both RNN and AutoE; CNN seems to resist overfitting more than the rest of the models. The future perspective would be
to test the model on other standard methods such as support vector machine (SVM) and dynamic control systems.
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1. Introduction

The CNN architecture shows a three-layer model with high
predictive performance. The result shows high performance on
CNN as compared to both RNN and AutoE; CNN seems to
resist overfitting more than the rest of the models. The future
perspective would be to test the model on other standard
methods such as support vector machine (SVM) and dynamic
control systems.

An intrusion detection system (IDS) is basically a device or a
software application that is meant to monitor network and system
activities and send alerts to system administrators at the right time
[1–3]. It can monitor both inbound and outbound traffic activities
to detect an intrusion. There are basically two kinds of IDS,
which are the network intrusion detection system (NIDS) and the
host intrusion detection system (HIDS). The NIDS can monitor all
traffic that comes from and goes to all the devices of a network. If
for instance any traffic matches that of the library or the known
attacks or say any abnormal behavior is sensed a single alert is
triggered and warnings are sent to the administrator. It is
sometimes placed in a subnet close to the firewall (Figure 1) to
detect if anyone is making an attempt to break the firewall. It is
also capable of comparing signatures of similar packets of data
and be able to detect harmful data packets that match and
signature recorded on the database.

2. Literature Review

The HIDS monitors individual hosts or system devices in
particular [1–6]. Inspections are conducted on inbound and
outbound packets of the device and an alert is sent to the
administrator on suspicious activities. It is capable of taking
snapshots of system files at a given point in time and matching
them to determine if any critical file has been modified or

Figure 1
An intrusion detection system placed close to a firewall to detect

anomalies
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mistakenly deleted and send alert when required [7–12]. Building an
IDS can be approached in two ways such as the standard method or
the novel approach. The standard approach involves collected
browsing and network activity saved for a certain number of days,
which are then retrieved for analysis purposes.

The novel approach involves conducting an experimental study
involving participants with certain given takes that involve all forms
of intrusion techniques. The IDSs have in recent years been evenly
and highly researched; the commonest changes occur in the dataset
collected, and the dataset must contain many samples of intrusion
techniques such as infiltration, DOS attack, and brute force from
within a network space [13–17]. In recent years, as network
behaviors and their patterns change and network intrusions
evolve, it has become paramount to develop from basic static and
single-handle datasets to datasets generated dynamically. This
reflects the traffic compositions and online intrusions of a
particular time, which can be reproducible, modified, and
extensible. To be able to do this, training a deep learning model
to identify anomalies from a given dataset is one of the initial
stages of data preprocessing which we will be looking at in the
preceding sections [18, 19]. Anomaly-based systems are the most
effective IDSs, due to the application of machine learning
algorithms embedded within the system. They have no need to
search for a specific pattern of anomaly, but they are able to treat
anything that does not mark the profile as “Anomalous” [20–25].
The source code for the generated program would not be
shared in this book, but the basic steps will be illustrated, a
GitHub link will also be provided, and the data preprocessing
stages will be shared. This is to enlighten the basic idea and
implementation process used to achieve successful predictive
accuracy [23, 26–29].

3. Method and Dataset

The dataset used here is based on the Canadian Institute for
Security 2017 (CICS), which can be obtained online as a form of
freeware. They are used around the world for security testing and
malware prevention. The dataset was visualized using Matlab to
determine how much data there are for each class of anomaly and
normal contained in it. In order to solve the problem of
imbalance, a one-way selection was used to reduce the major
data samples and the over-sampling technique (Figure 2) to
increase the minor samples. This is to set some balance to the
dataset and build a training model. This will also reduce the
training time of the model. The three main deep neural networks
(convolutional neural network (CNN), recurrent neural network
(RNN), and autoencoder (AutoE)) discussed in Chapter 1 are used
for the training. It is important to mention that quite a few papers
on IDSs using machine learning techniques have made use of the
dataset. This is most likely due to its unavailability at that time.
One of the first research works that made use of it was for
developing a hybrid IDS. The environment they created uses
Keras API to set up their system and a Microsoft CNTK for a
back-end engine.

The dataset is based on cybersecurity modeling and used around
the world by different universities, independent researchers, and
private industry. Most of the anomaly contents are malware-
inclined and obfuscated as malware that hides to avoid detection
and extermination.

The data model that frames the characteristics of the dataset was
created to represent as close to a real-life situation as possible using
prevalent malware in a real-life scenario. The dataset consists of
Trojan horses, spyware, and ransomware that provide a balanced

dataset that can be used to test the obfuscated malware and a
proposed detection system.

The modified dataset focuses on the simulation of real-world
scenarios that indicate the breakdown of benign and malicious
memory bins, and it is balanced with it being made up of 50%
malicious memory bins and 50% benign memory bins. The total
breakdown for malware families is shown in Table 1. The
proposed IDS and prevention systems are based on important
defence mechanisms as a tool against sophisticated and increasing
attacks. Due to a lack of reliable test and validation datasets, the
anomaly detection approaches are facing some defects from
consistent and accurate performance evaluations. The evaluations
from previous studies show that most of these types of systems
are out of date and unreliable. They mostly suffer from a lack of
traffic diversity and volumes, and some are unlikely to cover a
variety of known attacks. The currently proposed method took
these defects into account and integrated a standby default solely
to report standby anomalies that would require instant traffic
addressing and computational approaches for benign case

Figure 2
The general network model for the proposed system

Table 1
A breakdown for malware families for typical CICS dataset:

Courtesy Google Archive

Malware category Malware families Count

Trojan horse Zeus 196
Emotet 200
Refroso 200
Scar 157
Reconye 195

Spyware 180Solutions 200
Coolwebsearch 200
Gator 241
Transponder 141
TIBS 200

Ransomware Conti 195
MAZE 171
Pysa 200
Ako 220
Shade 200

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 3 2024

175



grouping through a strategized method using the classification
algorithm described in Figure 2.

4. Result

In this section, we have particularly considered benign outliers
to improve the stability and robustness of anomaly-based intrusion
systems. There were interesting findings that were actually used
and embedded into the malware samples that are supposed to be
propagated as part of network packets collected, and a lot of the
benign code and benign cases have different detection segments
(Figure 3). The figure shows the index page of the CICS dataset
that was strategized and classified some of the cases as benign
with a view on the malware group (Figure 5). The benign cases
are characteristically harmless or well-intentioned, the opposite of
malicious cases which is naturally how it works. The “pslist” is
categorized between 12 and 17 numerical values from the initial
coding process. The interphase shows how the IDS can be used
for major monitoring of networks for attack activities or policy
violations. This can successfully identify anomalous deviations
from the normal traffic behavior. The CNN is used by capturing
the image representation of the data packets (Figure 4).

The CNN is applied to analyze visual imagery (Figure 4), which
is a picture-listed image in the form of the data packets (CICS data) of
Figure 3. The CNN here uses a mathematical operation mentioned in
Chapter 1 called convolution in the place of general matrix
multiplication in more than one input layer with multiple hidden
layers. The process is specifically designed to feed in process flow
as pixel data, which is used in image recognition and
preprocessing for image segmentation and classification.

The spyware has 0% compared to ransomware (17%). Figure 3
has malicious behavior that aims to gather certain information about
a person’s activity from an organization and send it to another entity
with malicious intent in a way that brings harm to the user. An
imposter with malicious intent can violate privacy by endangering
the device and its security. This kind of behavior presents certain
unrecognized interests that can only be detected by intrusion
detection like the ones presented here. Some websites may engage
in certain spyware behaviors like web tracking, which are often

hard to track and classified as malicious. The software presented
in the IDS can also be affected and hence the integrated IDS with
detection characteristics can be much faster with the maximum
bandwidth that is required since the spyware is sometimes
frequently associated with advertising that may cause some
malicious cases to appear benign. They involve many of these
issues because the behavior is most common and they can have
non-harmful curses. Providing a precise definition of spyware is
sometimes a difficult task, and the intrusion system can precisely
differentiate benign cases from malicious cases.

Ransomware (Figures 5 and 6) 17% is the type of malware from
crypto virology that mostly threatens the publishing of a person’s
personal data and permanently blocks access to it until a ransom
is paid off. Certain simple ransomware sometimes locks the
system without damaging the files in them. Advanced malware
uses a certain technique called cryptoviral extortion that encrypts
the person’s personal files by making them inaccessible and then
demands a ransom, and the person of the system affected by
ransomware is higher than spyware. The intrusion system is

Figure 3
Index view of the CICS dataset with strategized benign and

malware groups

Figure 4
Image representation of the CICS data

Figure 5
Malware classes compared to benign cases
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properly implemented with cryptoviral extortion attacks for the
recovery of important files with the decryption key. This bypasses
digital currencies, which are sometimes difficult on Paysafecard or
Bitcoin and also other cryptocurrencies; tracing and prosecuting
are also bypassed. The ransomware attacks are carried out using
Trojans, which are disguised as legitimate files and have 20%
(Figure 6) of harmful effects on the collected packets of data.
Users can be tricked into downloading and opening these
malicious files when they arrive as a form of email attachments.
However, the high-profile intrusion system can travel system
process automatically between software prevention firewalls with
user interaction.

The CNN on the batch process for the image-converted file uses
2D convolution in the normalization phase. The convolution tool
separates and also identifies the different features (Figure 7) of the
image for analysis in a process known as feature extraction. The
entire network of features extracted consists of different pairs of
convolutional and pooling layers (Figure 8). A fully connected
layer uses the output from a convolution process and then predicts
the class of the images based on the features extracted from the
ones in Figure 7. The CNN model of the features extracted has
the purpose of reducing the number of features contained in the
original set of features. There are different CNN hidden layers as
shown in Figure 8 architecture diagram.

Three types of layers make up the CNN, which was used as the
convolutional layers and pooling layer for a fully-connected layer.
The layers are stacked and the CNN architecture forms a chain. In
addition to the design, the three layers have two more significant
parameters that are both dropout layers and the activation function
is also defined with it. The output is known as the feature map
and gives information about the image of the data packets such as
the corners and edges. The feature map is fed to the layers to
learn the different features of the input image. All the layers in the
CNN pass the result to the next layer once the convolutional
operator in the input is applied. The convolutional layers benefit
from the design and ensure the spatial relationship between the
pixels is intact for the resulting outcome.

Sometimes running the CNN-based application on edge devices
near the source data can cause a significant delay in latency and

privacy challenges, and hence the RNN and AutoE were used as a
form of comparison to test the performance of the CNN model
(Figures 10 and 11) using training and test set. However, in some
events, due to their reduced computing resources, the energy
constraints in some devices can hardly satisfy the CNN needs in
processing the data storage. From the performance, CNN still
performs higher in the two test samples of Figures 10 and 11. In
this work, CNN has the best trade-off between accuracy and the
execution time during respective literature on the hardware
constraints tool and crucial parameters were used for the final
runtime. The method explores the time needed for the training and
tuning for the corresponding hyperparameters. The number of
times to run the prediction models was compared on different
platforms and the utilization of these three methods (CNN, RNN,
and AutoE) highly facilitates design space during exploration of
the parameters by proving the best CNN on a target GPU. The
result shows the root mean square error provides a less than
5.53% average prediction error even for unexplored and unseen
CNN models’ architectures (Figure 7). RNN depicts comparable
accuracy and also needs more effort and time to be trained. The

Figure 8
CNN architecture with predicted intrusion

Figure 6
Percentage of malware classes compared to benign cases for the

CICS dataset

Figure 7
Descriptive representation of layers of CNN model from image

dataset
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other two approaches (loss and iteration) are less accurate for CNN
performance estimation.

4.1. Handling overfitting and underfitting
problems

The overfitting in the three models shows the model training
data, the models seem to resist overfitting. This is a common
problem in learning models, where a model performs well on the
training data but poorly on the test data or unseen data (Figures 9
and 10). This means that the CNN model has memorized the
specific patterns and noise in the training data, but it cannot adapt
to new situations or variations.

Here, overfitting reduces the accuracy and reliability of themodel,
and it can lead topoordecisionsandoutcomes.Toavoidoverfitting, the
data needed to be used during regularization techniques that limit the
complexity of the model and introduce some randomness or noise to
the learning process. Regularization is also a way of adding some
constraints or penalties to the model so that it does not overfit the
training data. There are also different types of regularization
methods, but they all aim to reduce the variance of the model and
increase its bias. Variance measures how sensitive the model is to
small changes in the data, while bias measures how far the model is
from the true relationship. A good model should have low variance
and low bias, but there is usually a trade-off between them.
Regularization helps find a balance between them by shrinking or
pruning the model parameters, adding noise or dropout to the layers,
or augmenting the data with transformations.

5. Conclusion

This chapter aims to design an intrusion/preventive system
using a window-based CNN and an integrated RNN and AutoE to
detect and test the performance of the IDS.

The data file reflects the traffic compositions and online
intrusions of specific data packets at a particular time which can be
reproducible, modified, and extensible. To be able to do this,
training a deep learning model to identify anomalies from a given
dataset is one of the initial stages of data preprocessing, which was
discussed in the paper. Anomaly-based systems are the most
effective IDSs, due to the application of machine learning
algorithms embedded within the system. The data packets were
converted to images where the pixels were used as input. The CNN
architecture shows a three-layer model with high predictive
performance. The result shows high performance on CNN as
compared to both RNN and AutoE and seems to resist overfitting.
The future perspective would be to test the model on other standard
methods such as support vectormachine and control dynamic systems.
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