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Abstract: Theoretical approximation ideas served as the driving force behind the research. one can see that the shape parameter’s behavior is driven by
the kind of problem and the analytical standards that are applied. the primary issue here is not just how it impacts the interpolant's accuracy but also how
quickly it converges, or how quickly the error reduces as the number of data nodes rises. Hence, this article considers two globally supported and
positive radial kernels and three different patterns of data point locations on the same computational domain. The research specifically studied the effects
of the shape parameter and the type of data points locations on the accurate performance of an Hermite-based symmetric approach. The
two-dimensional Helmholtz equation and the two-dimensional Poisson equation were used as test functions. The problems were first solved on
the three different types of data point locations using linear Laguerre-Gaussians and then, the linear Matermn. In each case, the graph of the error
against the shape parameter was drawn to enable easy identification of the optimal value of the shape parameter. One important result indicated
that, an improved accuracy cannot be achieved without the appropriate value of the shape parameter irrespective of the type of data site used.
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1. Introduction

Our research is motivated from the theoretical principles of
approximation. Basically, the behavior of the shape parameter is
dependent on the type of problem (de Marchi & Perracchione, 2018).
It also depends on the criteria how one is able to analyze it. The main
problem here is not just how it affects the accuracy of the interpolant,
but also its convergence rate, the rate at which the error decreases as
the number of data nodes increases. It can be found in literatures by
some researchers such Fasshauer and McCourt (2015), and Fasshauer
(2007) that, to get the optimal convergence in terms of the global
kernels on smooth target functions, small shape parameters are
necessary, because the smooth shape parameters give more global
basis. This assertion gives us a better enablement for recovering the
spectral convergence. Depending on the issue one have at hand, much
larger values of the shape parameter often result in unphysical
behavior that leads to ill-conditioning (Fasshauer & McCourt, 2015).

There is a number of modern algorithm that has recently spring up in
attempt to absolutely get rid of the ill-conditioning stemming from
parameterization. One of the current bests is the Radial Basis
Function-Genetic Algorithm RBF-GA algorithm, though limited to
Gaussian RBFs (Hosseini, 2018). This was a variant on the RBF-QR
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technique that Fornberg and Piret (2008) proposed. Other recent
approaches such as the Hilbert-Schmidt Singular Value
Decomposition SVD approach that was developed by Fasshauer and
McCourt (2015) can be compared to be equivalent to the RBF-QR.
However, these approach the problem from the sense of Mercer’s
theorem, which is based on eigen-function evaluations. de Marchi and
Santin (2015) studied an approach refers to as weighted SVD method,
which combines well with any radial kemel and their shape
parameters but again need a quadrature/cubature rule, and that only
settled the issue of the ill-conditioning partly. Some other interesting
algorithms such as the Contour—Pade algorithm, which considers the
radial kerel interpolating function as a monomorphic function, use
contour integration technique to overcome the pole singularity
problem (Yensiri & Skulkhu, 2017). And its recent variant, the
RBF-RA approach, almost substitutes the Pade approximation
techniques in the Contour-Pade method with a rational approximant
(Ghalichi et al., 2022).

According to Wendland (2005), smaller shape parameter limit is
very important when considering the connections of radial kernels to
interpolation functions, Fourier series, and spherical harmonics.
Considering one dimension on Chebyshev’s nodes, as the shape
parameter ¢ approaches zero, you are sure to reproduce the polynomial
interpolant. On the other hand, on a circle, as the shape parameter
approaches zero, the spherical RBFs recover the Fourier interpolant.
On a sphere, they reproduce the spherical harmonics. In two dimensional
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spaces and higher, if the nodal set is polynomial unisolvent, the radial
kernel interpolant will recover that polynomial in this limit (Zhao, 2016).

From the literature considered so far, it is carefully noticed that the
success of reproducing a function from a set of data also depends on the
type of the structure of the data sampling; poor data structure/sampling
may lead to a poor recovery form (Zhao, 2016). It was also observed that
the type of kernel used and the shape parameter play a very important
role for optimal recovery (Krowiak & Podgorski, 2017). In view of this,
it is of great interest that the problem of finding, characterizing, and/or
constructing optimal shape parameter values and data structures to
maximize accuracy be given due to attention. The particular kernels
and how to identify their optimal shape parameters to be used for the
interpolation and approximation problem become prominent.

Thus, in the light of the advantages of the globally supported radial
bases methods, in particular Hermite-based symmetric approach for
recovery of functions from scattered data. We studied the effects of
the shape parameter and the type data locations on the accuracy
of this approach using positive definite radial kernels for the solution
of partial differential equations. Since radial kernels are the category
of functions that have the free parameter called the shape parameter
which requires attention for their effective implementation. Their
choices have a tremendous impact on the accuracy of the results and
the numerical global stability of the method used. We showed in this
work that an Hermite-based approach which is one of the radial
kernels’ methods requires a careful choice of the shape parameter
value with a unique type of data point location for a better accuracy.
We also showed that each problem may have its own optimal shape
parameter and the type of data point location.

This numerical scheme has so many applications ranging across
problems that involve determining the unknown values that lie in
between the known data points. It is most times used to predict the
unknown values for any geographical related data points such as noise,
rainfall, and elevation. This also has applications in image reproduction.

2. An Hermite-Based Approach for Differential
Operators

Let us contemplate on the set of scattered data
nodes x; € R?, i= 1,...,N’. Assuming that at each of these data
nodes, a function value f(x;) = f; is given. More also, at some of
these data nodes x7, j=N'+1,...,N we have known values
of the function’s derivatives given at those points denoted by
(Dj) (xj) = Df;, where D; is a differential operator which act on

the function at j" node (de Marchi & Santin, 2015; Liu & Li,
2018). We supposed here that there should be only one derivative
value at each one data node, although one can easily extend the prob-
lem to more than one derivative.

Now, we want to estimate an approximate value for the function
at any other point different from the given nodes. According to
Nengem (2023), to analyze the function by tools made available
in mathematical analysis, an interpolation series involving radial
kernels is recommended in the following form:

N! N
() = Y o€l — el + Y o[DilEllx—el)]
=1 T =N =
1)

where ¢(&||x — ¢||) represents the radial kernel function, whose values
depend on the distance from an interpolation point x to a fixed point c,
called the center. In practice, the centers often coincide with the data
nodes x;. In Equation (1) «;, B; are interpolation coefficients and

D§ denote the differential operator which is acting on the function at
x]‘-’l node. In the understanding, the function was looked upon as the func-

tion of ¢ variable (Krowiak & Podgorski, 2017; Scholkopf & Smola,
2002). In order to find the suitable interpolation coefficients, the follow-
ing interpolation conditions are enforced on the function as follows:
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In Equation (3), D refer to the same differential operator as D° but
now acting on the radial kernel as a function of the x variable. This
makes the coefficient matrix of the Equations (2) and (3) a symmetric
one, which make its assembling and solution of the problem easier
(Chen et al., 2022). This system can be rewritten in a more conven-
ient and simplified way using the matrix notation:
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a, Bandf, Df are the interpolation coefficients, function values, and
their derivatives, respectively. In order to find the values of the inter-
polation coefficients, the Equation (4) has to be solved yielding

5l =la an )13
B Apr Apr Df
The solvability of the system depends on the type of the kernel used.
In many cases, the Equation (1) has to be augmented by a polynomial

term to guarantee the invertibility of the system matrix (Fornberg,
2021; Speckbacher & Balazs, 2020). In this work, we shall use
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two radial kernels: the linear Laguerre—Gaussian and the Matern
function, which are globally supported and positive definite to inves-
tigate their suitability in Hermite-based interpolation approach and in
the solution of elliptic partial differential equation with a pretty
focused on the role of their shape parameter.

3. The Shape Parameter

Consider a given data set, X = {x; }in ,» containing N distinct
interpolation points, suppose we have an unknown function u, col-
lated at the same given points in the domain Q. Any radial kernel
interpolant i, containing a shape parameter &, can be written as
(Karageorghis & Tryfonos, 2019)

it(xj,a) :u(xj), foreachj = 1,...,N. (5)
Then, we see that there exists a lower bound which limits the maxi-
mum error of each given radial kernel interpolation presented as

%aé{‘a(x’ g) —u(x)[} > Izlggﬂﬂ(xﬁs) —u(x)|} (6)

In other words, the accuracy of a given radial kernel interpolant is
always optimal at the sampled points. Considering the shape param-
eter ¢, it can be choosing in such a way as to improve the accuracy of
the numerical result. According to Kuo (2015), if an optimal solution
of radial kernel interpolation exists in terms of shape parameter &,
then the ideal ¢ value should be located at

rgdé({‘ﬂ(& e) —u(x)|} = rgg}){(ﬂi{(xﬁs) — u(xj)|} (7)

The simplest strategy to find the optimal shape parameter is to per-
form a series of interpolation experiments with varying shape param-
eter and then to select the best one which minimizes the error
(Beezer, 2015). This strategy can be the best practice if we know
the function u that produces the data, and thus, it can calculate some
sort of error for the interpolant. Definitely, if we already know u, then
the job of looking for the interpolant may be needless. However, that
is the strategy use in the academic. But if we do not have any singular
knowledge of the function u, then it is extremely difficult to say what
optimal means. One criterion to do this is based on the trade-off prin-
ciple, that is, based on the fact that for small values of ¢, the error
improves while the condition number grows. The optimal value is
then defined to be the smallest ¢ for which MATLAB did not issue
a near-singular warning (Aggarwal et al., 2021).

In many instances, selection of an optimal shape parameter via
trial by error will end up being a rather tedious process. However, this
is presently the method or approach that is used by most researchers
(Karageorghis & Tryfonos, 2019). Since all values of the shape
parameter contributes to the accuracy of the approximation,
Ghalichi et al. (2022) proposed an algorithm for choosing a good
shape parameter value by minimizing a cost function which
imitates the error between the radial kernel interpolant and the
unknown function.

In this work, we use the brute force method to compute a
suitable estimate for the shape parameter ¢. The brute force method
consists of performing various interpolation experiments with differ-
ent values of the shape parameter e. The best value of the shape
parameter is the one that minimizes the interpolation error, both root
mean square and maximum error (Esmaeilbeigi et al., 2018). This is
achieved by plotting the interpolation error against the shape param-
eter. The minimum point on the curve gives the optimal value of the
shape parameter . We shall plot both RMS-error and max-error
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against different values of the shape parameter and select the value
at the minimum point to be an estimate use for the experiment. The
experiments will be carried out on the computational domain
Q =0,1] x [0,1] with three different patterns of data point loca-
tions, namely uniformly spaced data points, scattered data points
(Halton sequence), and the Chebyshev’s data points to check the
most suitable. The radial kernels used in this set of experiments
are the linear Matern and the linear Laguerre Gaussian.

The radial kernels used and their derivatives up to second order
of the data are given below. The choice of radial kernels to use for the
experiment was arbitrary.

Linear Laguerre—Gaussians

o(r) = e (2 — (er)?), where r = ||x|| = 2

X+ y

0 ) )
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X
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4. Numerical Studies

The investigation is carried out using the two-dimensional
Helmholtz equation as a test function taken from Thounthong
et al. (2018).

Uy + Uy + ku(x7y) = f(x7}’)7 (x7y) € [0, 1}2 (®)

with k = —5, and the function f(x, y) is specified, so that the exact
solution is

u(x,y) = e?(x* = x)*(y* - y)? ©)

And the two-dimensional Poisson equation (Cavoretto & de Rossi,
2010) is
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V2u + xu, + yu, — (4% + y*)u = f(x,y), (10)

(x,7) € [a, b

where f(x, y) and the Dirichlet boundary conditions are computed
from the exact solution, which is given by:

u(x,y) = exp(x? 4 0.5y%) (11)

The results are obtained using the Hermite-based symmetric approach.
The radial kernels used for this implementation are the linear Matern and
the linear Laguerre—Gaussians with the optimal shape parameter chosen
from the set of experiments using brute force method. The root mean
square error and maximum error are calculated for the corresponding
values of ¢. Results are reported in the Tables and Figures and below
for N = 81. The results are presented for uniformly spaced, scattered
and Chebyshev data points. Max-error is the maximum absolute squared
deviation of the data set from the approximation solution, and the RMS-
error is the root mean squared norm of the difference between the data
and the approximation divided by the number of elements.

5. Discussion

Figure 1 shows the pictorial representation of the three different
types of data points locations used for the experiment. Figure 1(a) is
the uniformly spaced data sites, Figure 1(b) is the randomly scattered
data site, and Figure 1(c) is the Chebyshev’s type of data site.
Tables 1 and 2 show results of the interpolation errors at two different
shape parameter values with the least errors using linear Laguerre—
Gaussians and linear Matern, respectively. The linear Laguerre—
Gaussians gave the most accurate result on uniformly spaced data
points at the shape parameter value ¢ = 2 as seen in Table 1, while
the linear Matern produced the best accuracy on scattered data points
at the shape parameter value ¢ = 4 as seen in Table 2. Although linear
Laguerre—Gaussians produced the overall best accurate result for test
problem 1, and that was achieved using the uniformly spaced data points,
we can see that the linear Laguerre—Gaussians falls short in terms of accu-
racy on scattered data points. Figures 2 and 3 show the errors of the inter-
polation against the shape parameter using linear Laguerre—Gaussians
and linear Matern, respectively, for problem 1, and Figures 4 and 5 show
the errors of the interpolation against the shape parameter using linear
Laguerre-Gaussians and linear Matern, respectively, for problem 2.
The red line corresponds to the root-mean-square error, and the blue line
represents the maximum error. In Figure 2, the optimal shape parameter is
& = 2 using uniformly spaced and Chebyshev’s data points and ¢ = 7.5
using scattered data points. In Figure 2, the optimal shape parameter is
& =2 using uniformly spaced and Chebyshev’s data points and
& = 7.5 using scattered data points, while, in Figure 3, the optimal shape
parameter occurred at different points: & = 4 using uniformly spaced data
points, ¢ = 6.7 using scattered data points, and ¢ = 7 Chebyshev’s data
point. We found here that varying shape parameter did produce a better
interpolation than using a constant shape parameter.

Similarly, Tables 3 and 4 show results of the interpolation errors
at two different shape parameter values with the least errors using
linear Laguerre—Gaussians and linear Matern, respectively, using
three data structures. The linear Laguerre—Gaussians produced the
most accurate result on uniformly spaced data points at the shape
parameter value ¢ = 0.5 as seen in Table 3, while the linear Matern
performed almost the same on uniformly spaced and Chebyshev’s

Figure 1
Types of data points locations used: (a) equally spaced data
points, (b) scattered data points, and (c) the Chebyshev’s data
points
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Table 1
Numerical results for example problem 1 using linear
Laguerre—Gaussians on the three types of data points

Mesh RBF e RMS_Error Max_Error

Solution on a domain containing equally spaced data points

81 LL Gaussians 2  6.297425 x 10~ 2.787099 x 10~°

81 LL Gaussians 5  3.378711 x 107> 1.038160 x 10~*

Solution on a domain containing scattered data points

81 LL Gaussians 2  1.433326 x 107* 1.977825 x 103

81 LL Gaussians 5  7.082516 x 107> 5.031587 x 10~*

Solution on a domain containing Chebyshev’s type of data
points

81 LL Gaussians 2  8.514199 x 10~°

81 LL Gaussians 4.5 7.275635 x 107>

4201340 x 105
2.617018 x 10~*
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Figure 2
Errors for example problem with 81 (a) uniformly spaced, (b)
randomly distributed, and (c) Chebyshev’s data points using
linear Laguerre—Gaussians
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Table 2

Numerical results for example problem 1 using linear Matern on
the three types of data points

Figure 3
Errors for example problem 1 with 81 (a) uniformly spaced (b)
randomly distributed and (c) Chebyshev’s data points using
linear Matern
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Table 3
Numerical results for example problem 2 using linear Laguerre—
Gaussians on the three types of data points

Mesh  RBF £ RMS_Error

Solution on a domain containing equally spaced data points
81 L Matern 4 9.967807 x 107> 3.071871 x 10~*
81 L Matern 7 1.801439 x 10~ 6.230061 x 107
Solution on a domain containing scattered data points

81 L Matern 4 7.406272 x 107> 4.106071 x 10~*

Max_Error

81 L Matern 6.7 9.337209 x 10> 3.444061 x 10~*

Solution on a domain containing Chebyshev’s type of data
points

81 L Matern 4 1.662238 x 107*  5.040811 x 10™*

81 L Matern 7 1.355145 x 107*  4.751625 x 1074

Mesh RBF e RMS_Error Max_Error

Solution on a domain containing equally spaced data points

81 LL Gaussians 0.5 9.972636 x 1078 4.296176 x 1078

81 LL Gaussians 1 1.764559 x 1078 2.543928 x 10~/

Solution on a domain containing scattered data points

81 LL Gaussians 1  1.443721 x 1077 1.957225 x 10~

81 LL Gaussians 2  4.152576 x 1078 2.133547 x 1077

Solution on a domain containing Chebyshev’s type of data
points

81 LL Gaussians

81 LL Gaussians 1

5.281310 x 1078
1.013018 x 10~

0.5 7.312112 x 1078
3.125605 x 1078
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Figure 4
Errors for example problem with 81 (a) uniformly spaced, (b)
randomly distributed, and (c) Chebyshev’s data points using
linear Laguerre—Gaussians
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data points at the shape parameter value ¢ = 0.5 and 1, respectively,
as seen in Table 4. The linear Laguerre-Gaussians produced the
overall best accurate result for test problem 2, and that was achieved

Table 4
Numerical results for example problem 2 using linear Matern on
the three types of data points

Mesh RBF e RMS_Error

Solution on a domain containing equally spaced data points
81 L Matern 0.5  1.465020 x 1077 4.484514 x 1077
81 L Matern 1 3.077793 x 1077 1.745657 x 10~°
Solution on a domain containing scattered data points

81 L Matern 2 3221943 x 1077 1.441125 x 10°°

Max_Error

81 L Matern 4 9.095941 x 1077 5.959408 x 10~¢

Solution on a domain containing Chebyshev’s type of data
points

81 L Matern 1 1.282886 x 1077 9.896830 x 1077

81 L Matern 4 1.108630 x 107 6.647000 x 10~°

Figure 5
Errors for example problem with 81 (a) uniformly spaced, (b)
randomly distributed, and (c) Chebyshev’s data points using
linear Matern
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using the uniformly spaced data points. In Figures 4 and 5, the
optimal shape parameter is ¢ = 0.5 using uniformly spaced and
Chebyshev’s data points and ¢ = 1 using scattered data points.
We also found here that varying shape parameter did produce a better
interpolation than using a constant shape parameter.

There were no clear determining factors on where and/or at what
shape parameter value will the best interpolation occur for a
particular test problem, but one is likely to get the optimal value
of & around the origin, since the errors seems to converged for the
values of ¢ around the origin.

6. Conclusions

It is concluded that an improved accuracy cannot be achieved
without the appropriate value of the shape parameter irrespective of
the type of data site used. It is also concluded that the type of data
points location used is also very important to achieving the best result
even at the optimal shape parameter value. Thus, to achieve the best
result, the shape parameter and the unique type of data point locations
to use for the particular problem should be given due to attention.
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Some of the challenges encountered in the process of
implementation were how to find the optimal shape parameter and
ill-conditioning of the interpolation matrix. The optimal shape
parameter though was achieved by drawing the graph of the shape
parameter against error. The value with the minimal error was
chosen as the optimal value. The ill-conditioning problem was
checked using GMRES, a preconditioning technique for a better
and improved accuracy.
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