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Automatic Modulation Recognition
Based on a New Deep K-SVD
Denoising Algorithm

Yanhe Li1 , Xingxing He1,* and Chun Zhou1

1School of Mathematics, Southwest Jiaotong University, China

Abstract: Automatic modulation recognition (AMR) has a wide range of applications in wireless communication. To solve the problem that the
previous methods convert signal modulation recognition into image recognition, leading to increased time costs and information loss, an AMR
approach consisting of the improved deep singular value decomposition (K-SVD) denoising algorithm is suggested. First, the effectiveness of
the model for random sine wave denoising is demonstrated by simulation. Second, the original I/Q signals are fed into the modified deep K-
SVD model for denoising, skipping the complicated image processing steps. Finally, the noise-reduced signals are input into a multi-channel
convolutional long short-term neural network to complete the modulation recognition. To solve the slow convergence problem of iterative
shrinkage thresholding algorithms in sparse coding, the fast iterative shrinkage thresholding algorithm is adopted to improve the computational
efficiency and obtain a better denoising effect. The experiments show that the improved model has an average recognition accuracy of 91.26%
at different signal-to-noise ratio (SNRs) from −2 dB to 18 dB, which is better than the state-of-the-art modulation recognition models.
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1. Introduction

Automatic modulation recognition (AMR) is a technique for
determining the kind of modulation of the received signal at the
receiver end of a communication system in the presence of
unknown signal parameters and noisy interference with the
modulation information. AMR has recently become a key step
between signal detection and signal demodulation due to the
advancement of communication technology, the increasing
diversity and complexity of electromagnetic spaces, and signal
modulation types. It is also one of the main research topics in the
area of wireless communication (He et al., 2023; Jiao et al., 2022).

AMR can be generally grouped into two categories: likelihood-
based (LB) methods and feature-based (FB) methods (Han et al.,
2004; Hong & Ho, 2000; Lunden & Koivunen, 2007). In the LB
method, AMR first formulates several hypotheses for various
modulation types and calculates the likelihood function of the
received signal with various assumptions. Next, it compares the
value of the likelihood function with a pre-set threshold to obtain
the potential classes of the signals. The FB approach recognizes
patterns by extracting artificial features and a trained classification
model. However, the former limits its application to practical
problems due to its high computational complexity and reliance
on a priori knowledge, and the latter suffers from the difficulty
and relatively time-consuming nature of some feature extraction.

Recently, deep learning (DL) has attracted much attention as a
result of its notable success in different applications, including

speech recognition, computer vision, and natural language
processing. These fields once relied heavily on feature extraction,
and DL has significantly improved the capacity to do so. This trend
also widely applied in radio signal and communication in recent
years. For instance, in previous studies like Li et al. (2018); Peng
et al. (2019); and Zhang et al. (2019), the raw radio signal was first
converted into images, and then used as inputs to the deep neural
network by some data preprocess. However, these image-based
approaches also have some weaknesses. For example, it takes time
to convert all input signals into time-frequency distribution images,
it may result in the loss of amplitude information compared to the
raw data, and it does not fully utilize the complementarity and
synergy between the various signal channels.

In this article, a signal modulation recognition method based on
deep singular value decomposition (K-SVD) is proposed to address
the above problem. Firstly, the deep SVD (K-SVD) model is used to
complete the noise reduction of the original signal, skipping the
complex image processing steps. The noise-reduced signal is then
fed into multi-channel convolutional long short-term deep neural
network (MCLDNN), which integrates the different features of the
noise-reduced signal to a large extent. The classification results
are finally obtained. In addition, an accelerated version of the
iterative shrinkage thresholding algorithm (ISTA) called the fast
iterative shrinkage thresholding algorithm (FISTA) is used to
improve computational efficiency while obtaining a better sparse
representation to address the issue of slow convergence of the
ISTA in solving the sparse coding process.

This article is structured as follows: Section 2 recalls the related
work of DL applications to AMR. Section 3 describes the deep
K-SVD algorithm and the MCLDNN. The architecture of the
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proposed model and loss function are discussed in Section 4.
Dataset and experimental results are discussed in Section 5.
Finally, Section 6 concludes the article.

2. Literature Review

DL applications for AMR can be grouped into two categories,
depending on the type of input data used (He et al., 2023; Zhang
et al., 2022): one is based on the one-dimensional features of the
signal (I/Q sequences, phase spectrum, etc.), which is mainly
modulated by extracting features directly from one-dimensional
signals using convolutional neural network (CNN) and other
recognition (Rajendran et al., 2018; Xu et al., 2020; West & O’Shea,
2017); the second is based on two-dimensional feature maps of
signals (constellation maps, time-frequency maps, etc.), which focus
on converting signal recognition into the studied image recognition
problem (Li et al., 2018; Peng et al., 2019; Zhang et al., 2019).

For the 1D signal FB approach, Rajendran et al. (2018)
attempted to train a long short-term memory network (LSTM) by
applying the time-domain amplitude and phase information of the
received data. West and O’Shea (2017) demonstrated that LSTM
excels at modeling time-series data, while CNN is skilled at
extracting spatial features. In AMR, combining the two can
produce outstanding results, but it neglects the correlation
between different features. Xu et al. (2020) developed another
multi-channel learning framework based on CNN-LSTM
networks, which exploits the complementarity and synergy of
signals for feature extraction and obtains better recognition accuracy.

For the signal-based 2D image conversion, Zhang et al. (2019)
suggested an upgraded CNN-AMC network by combining images
and handcrafted features to extract more complex characteristics,
which can enhance performance in comparison to prior research. Li
et al. (2018) built a CNN-based radio signal recognition model to
obtain the spectrum image features of the received data and
introduced a sparse filtering criterion to enhance the recognition
efficiency. When representing complicated signals as images with
grid-like topology, Peng et al. (2019) looked into a number of
representation techniques and used two CNN networks (AlexNet and
GoogLeNet) to extract features from the generated images for AMR.

In this article, to solve the problem that the image-based
conversion methods convert signal modulation recognition into
image recognition, leading to increased time costs and information
loss, an end-to-end AMR model consisting of the improved deep
K-SVD denoising algorithm is suggested.

3. Basic Theory

3.1. K-SVD algorithm

K-SVD is an overcomplete dictionary design algorithm based on
sparse representation: given a set of training data, find the best
representation dictionary for each sample under the sparsity requirement
(Aharon et al., 2006; Elad & Aharon, 2006). There are two basic steps:
sparse coding and dictionary updating (Elad & Aharon, 2006).

3.1.1. Sparse coding
The modulation signal x is represented as a small block of data

of size
ffiffiffi
p

p � ffiffiffi
p

p
, arranged in dictionary order into a vector of col-

umns with the length p. The sparse representation model is based
on the assumption that x is a linear combination of s � p columns
drawn from a chosen dictionary D 2 Rp�m, i.e., x ¼ Dα, where
α 2 Rm is a sparse vector containing s non-zero elements. The noisy
result y is obtained by adding to x a zero-mean GaussianWhite Noise

with a standard deviation of σ. The sparse code α̂ for y can be yielded
by resolving the optimized function:

α̂ ¼ argmin
α

λjjαjj1 þ
1
2
jjDα� yjj22 (1)

where λ is the regularization factor.
Consider the data X of size

ffiffiffiffi
N

p � ffiffiffiffi
N

p
and its noisy data Ywith

the objective equation:

min
αk;X

µ

2
jjX � Y jj22 þ

X
k

ðλkjjαkjj0 þ
1
2
jjDαk � FkXjj22Þ (2)

where µ and λ are the regularization parameters, xk ¼ FkX, and
Fk 2 Rp�N denotes the process that splits X into small patches xk.

Assuming that the dictionary D has been defined, Equation (2)
involves two types of unknowns: the output X and the sparse
representation αk for each position.

Elad andAharon (2006) proposed the block coordinate descent that
begins by initializingX ¼ Y and then searches the optimal α̂k for every
position k, rather than solving both problems simultaneously. As a result,
decoupling the task into numerous smaller pursuit forms becomes:

α̂k ¼ argmin
αk

λkjjαkjj0 þ
1
2
jjDαk � xkjj22 (3)

3.1.2. Dictionary updating
Assume that the sparse representation of all patches is α̂kf gk.

Then fix those and turn to update X by substituting α̂kf gk for all
instances of αk in Equation (2) and ignoring the constant term to yield:

X̂ ¼ argmin
X

µ

2
jjX � Y jj22 þ

1
2

X
k

jjDα̂k � FkXjj22 (4)

This is a quadratic term that has a closed-form solution:

X̂ ¼ ð
X
k

FT
k Fk þ µI Þ�1ðµY þ

X
k

FT
kDα̂kÞ (5)

This yields the result after the first round of denoising. In fact, these
expressions return the blocks to their initial places and average them
using a weighted form of the noisy data.

In the case where the dictionary D is unknown, the ultimate
function becomes:

X̂ ¼ min
αk;X;D

µ

2
jjX � Y jj22 þ

X
k

ðλkjjαkjj0 þ
1
2
jjDαk � FkXjj22Þ (6)

Block Coordinate Descent is utilized in this situation to determine the
dictionaryD: LetX ¼ Y and initializeD to be the overcomplete dis-
crete cosine transform (DCT) matrix. Then, cycle among an update
of D using the K-SVD and the orthogonal matching pursuit (OMP)
(Pati et al., 1993) for all the blocks. Both procedures of sparse coding
and dictionary updating are cyclical until a predetermined error cri-
terion or a number of iterations is reached.

3.2. Deep K-SVD denoising algorithm

The deep K-SVD algorithm combines the ideas of the K-SVD
denoising algorithm and DL by unfolding the K-SVD into a deep
network, which retains the essence of the original K-SVD while
having only a small number of learnable parameters (Elad &
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Aharon, 2006). In the pursuit stage, since the OMP algorithm is not
differentiable, an equivalent learnable algorithm such as ISTA (Beck
& Teboulle, 2009; Gregor, & LeCun, 2010) is considered to replace
the OMP. However, the OMP can easily be adapted to process each
block using a noise level-based stopping criterion; the equivalence of
ISTA requires the selection of the appropriate regularization
parameter λk for every block, and therefore a neural network with
a better fitting capability is considered for this task.

The complete process involves (i) splitting the data into tiny
overlapped blocks, (ii) getting the sparse representation in a
gained dictionary, and (iii) averaging the blocks to recover the
clean data by adhering to the K-SVD calculation method. The
following three parts constitute the end-to-end architecture, which
is depicted in Figure 1.

3.2.1. Patch decomposition
For a noisy signalY 2 R

ffiffiffi
N

p � ffiffiffi
N

p
with a standard deviation σ and

additive zero-mean white Gaussian noise, decompose it into many
overlapping patches ykf gk, where yk 2 R

ffiffi
p

p � ffiffi
p

p
.

3.2.2. Patch denoising
According to the computational steps of the deep K-SVD

denoising algorithm in Elad and Aharon (2006), for each patch y, a
three-layer perceptron network is utilized to learn its regularization
parameter λ.Then the sparse representation α̂ of each patch is given
by ISTA, and finally the denoising result x̂ is obtained by multiplying
D with α̂, where D is a randomly initialized DCT matrix, and the step
size c of the soft threshold function is the squared spectral parametri-
zation of D. The dictionary D, the step size c, and the regularization
parameter λ are the optimizable parameters of the network.

3.2.2.1. Sparse Coding
The aim is to determine the sparse code of a patch y 2 R

ffiffi
p

p � ffiffi
p

p

using a known dictionary D 2 RP�m, where y is represented as a col-
umnvector of length p. Equation (7) is the formulation for this objective.

α̂ ¼ argmin
α

λjjαjj1 þ
1
2
jjDα� yjj22 (7)

ISTA is an efficient method for resolving the issue and is assured to
reach the global optimum (Beck & Teboulle, 2009).

α̂tþ1 ¼ Sλ=cðα̂t �
1
c
DTðDα̂t � yÞÞ; α̂0 ¼ 0 (8)

where Sλ=c is the soft-thresholding operator and c is the square spec-
tral norm of D:

SθðV Þ½ �i ¼ signðviÞðjvij � θÞþ (9)

3.2.2.2. λ Evaluation
Along with σ, the patch y itself affects the regularization param-

eter λ. Therefore, the regularization factor λ needs to be set for each y
to obtain sparse representation with a controllable degree of error,
i.e., jjDα� yjj22 � pσ2. This function, λ ¼ fθðyÞ, is represented by
a multi-layer perceptron (MLP) network, where θ is the parameters
of the MLP. Three hidden layers make up the MLP, each of which is
made up of a fully connected linear mapping and a ReLU.

3.2.2.3. Patch Reconstruction
Reconstruct the denoised result x̂ by multiplying the dictionary

D with the sparse encoding α̂:

x̂ ¼ Dα̂ (10)

3.2.3. Patch averaging
In the last stage, the denoised patches x̂kf gk aremultipliedwith the

corresponding weights w, obtaining the overall reconstructed data X̂:

X̂ ¼
P

k F
T
k ðw � x̂kÞP
k F

T
kw

(11)

wherew 2 R
ffiffi
p

p � ffiffi
p

p
denotes the weights of a patch, and� is the

Schur product.
To conclude, the deep K-SVD network Hð�Þ is a parametrized

function of the MLP parameters θ for computing λ, the step size c in
the ISTA, the dictionary D, and the weights w for the patch averaging.
The training parameters of the model are relatively small. For instance,
the total number of parameters is pð4pþmþ 3=2Þ þ 1 ¼ 32865 for
p ¼ 64 and m ¼ 256.

3.3. The MCLDNN

MCLDNN incorporates CNNs, LSTMs, and fully connected
networks in a single structure to use complementary and
synergistic properties for feature extraction and classification of
modulated signals (Xu et al., 2020). The three separate
components are multi-channel and spatial characteristics mapping,
temporal characteristics extraction, and fully connected network.
Figure 2 shows the framework of the MCLDNN.

3.3.1. Feature extraction of I/Q signals
Three 2D convolutional layers (Conv1, Conv4, and Conv5) and

two 1D convolutional layers (Conv2, Conv3) make up part A. The
first step is to split the received I/Q signals into individual I and Q
channel data. To learn the multi-channel and individual channel
characteristics of signals, the three I/Q multi-channel, I channel,
and Q channel data are input to Conv1, Conv2, and Conv3,
respectively. To obtain the spatial correlations, they eventually
merge in Concatenate2. The multi-channel input structure
efficiently utilizes the complementary information of I, Q channel,
and I/Q multi-channel signals by capturing details about the input
representation at various scales.

3.3.2. Temporal characteristics extraction
Inspired by the network structure in Rajendran et al. (2018) for

wireless signal recognition based on distributed low-cost spectrum

Figure 1
The architecture of deep K-SVD
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sensors, part B consists of two 128-cell LSTM networks that can
efficiently process serial input and extract the temporal correlation.

3.3.3. Fully connected classification
To map the characteristics to a more separable space, two fully

connected networks with 128 neurons and scaled exponential linear
units as activation functions are added in part C to expand the model.
The dropout is also used to avoid the network overfitting. Each of the
11 neurons in the Softmax output layer corresponds to a different
modulation scheme.

4. AMR Based on Deep K-SVD

The proposed architecture is shown in Figure 3, and the network
consists of a denoising model and a classification model. The
denoiser is the deep K-SVD network, which was initially used to

denoise images with Gaussian white noise. Given that the
modulated signal in the AMR problem also carries Gaussian white
noise, the denoising process is completed using the modified deep
K-SVD. In addition, the effectiveness of the denoiser for random
sine wave denoising is demonstrated by simulation.

A deep K-SVD denoising model with modified internal details
is first used to complete the denoising process of the original signal,
skipping the complex image processing steps. The denoised signals
are then fed into the MCLDNN, which integrates the different
features of the data. Finally, classification results are obtained. In
addition, to address the problem of slow convergence of ISTA
during solving sparse coding, its accelerated version FISTA is
used to improve the computational efficiency while obtaining a
better sparse representation.

4.1. Radio signal denoising based on deep K-SVD

Algorithm 1: Fast Deep K-SVD

Input: The pairs of clean signals X 2 R2�128 and noisy
signals Y 2 R2�128.
Output: The denoised signals X̂.
Parameters: The MLP parameters θ for computing λ, the step size c
in the FISTA, the dictionary D and the weights w for the patch
averaging.

min
αk;X

µ

2
jjX � Y jj22 þ

X
k

ðλkjjαkjj0 þ
1
2
jjDαk � FkXjj22Þ

1 Initialization: Set X ¼ Y , D= DCT matrix.
2 while the model does not converge do
3 Split the noisy data Y 2 R2�128 into tiny overlapped patches
ykf gk 2 R1�64.

yk¼FkY

4 Use the MLP to learn the regularization parameter λ, and FISTA to
compute the sparse representation α̂k for each patch yk.

α̂k ¼ argmin
αk

λkjjαkjj0 þ
1
2
jjDαk � xkjj22

5 Reconstruct the denoised patch x̂k by multiplying the dictionary D
with the sparse encoding α̂k:

x̂k ¼ Dα̂k

6 Average the patches to obtain the overall reconstructed data X̂:

X̂ ¼
P

k F
T
k ðw � x̂kÞP
k F

T
kw

7 Back propagation and update parameters.
8 end

To address the problem that existing methods convert AMR to
image recognition, leading to increased time cost and information
loss, this article proposes a deep K-SVD denoising algorithm to
denoise radio signals without introducing complex image
processing steps. In addition, for the problem of slow convergence

Figure 2
The structure of MCLDNN

Figure 3
Automatic modulation recognition framework

based on deep K-SVD
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of ISTA for computing the sparse coding in the denoiser, FISTA
is used to improve computational efficiency. The specific
computational procedure is as follows. And Algorithm 1 describes
how the denoiser’s outputs are computed.

A certain amount of noise is added to the clean data to generate the
corresponding noisy data. For the noisy signalY 2 R2�128, it is split into
patches ykf gk of size 1� 64, and its size is changed to 8� 8, i.e.,
yk 2 R8�8. This process is similar to extracting small patches of Y using
a sliding window of size 1� 64, where the step size is 1.

Next, for each noisy patch y, its sparse representation is given
with ISTA. When solving the sparse encoding, the momentum term
can be added to each iteration of Equation (8) to accelerate the
convergence, i.e., the FISTA (Beck & Teboulle, 2009):

βtþ1 ¼ α̂t þ
Tt � 1
Ttþ1

ðα̂t � α̂t�1Þ; β1 ¼ α̂0 ¼ 0 (12)

α̂tþ1 ¼ Sλ=cðβtþ1 �
1
c
DTðDβtþ1 � yÞÞ: (13)

where Ttþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
1þ4T2

t

p
2 and t1 ¼ 1.

The equation to be optimized is (7), for which the regularization
coefficient λ is learned with a triple-layer perceptron to generate a
sparse representation of y under the control of error. After obtaining
the sparse representation α̂ of the patch y, it is multiplied with a pre-
defined D to yield the denoising results x̂ for each patch.

For each denoised x̂kf gk, the original signal size is restored by
patch averaging. Specifically, the denoised patches are multiplied
with the corresponding coefficients w and then placed in positions
corresponding to the original signal. Later, the denoised version X̂
of the noisy signal Y is obtained.

4.2. Identification of denoised signals based on
MCLDNN

To better classify the modulated signals, the multi-channel
convolutional LSTM network is taken as the classifier. In
previous work, only CNN or LSTM is employed for feature
extraction. However, CNN is not skilled in extracting temporal
information in serial data, and LSTM ignores the spatial features
of the signal. Although O’Shea et al. (2016) built a CNN and
LSTM model (convolutional long short-term neural network,
CLDNN), it only utilized the data representation of I/Q channels
and ignored the interactions between different features.

MCLDNN integrates CNN, LSTM in a single structure, and
exploits the synergy and complementarity among them to extract and
classify temporal and spatial features. MCLDNN first separates the I/
Q multi-channel signals into individual I and Q channel, and then
inputs them to CNN separately to learn the multi and single-channel
features. The multi-channel structure extracts the input presentation
features at various scales, exploiting the complementary data of I, Q
channels and I/Q multi-channel. The outputs are then concatenated
and fed into LSTMs with 128 cells, which is designed to derive the
temporal correlation of the signals while efficiently processing the
sequential data. Finally, the results of LSTMs are fed into a fully
connected network for classification.

Cross entropy is taken as the loss function to calculate the
difference between the true and predicted labels of the classifier, and
the overall loss is the sum of the losses of the denoiser and classifier.

L ¼ Lr þ Lc (14)

Lr ¼
1
2N

X
2
i¼1

X
N
j¼1

Hðx̂Þi;j � xi;j

h i
2

(15)

Lc ¼ �
X

K
k¼1

pk ln p̂k (16)

where Hð�Þ represents the denoiser, x is the original data,Hðx̂Þ
is the denoised result, and the reconstruction loss Lr is the mean
square error of the true value and the denoised data. Lc represents
the cross-entropy loss, pk ¼ 1 when the label y belongs to the k-th
modulation mode, otherwise pk ¼ 0.

5. Experiments and Results

5.1. Data and implementation details

The RadioML.2016.10a adopted for the experiments is a dataset
generated by combining GNU Radio and commercially used
modulation parameters. A total of 220,000 modulated signals are
included, with SNR ranging from −20 to +18 dB (in 2 dB steps),
and 11 commonly used modulations are considered: eight digital
and three analog modulations. This includes BPSK, QPSK, 8PSK,
16QAM, 64QAM, BFSK, CPFSK, and PAM4 for digital
modulation and WB-FM, AM-SSB, and AM-DSB for analog
modulation. Each signal in the dataset has 128 complex floating-
point times I/Q data, and the dataset also includes many realistic
channel defects. There are more information about the specifications
and generation details of the dataset in O’Shea and West (2016).

Split the dataset RadioML.2016.10a by a ratio of 6:2:2. Training
the deep K-SVD model by taking the clean signal and its noisy signal
with the addition of Gaussianwhite noisewith certain SNR. For data of
various modulation types with −2≤ SNR≤ 16, the denoiser and
classifier are trained simultaneously on the basis of using the pre-
trained denoising network.

The inputs are pairs of clean andnoisy signals,−2≤SNR≤ 16noisy
signals and corresponding labels. The outputs are the accuracy of signals
with SNR in [−2, 16]. Among them, the signals with SNR between [−2,
16] are used to train the classifier after denoising, and the training is
stopped when the training and validation loss tend to be smooth.

The model implementation is trained based on the PyTorch
framework and NVIDIA Quadro P2000 GPU. In particular, the
Adam optimization algorithm is utilized to optimize the model, with
the learning rate set to 0.003 and the batch size of 64. In addition, the
values reported in the experiments are the average of the results of 10
calculations of the model under the optimal parameter configuration.

5.2. Evaluation indicators and benchmark models

Themetric uses the top 1 accuracy to determine the performance
of the suggested framework. In addition, to further investigate what
limits the recognition accuracy of radio signals with high SNRs, the
confusion matrixes are utilized to show the intuitive classification
effects of various modulation methods.

The denoiser using FISTA and the original denoiser are denoted as
FDK-SVD (fast deep K-SVD) and DK-SVD (deep K-SVD),
respectively. FDK-SVD and DK-SVD are compared with LSTM
(Rajendran et al., 2018), CLDNN (West & O’Shea, 2017), CNN
(O’Shea et al., 2016), and denoising auto-encoder (DAE) (Ke &
Vikalo, 2022). Among them, in LSTM, Rajendran et al. (2018)
proposed a new LSTM-based DL method combining time-domain
amplitude and phase samples, and it achieved the best classification
results on the benchmark dataset RadioML.2016.10a. CLDNN is a
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technique that applies deep neural networks studied for speech
processing to wireless communication signals. The effectiveness of
CLDNN for the AMR is verified by reviewing deep neural networks
that may be useful for wireless communication applications and
several simulation experiments (West & O’Shea, 2017). The CNN
classification model is trained on time-domain I and Q data and
learns different matching filters for different SNRs (O’Shea et al.,
2016). To gather stable and robust features from noisy radio signals
and apply the learned features for AMR, DAE is an automatic
learning framework based on LSTM denoising self-encoders that uses
amplitude and phase data for modulation recognition (Ke &
Vikalo, 2022).

5.3. Results and discussions

To demonstrate the effectiveness of the deep K-SVD model for
radio signal denoising, randomly generated sine waves are used for
simulation experiments. Specifically, 1000 sine wave data are added
with a certain SNR of Gaussian white noise, and then the paired clean
and corresponding noisy data are fed into the denoiser. The mean

square error of the clean and the denoised data is used as the loss
function to train the deep K-SVD network. Figure 4 displays a
few results from the simulation.

The results show that the denoiser can remove the Gaussian
white noise from the noisy signals and recover the basic features
of the signals. Given its good noise removal ability, it is applied
to the denoised process in AMR.

The FDK-SVD and DK-SVD are trained in the SNR of −2 dB
to 18 dB of the signal, and since radio signals with SNR less than
−2 dB are more seriously contaminated by noise, these data are not
available for training. The recognition accuracy of the model is
illustrated in Figure 5, which compares the proposed method
with LSTM (Rajendran et al., 2018), CLDNN (West & O’Shea,
2017), CNN (O’Shea et al., 2016), and DAE (Ke & Vikalo,
2022). The performance of the proposed model is higher than
the other four algorithms when SNR ≥ −2 dB. In the range of
SNR from 0 dB to 18 dB, the average accuracy of FDK-SVD
and DK-SVD reached 92.4% and 92.15%, respectively.
In addition, Table 1 reports the classification accuracy of
FDK-SVD and other comparison models.

Figure 6 shows the confusion matrixes of FDK-SVD at SNR
of 14 dB and 16 dB. The vertical and horizontal coordinates of the
confusion matrix represent the true and predicted labels,
respectively, and the element cij of the confusion matrix indicates
the division of the i-th into the j-th modulation mode. The
confusion matrixes have two main confusion regions, one
between analog modulation and the other between higher-order
QAM. With SNR = 14 dB and SNR = 16 dB, the diagonals of
the modes used for digital modulation (the first eight modulation
modes) are relatively clear, even though it is challenging to dis-
tinguish the AM-DSB and WBFM signals. The main reason is the
silent period of the audio since the modulated signal is generated
from a real audio stream, and the last three modulation modes are
analog modulation without much attention. In addition, a degree
of confusion between QAM16 and QAM64 is noted at SNRs of
14 dB and 16 dB, as the former is a subset of the latter, and sep-
aration difficulties can arise.

Figure 4
The denoised results of random sine wave

Figure 5
Performance of the FDK-SVD and others based on

RadioML.2016.10a
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Table 2 displays the time comparison of DK-SVD and
FDK-SVD with the same denoising effect. The experiment uses
the paired clean and noisy signals for testing and records the
computation time required for ISTA and FISTA to achieve the
same denoising effect. When training the denoiser, the deep
K-SVD combined with FISTA converges faster compared to
ISTA, and the iteration time for calculating the sparse coding

accounts for a more proportion of the overall denoising time, so
the deep K-SVD model combined with FISTA has a shorter
computation time under the condition of achieving the same SNR.

Further analysis of the convergence speed of ISTA and FISTA,
Equation (1) for solving the sparse coding is denoted as:

α	 ¼ argmin
αk

FðαÞ ¼ argmin
αk

λjjαjj1 þ
1
2
jjDα� yjj22 (17)

Then for any k1, the convergence rate of FISTA is (Beck& Teboulle,
2009):

FðαkÞ � Fðα	Þ ffi Oð 1
k2
Þ (18)

where αkf gk is the value of the sequence obtained by the FISTA.
Compared to the convergence rate Oð1kÞ of ISTA, FISTA has a faster
convergence rate, so it is more computationally efficient (Beck &
Teboulle, 2009).

In conclusion, compared with other AMR methods, the
performance of the AMR method based on deep K-SVD has been
improved to some extent and has a better denoising ability for
noisy radio signals.

Table 1
Classification accuracy comparison of FDK-SVD

vs. existing models on RadioML.2016.10a

Model −2dB 0 dB 2 dB 4 dB

FDK-SVD 79.95 89.2 91.23 92.26
DK-SVD 79.99 88.28 91.05 92
DAE 79.97 86.62 89.98 91.11
LSTM 77.29 86.2 89.18 90.37
CLDNN 75.2 81.3 82.45 82.68
CNN 68.05 72.62 72.4 73.57
Model 6 dB 8 dB 10 dB 12 dB

FDK-SVD 93 92.93 92.99 92.8
DK-SVD 93.06 92.6 92.88 92.6
DAE 92.3 92.21 92.07 91.64
LSTM 91.2 90.89 90.77 90.39
CLDNN 84.18 84.21 84.32 82.02
CNN 74.32 74.61 74.59 73.51
Model 14 dB 16 dB 18 dB Overall

FDK-SVD 93.5 92.74 93.25 91.26
DK-SVD 93.55 92.3 93.13 91.04
DAE 92.4 91.34 92.75 90.21
LSTM 92.05 90.24 91.33 89.08
CLDNN 84.38 83.41 84.16 82.57
CNN 74.76 73.49 75.10 73.37

Figure 6
Confusion matrix of FDK-SVD based on RML.2016.10a when SNR= 14 dB and SNR= 16 dB

(a) SNR=14dB (b) SNR=16dB

Table 2
Computation time analysis of DK-SVD and FDK-SVD

Model Objective SNR (dB) Time (s)

DK-SVD 16.8 13
17.6 21.5

FDK-SVD 16.8 10
17.6 15
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6. Conclusion

In this article, an AMR method based on the deep K-SVD
denoising algorithm is proposed. To address the problem that
existing methods convert AMR into studied image recognition but
introduce complicated image processing and increase the
computation time, a deep K-SVD model without image
conversion is proposed to denoise the radio signal. In addition, the
FISTA is used in the denoiser to improve computational
efficiency. Experiments show that the proposed model FDK-SVD
has an average classification accuracy of 91.26% at different
SNRs from −2 dB to 18 dB, which is 1.05 to 8.69 percentage
points better than the mainstream modulation recognition models
such as LSTM and CLDNN. Finally, considering the increasingly
complex electromagnetic environment, network design under
signal mixing scenarios will be the future research direction.
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