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Abstract: Display paradigm design is an important stage in the design of any brain–computer interface device including the P300 speller
system. Conventional grey-to-white intensification limits the usability of the existing Devanagari script-based P300 speller (DSP3S) as it
suffers from reduced visual contrast, diminished user engagement, limited personalization, minimal cognitive stimulation, and the risk of
visual fatigue. The use of a facial paradigm can address the above-mentioned limitations through emotionally resonant stimuli, offering
diverse cognitive stimulation, and potentially reducing visual fatigue by introducing dynamic and engaging facial stimuli. In this context,
this study is the first attempt to investigate the efficacy of facial paradigms in further improving the usability of DSP3S. The authors
investigated three facial paradigms based on the smiley face, famous face, and family faces (FFs) for DSP3S. The three facial paradigms
are evaluated based on their effectiveness, efficiency, and satisfaction. Effectiveness was measured using classification performance and
amplitude difference waveform, whereas efficiency and satisfaction were measured using NASA-TLX, visual analogue scale-fatigue
scale, and system usability scale, respectively. The obtained results showed that using the proposed FF intensification, efficiency, and
satisfaction could be improved. However, no significant difference was observed in effectiveness among the three display paradigms. In
this study, apart from investigating the usability of three display paradigms, authors also propose brain signal decoding using
morphological filtering and extreme gradient boosting. Finally, the study concludes that the design of display paradigms using different
intensification patterns affects the usability of the speller system and should be taken into consideration.
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1. Introduction

Brain–computer interface (BCI) establishes a connection between
the human brain and its surroundings by converting cognitive activity
into computer commands [1]. In this way, humans can communicate
their ideas solely through their brains without really moving [2].
Patients with locked-in conditions, such as those with amyotrophic
lateral sclerosis, can benefit from BCI. The majority of BCI devices
capture brain activity using electroencephalography (EEG). EEG is
a quick and reasonably affordable neuroimaging technique that
measures the electrophysiological activity of the neurons. Being
non-invasive is a huge benefit of EEG,which is crucial for BCI devices.

Speller systems, a prevalent application of BCIs based on EEG,
are specifically designed to facilitate communication for individuals
suffering with severe motor neuron disorders. These EEG-based BCI
spellers leverage event-related potentials (ERPs), suggesting that the
cognitive response to a stimulus can be categorized by analyzing
voltage deflections in recorded EEG. Among ERP types, visual-
evoked ERP is commonly employed in speller systems. The
polarity and latency of the voltage deflection serve as indicators

for visual evoked ERP components [3]. In the context of an
oddball paradigm, which involves presenting the subject with
repetitive stimuli, ERP components come into play. When the
oddball paradigm is used, low-probability target stimuli are
combined with high-probability non-target visual stimuli [4]. The
intensification of the desired character serves as the target
stimulus in speller systems.

In the traditional P300 speller, the positive voltage peak known
as the P300 component, initiating 300 ms after the target stimulus, is
extracted to identify the desired symbol through the utilization of the
oddball paradigm. The first P300 speller was designed for the
English language [5], soon after that researcher identified the need
of communication in native languages. Therefore, P300 spellers
for different languages including Chinese, Arabic, Japanese, and
Devanagari script (DS) were designed by different research
groups [6].

A typical P300 speller is accomplished in different stages like
design of external stimuli, data recording, feature extraction, ERP
classification, and character detection [6]. Among different stages
of the P300 speller, stimulus design plays a very important role.
Conventional grey-to-white intensification in display paradigms is
associated with drawbacks such as diminished visual contrast,
reduced user engagement, minimal cognitive stimulation, and the
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possibility of inducing visual fatigue. To overcome these limitations,
researchers have explored alternative display paradigms that
incorporate more diverse and engaging visual stimuli, such as
familiar faces, dynamic images, or personalized content.

In the context of English language-based P300 spellers,
researchers have employed character enhancements based on self-
face [7], green face [8], and famous face (FsF) [9]. Studies on
face recognition indicate variations in the amplitude of ERPs
between a FsF and a familiar face, such as that of a mother, which
holds greater significance for the individual [7]. Caharel et al. [10]
found that the face of the subject’s mother elicits a more
pronounced positive response between 300 and 700 ms compared
to a FsF. Similar observations have been reported in other face
recognition experiments. Sui et al. [11] noted a higher positivity
in ERP amplitude for the face of a classmate or flatmate
compared to a celebrity face between 220 and 700 ms. Meijer
et al. [12] and Gunji et al. [13] demonstrated that familiar faces
generate a higher P300 amplitude compared to unfamiliar faces.
Based on the aforementioned research on face recognition, the
brain processes familiar faces differently, resulting in a waveform
with a more substantial positive amplitude. Therefore, in this
study, for the first time, we propose a family face (FF) paradigm
for DS-based P300 speller (DSP3S). The proposed FF paradigm
uses the faces of subjects’ family members (mother, father,
sibling, cousin, etc.) as familiar faces. In contrast to the previous
approach for the English language [7] using facial paradigm
(famous and familiar) that uses the same face to cover all the
characters of flashing rows and columns, we use different faces to
cover each character. Therefore, the characters adjacent to the
target characters are flashed with different images to avoid
possible adjacency distraction. Additionally, we compare the
proposed FF paradigm with the FsF (using famous Indian faces)
and the smiley face (SF) paradigm. Usability evaluation of the
three-display paradigm is presented in this study to select the best
paradigm among the three for DSP3S.

The study assesses the three facial paradigms by gauging their
effectiveness, efficiency, and user satisfaction. Effectiveness is
quantified through classification performance and amplitude
difference (AD) waveform analysis, while efficiency and
satisfaction are evaluated using NASA-TLX, visual analogue
scale-fatigue (VAS-F) scale, and system usability scale (SUS),
respectively. The primary aim of the present work is to compare
the three facial paradigms. However, the authors also propose to
use the morphological feature obtained after morphological
filtering for the ERP classification process.

Novel contributions of the proposed work are:

1) Introducing an innovative FF paradigm designed exclusively for
DSP3S, providing a novel approach to visual stimuli for
enhanced usability.

2) Conducting the inaugural comparative examination of three
distinct facial paradigms within the DSP3S framework,
offering valuable insights into their respective effectiveness for
user interaction and communication.

3) The utilization of mathematical morphology-based ERP
classification to quantitatively assess the effectiveness of
display paradigms.

The rest of this paper is organized as follows: Section 2 presents the
data recording protocol, dataset detail, and proposed methodology
for P300 detection and usability evaluation. Experimental results
are presented in Section 3, and the work is finally concluded in
Section 4.

2. Material and Method

2.1. Participants

The present study was approved by the Ethical Clearance
Committee at NIT Raipur. Four healthy subjects aged 25–35 years,
with normal cognitive and normal or corrected-to-normal vision,
volunteered for our experiment. Participants were naïve to the BCI,
and written informed consent was obtained before their participation.

2.2. The spelling paradigm

In this study, we introduce the FF paradigm and conduct a
comprehensive comparison with other two facial paradigms
namely the SF and FsF paradigms. Each of the three paradigm
designs uses a matrix containing 8 rows and 8 columns. The
matrix comprises 64 characters, out of which there are 48
Devanagari alphabets, 10 numbers, and 6 symbols. Importantly, it
should be noted that the display paradigms were designed using
the UMA BCI Speller platform with BCI 2000 in the background.

During the spelling process, rows and columns are flashed
randomly. In the FF paradigm, characters in the flashing rows or
columns are covered by images depicting the faces of the
subject’s family members. Notably, to mitigate potential
adjacency distraction, each character in the flashing row or
column is obscured by a distinct photo of a family member. The
design principles of the FsF and SF paradigms align with that of
FF. However, in FsF paradigm the characters of the flashing row
or column are covered by faces of famous Indian personalities and
in the SF paradigm covered by yellow smiley emoji. For a visual
representation of these paradigms, refer to Figures 1, 2 and 3.

Figure 1
Display paradigm design with smiley face intensification

Figure 2
Display paradigm design with famous face intensification
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2.3. Experimental setup

The data recording was organized inside a soundproof chamber.
Each subject had to spell 10 DS words (comprising a total 41
characters) using the three paradigms. During the spelling process,
each row and column was flashed once (total of 16 flashing) in a
single trial. There were 15 such trials for each character in a word.
Participants were instructed to silently count the number of
targeted letter stimulations and then shift their attention to the next
letter when the first set was over. During the spelling process,
stimulus was provided by covering the characters with face
pictures for 120 ms with an 80 ms inter-stimulus difference
resulting in total stimulus onset asynchrony (SOA) of 200 ms.
One session consists of spelling all 10 words for one paradigm.
Each session ended with participants responding to two separate
surveys, including the NASA-TLX [14] test and VAS-F
questionnaires [15]. A comparative questionnaire for the three
paradigms was completed at the end of the three sessions.
Sufficient time interval was provided between sessions and
between the spelling of different words in a session.

2.4. Data acquisition and pre-processing

The EEG data were recorded using 16-channel ACTi CAP
Xpress V-amp EEG recorder with BCI 2000 software. The 16
channels were mounted on the scalp following the international
10–20 system. The impedance of each electrode was kept below
10 kΩ for all the experiments. Left and right mastoids were used
as ground and reference, respectively. The sampling frequency
was kept 500 Hz. The recorded data were filtered using bandpass
filtered with 0.1–12.5 Hz pass band. For ERP extraction, the EEG
data 0–600 ms post stimulus were extracted, which give 300
timepoints each ERP. Later all the ERPs are down-sampled to 50
Hz to lessen the computational burden and fast operation. The
number of ERPs for 15 and single trial are presented in Table 1.

2.5. Usability evaluation

The usability of the three facial paradigms was evaluated using
the methodology outlined by ISO (2000), which included the
following three metrics: effectiveness, efficiency, and satisfaction
[16]. Effectiveness is the precision with which a user can execute
tasks. Different outcomes used to assess the effectiveness in this
study are (i) ERP classification performance and (ii) AD between
P300 and non-P300 ERP. Efficiency corresponds to the resources
used, such as user time and effort, to execute an activity. Two
measures were adopted to assess the efficiency: (i) the subjective
workload evaluated with NASA-TLX [14] which examined the
participant’s performance, effort, and feelings of frustration as
well as the mental, physical, and temporal demands and (ii) the
level of weariness felt during the test was measured using the
VAS-F scale (0–10) [15]. The attitude of the users, or their
perception of comfort and acceptance with the system, is related
to their level of satisfaction. A questionnaire derived from the
SUS [17] and containing six dimensions favorite, complex,
comfortable, stressful, controllable, and tiring to assess satisfaction
was adopted in this study. The three different intensification
patterns were rated among them. For each pattern, three ranks
were suggested: rank 1, the least; rank 2, the middle; and rank 3,
the most preferred.

2.6. ERP classification

2.6.1. Mathematical morphology
In this subsection, the authors present a brief explanation of the

mathematical morphology-based ERP classification adopted in this
study. Morphological operation may be defined as the process of
obtaining local information by iteratively transforming the original
signal with the morphological operator (MO) and a predefined
structural element (SE). This technique may successfully remove
signal noise and extract meaningful information. The way the MO
and SE are configured has a significant impact on the way
morphological filtering works, according to the fundamental
theory of MF. Kazakeviciute et al. [18] identified the four
fundamental operators as dilation, erosion, closing, and opening.
Let e nð Þ be the one-dimensional ERP data, and s nð Þ be the predefined
structuring element.

The dilation and erosion operation on e nð Þ using s nð Þ are
defined as

e� s nð Þ ¼ max½e n�mð Þ þ s mð Þ (1)

e� s nð Þ ¼ min½e nþmð Þ � s mð Þ (2)

where � indicates dilation and � indicates erosion operation. Addi-
tionally, the definition of the opening and closing operations is given
below [18]:

ðe � sÞ nð Þ ¼ e� sð Þ � sð Þ nð Þ (3)

ðe � sÞ nð Þ ¼ e� sð Þ � sð Þ nð Þ (4)

where � indicates opening operation and � indicate closing operation.
The convex peak of the signal is smoothed during the opening oper-
ation, and the concave peak during the closing operation. To identify
the signal’s peaks and valleys, opening and closing operations might
be used.

Both positive and negative peaks exist in the ERP signal. To
detect the bidirectional peak, combination of opening and closing

Figure 3
Display paradigm design with family face intensification

Table 1
ERP details of 41 Devanagari characters

Trial(s) P300 Non-P300 Total

15 78720 551040 629760
1 5284 36736 41984
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operation can be used. Moreover, the open–close and close–open
filters can be expressed as

FOCðe nð ÞÞ ¼ ððe � sÞ � sÞ nð Þ (5)

FCOðe nð ÞÞ ¼ ððe � sÞ � sÞ nð Þ (6)

In this study, we employ the combination morphological filter hat
(CMFH) transform as defined in Equation (7) [19]. This
combination filter is chosen as it better detects the bidirectional peak.

CMFH e nð Þð Þ ¼ e nð Þ � FOC e nð Þð Þ þ FCO e nð Þð Þ
2

(7)

After determining aMO in themorphological filter, the next step is to
choose an acceptable structuring element. Structure elements come
in a variety of shapes, including flat and double tap. Many
researchers have demonstrated that there is no discernible
difference in feature extraction between flat SE and various types
of SE. Furthermore, complex SE forms will increase
computational load while decreasing computational efficiency. As
a result, the double tap SE is used in the research of this paper. A
careful choice of scale of SE is crucial in morphological filtering.
If the SE scale is too large, the significant peaks might be
eliminated. But when the scale is small, substantial noise cannot
be eliminated. The double tap structuring element adopted for this
study is presented in Equation (8).

SE ¼ 1 0 1f g (8)

Such structuring elements in the morphological filter reduce
background activity and retrieve peak components from the
original signal. As an example, the application of CMFH is
presented in Figures 4, 5 and 6, where the original ERP with
different peaks is shown in Figure 4, the down-sampled ERP is
shown in Figure 5, and the result obtained after morphological
filtering is shown in Figure 6. As a result of CMFH, the peaks are
exposed with higher amplitude and other signal values are
reduced greatly in comparison.

Since the dataset for P300 speller consists of target (P300) and
non-target (non-P300) ERP, the classification stage aims to

distinguish the two. The morphological features obtained after
filtering were then fed to extreme gradient boosting (XGBoost)
algorithm to perform the binary classification as P300 or non-P300.

2.6.2. Extreme gradient boosting
XGBoost is a machine learning technique that combines the

predictions of several weaker models to correctly predict a target
variable using a supervised learning strategy. It is a well-known
classification tool with fast performance. By adding a new tree in
each step to accompany the previously built trees, the additive
tree method was used to create the XGBoost model. The accuracy
typically increases as more trees are built. In the presented work,
XGBoost was used after applying the morphological filtering to
the ERPs. XGBoost is used to classify the ERPs to P300 and non-
P300. The parameters of XGBoost classifier are specified in
Table 2. The classification is evaluated using different metrics as
shown in Table 3.

Figure 4
Extracted ERP

Figure 5
ERP after down sampling

Figure 6
Morphological features obtained after filtering
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3. Result and Discussion

3.1. Effectiveness

Figure 7 presents the single trial offline classification
performance of the three paradigms on the test dataset in terms of
accuracy, true positive rate, true negative rate, and F1 score. The
classification was performed using the leave-one-subject-out
approach and the presented result is the average of the 4-fold
cross-validation performance. Adopting the FFs paradigm
improves the classification accuracy by 0.8% and 2.52%
compared to SF and FsF; however, the difference is not
statistically significant. The better performance in the case of the
FF paradigm may be attributed to the larger P300 and N170
components in the recorded EEG. Nonetheless, there is a minor

overfitting concern observed in the results, where there is a slight
variance between the outcomes on the training and test datasets. It
is worth noting that the disparity is not statistically significant for
any of the display paradigms (p-value= 0.01, t-test). The AD
waveform in contrast to target or non-target ERP waveforms is
more interesting to analyze because it demonstrates how the
amplitudes of the ERP target and non-target signals differ, making
it simpler for the classifier to distinguish between the two signals.
The grand averaged AD waveform for the Pz channel is shown in
Figure 8. It can be observed from Figure 8 that FF elicits slightly
higher P300 compared to other two. The AD signal and
classification accuracy do not, on average, differ significantly
between the three facial paradigms.

3.2. Efficiency

The effects of facial paradigms on VAS-F, overall workload
(NASA-TLX), and subjective workload dimensions (mental demand,
physical demand, temporal demand, effort, performance, and
frustration) are reported in Table 4. The results are in accordance
with the average score of all the participants. Clearly, SF and FsF
incur 15.16% (p-value= 0.03, t-test) and 19.6% (p-value= 0.01,
t-test) more total workload compared to FF paradigm. Also, the
fatigue (VAS-F) for SF and FsF is 56.86% (p-value= 0.01, t-test)
and 52.06% (p-value= 0.04, t-test) higher compared to FF.
However, no significant difference was found between SF and FsF.

Table 2
Parameters of XGBoost classifier

Parameter Value

Learning rate 0.1
Number of estimators 250
Maximum tree depth 10
Minimum child weight 1
Gamma 0.2
Subsample 0.9
Col sample by tree 0.9
Objective Binary logistic
Number of threads 6

Table 3
Evaluation metrics

Measure Formula

Accuracy (ACC) TNþTP
TNþTPþFNþFP

Precision or positive predictive value (PPV) TP
TPþFP

Recall or true positive rate (TPR) TP
TPþFN

F1 score 2� TPR�PPV
PPVþTPR

h i

Note:TP – true positive, FP – false positive, TN – true negative, FN – false
negative

Figure 7
Classification performance of the three facial paradigms on the

test data
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FF SF FsF

Classification Performance 

Acc TPR TNR F1 Score

Table 4
Efficiency grade based on NASA TLX score and VAS-F scale

Parameter SF FsF FF

Mental demand (0–12) 9.75±0.5 9.25±0.95 7.75±0.95
Physical demand (0–12) 7.00±1.41 7.75±0.5 5.5±1.00
Temporal demand (0–12) 5.75±2.21 8.5±1.73 6.25±0.95
Performance (0–12) 9.25±0.95 10.25±0.5 11.0±0.00
Effort (0–12) 9.00±1.41 10.75±0.5 8.0±0.16
Frustration (0–12) 8.00±0.81 8.5±1.2 5.75±0.95
Total workload (0–100) 70.25±6.34 73.00±6.97 61.0±4.69
VAS-F (0–10) 7.2±0.72 6.98±1.17 4.59±1.85

Figure 8
Grand averaged amplitude difference waveform for channel Pz

yellow (SF), red (FsF), and blue (FF)
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3.3. Satisfaction

Each variable in the satisfaction construct was considered as
either positive (controllable, comfortable, and favorite) or
negative (complex, stressful, and tiring). It can be observed from
Figure 9 that SF and FsF paradigm presented more negative than
positive ranks as they were considered more tiring and less
comfortable. In contrast, most dimensions for FF paradigm
presented positive values. So, in terms of satisfaction, users found
the FF paradigm to be significantly (p< 0.01, t-test) adequate.

3.4. Comparative analysis

We present a comparative analysis of the proposed approach
with recent studies incorporating a reduced number of trials from
the literature in Table 5. First, we compare the proposed approach
with existing studies on DS-based P300 spellers. Subsequently,
we conducted a comparison of P300 classification accuracy on
different languages, considering various approaches that involve a
reduced number of trials or utilize facial paradigms.

1) The existing DS-P3S demonstrates a P300 detection accuracy
ranging from 92 to 95% with 15 trials [6, 20]. However, this
accuracy diminishes when the number of trials is reduced.
Specifically, for 3–5 trials, the P300 detection accuracy falls
within the range of 73–88% [6, 21]. In comparison to the
above-mentioned studies, the proposed approach reports a
comparable performance of 81.12% accuracy using a simple

classifier on a single trial. Although Kshirsagar and Londhe
[20] report a better accuracy of 85% for a single trial, our
suggested method is comparatively less complex because it
does not require training several models.

2) P300 spellers for the English language [22–25] have accuracy in the
range of 69–79% with 5 trials. A recent study [26] achieved an area
under the receiver operating characteristic curve score of 82.17 for
single-trial P300 detection. The proposed approach achieves a
comparable classification accuracy of 81.12% with only a single
trial. Moreover, in contrast to other facial paradigm-based P300
spellers [8, 27] which typically achieve P300 classification
accuracy ranging from 75.6 to 86.1% with two trials, our
proposed approach stands out by achieving an 81.12%
classification accuracy with just a single trial. This signifies a
notable improvement, as it reduces the time required for spelling
by half compared to existing facial paradigms.

Based on the aforementioned comparison, it is evident that the
proposed approach demonstrates performance on par with existing
methods, especially with a straightforward classifier design, a
diminished number of trials, and training involving fewer subjects.
There is potential for further enhancement in the performance of
the proposed approach through training on a larger dataset,
thereby encompassing a greater number of subjects.

4. Conclusion

This work is the first study to compare the facial paradigms for
DSP3S. In this study, it has been demonstrated that when designing
the P300 speller, the intensification pattern is important and should
be taken into consideration. Summarizing the present work, the FF
paradigm is most preferred in terms of satisfaction. The FsF
paradigm is associated with the highest workload according to the
NASA-TLX scores; it suggests that participants perceive this task
as requiring more mental and cognitive effort. On the other hand,
the FF paradigm is associated with the least workload; hence, it
may be concluded that participants find it easier and less mentally
demanding, possibly due to the familiarity and personal nature of
family members’ faces. However, considering the effectiveness
dimension, no significant difference is observed across three
paradigms concerning both classification accuracy and AD
waveform. This suggests that, in terms of effectiveness, the

Table 5
Comparative analysis between existing P300 speller paradigm and proposed facial paradigm

S. no. Paradigm Ref Subjects Trial Classifier % Acc

1 RC [25] 2 5 SWLDA 74.5
2 RC [22] 24 5 CNN 59.44
3 RC [24] 9 5 WE-SVM 79.2
4 RC [21] 2 5 ESVM 73.5
5 RC [23] 2 5 CNN 69
6 RC [26] 12 1 DCPM 82.17 AUC
7 RC [6] 10 3 DCNN 88.22
8 RC [6] 10 3 SAE 84.85
9 RC [20] 10 1 DS-P3SNet 85.85
10 Familiar face [8] 12 2 BLDA 75.6
11 Green familiar face [8] 12 2 BLDA 86.1
12 Famous face [27] 10 2 BLDA 80
13 Self-face [27] 10 2 BLDA 85.3
14 SF This work 4 1 MF-XGBoost 79.12
15 FsF This work 4 1 MF-XGBoost 80.45
16 FF This work 4 1 MF-XGBoost 81.12

Figure 9
Satisfaction index for each of three paradigms. Ranks 1, 2, and 3
were transformed into positive or negative values, controllable,
comfortable, and favorite dimensions received positive ratings.
Complex, stressful, and tiring aspects were given negative rating
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cognitive and neural processes involved in processing these faces
might be more similar than different. It is likely that with a larger
sample size in the current study, the FF paradigm could have
demonstrated statistical significance across all usability
dimensions as the most appropriate intensification pattern. Finally,
it will be interesting in future studies to investigate the proposed
approach with a larger database. Also, in future work, we would
compare morphological filtering-based classification with other
state-of-the-art classifications.
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Appendix

P300 speller:The P300 speller is a brain–computer interface system designed to enable communication for individuals with severemotor
disabilities. It relies on the P300 event-related potential, a distinctive brainwave that occurs approximately 300 milliseconds after a person
recognizes a relevant stimulus. By presenting a matrix of characters or symbols on a computer screen and analyzing the user’s brain responses
to focus on specific items, the P300 speller allows individuals to spell out words or convey messages using their brain activity.

Devanagari script: The ancient Indian script known as Devanagari is mostly used to write Sanskrit, Hindi, Marathi, and a few other
Indian languages. In a Devanagari script-based P300 speller, the character matrix consists of Devanagari script characters and the user can
choose the target characters by concentrating on the target character during the spelling process. The design of the Devanagari script-based
P300 speller is mainly driven by the idea of providing a communication facility in the native language to patients suffering frommotor neuron
diseases.

Family face paradigm: Family face paradigm is a newer approach in P300 speller design. In the family face paradigm, family member
faces are used as visual stimuli in the traditional row–column matrix speller design. During the spelling process, as the row and column of the
matrix are flashed, the characters in the flashing rows and columns are covered with the faces of the family members. The objective of this
paradigm is to introduce emotional connection and familiarity to the design of the display paradigm.

Smiley face paradigm: In this paradigm, the conventional character matrix incorporates visual stimuli represented by yellow smiley
faces. Throughout the spelling process, as the row and column of the matrix are flashed, they are overlaid with yellow smiley faces. The
objective of this paradigm is to introduce positivity and cheerful emotion to the design of the display paradigm.

Famous face paradigm: In the famous face paradigm, the characters in the flashing row and column are covered with images of famous
personalities during the P300 spelling operation. This design choice adds a sense of familiarity to the conventional row–column matrix to
improve the user experience during the spelling process.
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