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Abstract: Deep learning is an algorithm that works by representing data in layers of learning layers so that the representation becomes more
meaningful. “Deep” in deep learning means that deep learning begins layers of sequential representation. This study aims to provide a
reference on how to create a system and analyze the results of identifying face masks using a deep learning algorithm. Research on face
mask detection is highly important as it tackles a vital element of public health and safety. It plays a crucial role in promoting adherence
to mask-wearing guidelines, minimizing the transmission of infectious diseases, and offering valuable data for monitoring and policy
assessment. Additionally, this area of study has garnered increased significance and attention within the realm of public health and
safety, especially in light of the COVID-19 pandemic since 2020, where mask usage has been universally advised to protect individuals
from the spread of the virus. From the results of the research conducted, it is known that this model can recognize faces well, both those
who wear masks and those who do not use masks. This is evident from the average specificity and precision of 96.00% and the average
sensitivity or recall value of 93.47%. In addition, this model has also proven to be quite accurate in conducting overall classification
with an average accuracy of 94.73%.
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1. Introduction

Deep learning algorithms are computational models that draw
inspiration from the way the human brain is structured and
functions. They comprise interconnected units known as artificial
neurons, organized in layers. The reason they are referred to as
“deep” is due to their multiple layers, enabling them to acquire
hierarchical representations of information (LeCun et al., 2015).
Training a deep learning algorithm involves two primary stages.
In the first step, known as forward propagation, input data are fed
into the network, and each layer sequentially computes its output.
Each layer carries out calculations on its input and generates an
output. The computed output is then compared to the expected
output, leading to the calculation of an error value. In the
subsequent step, called backpropagation, the error value is
propagated in reverse through the layers. This process aids in
modifying the connections between neurons to reduce the error.
Through iterative adjustments based on the error, the deep learning
algorithm progressively enhances its performance (Goodfellow
et al., 2016; Mosavi et al., 2020).

Deep learning algorithms possess the capacity to autonomously
acquire and derive intricate patterns and representations from data.

They demonstrate exceptional performance in tasks like image
recognition, natural language processing, speech recognition, and
similar domains. The hierarchical representation acquired by deep
learning algorithms enables them to grasp and comprehend
complex relationships embedded within the data (Choi et al., 2020).

Deep learning algorithms have found successful applications
across diverse domains such as healthcare, finance, autonomous
vehicles, and recommendation systems. One key advantage they
possess is the ability to learn directly from raw data, eliminating
the requirement for manual feature engineering (Sarker, 2021).
However, deep learning algorithms generally necessitate a large
volume of labeled data and considerable computational resources.
However, despite these prerequisites, the capacity of deep learning
algorithms to harness big data and represent intricate relationships
has established them as a potent tool in the realm of artificial
intelligence (Alzubaidi et al., 2021).

Deep learning has witnessed substantial progress and emerged
as the cutting-edge technology in various fields, particularly in
the domain of image recognition. Deep learning models have
demonstrated exceptional performance in diverse image recognition
tasks, such as image classification, where they assign labels to
images from predefined categories. Additionally, they have achieved
remarkable success in object detection by accurately identifying and
localizing multiple objects within an image. The fields of semantic
segmentation, which involves labeling objects at the pixel level, and
instance segmentation, which focuses on segmenting individual
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object instances, have experienced significant advancements with the
aid of deep learning techniques. Moreover, deep learning models have
been applied to tasks like image generation, style transfer, image super-
resolution, and image captioning, highlighting their ability not only to
recognize visual content but also to generate and manipulate it. The
progress in image recognition can be attributed to various factors,
including the availability of extensive labeled datasets, advancements
in computing power (such asGPUs and distributed computing), and the
continuous exploration and innovation of network architectures and
training techniques (Guo et al., 2016; Khan et al., 2020a, 2022; Li,
2022; Mathew et al., 2021).

A plethora number of studies involving deep learning makes
this algorithm even more interesting for further research. The
purpose of this framework is to provide a reference on how to
create a system and analyze the results of identifying face masks
using a deep learning algorithm. Face mask detection is a
specialized implementation of computer vision andmachine learning
methods designed to determine if individuals in images or videos are
wearing face masks. This particular application has garnered
considerable significance and attention in the realm of public
health and safety, particularly during the COVID-19 pandemic
since 2020 which has caused all people to be instructed to use
masks to protect themselves from transmission of COVID disease
(Nowrin et al., 2021).

Facemask detection systems have the capability to be utilized in
diverse environments, including airports, hospitals, schools, public
spaces, and workplaces, to monitor and enforce mask-wearing
policies. They can help identify individuals who are not wearing
masks, enabling timely intervention and adherence to safety
protocols. By identifying individuals not wearing masks, appropriate
actions can be taken to promote compliance with safety guidelines
and protect public health. This contributes to public safety and
helps in contact tracing efforts. Face mask detection systems
provide valuable data for monitoring mask-wearing trends and
evaluating the effectiveness of mask-related policies. These
data can inform decision-making and improve public health
strategies. The research on face mask detection lays the
foundation for future outbreaks or health emergencies, enhancing
the readiness and response capabilities of public health systems
(Uohara et al., 2020).

In summary, the objective of this research is to create a face
mask detection system through the utilization of a deep learning
algorithm. The primary aim is to tackle the challenge of accurately
identifying individuals who are wearing face masks. The key
technical contribution of our study involves the development of a
precise and efficient system capable of automatically detecting
whether a person is wearing a face mask. By harnessing the
capabilities of convolutional neural networks (CNNs), we can
extract significant features from facial images and categorize them
into two groups: masked and unmasked. This innovative approach
allows our system to surpass the limitations of traditional methods,
resulting in improved accuracy and robustness in face mask detection.

In our approach, we employ preprocessing methods to enhance
the data for classification purposes. We train a deep learning
model using a substantial dataset consisting of labeled face images.
The model is trained to learn discriminative features that can
differentiate between masked and unmasked faces, enabling accurate
prediction in real-time scenarios.

The technical contribution of our research extends beyond the
development of the face mask detection system itself. The collected
data can be utilized for further analysis and insights into mask-
wearing trends, compliance with mask mandates, and the impact
of mask-related policies on public health. This information can

inform public health strategies and contribute to the overall
preparedness and response to infectious diseases.

2. Research Methodology

2.1. Data

The dataset utilized in this study comprises face mask
images acquired from Kaggle (2019) and Prajna (2020). This
publicly available dataset consists of facial images depicting
individuals both with and without masks. Figure 1 provides an
illustration of a sample face image with and without a mask,
which was employed in this research. A total of 1500 images
were included in the dataset, with 750 being facial images
featuring masks and the remaining 750 representing facial
images without masks. The available data are partitioned into
two separate segments, namely training data with a total of
1350 images (90%) and test data with a total of 150
images (10%).

2.2. Preprocess

To obtain optimal results, it is important to preprocess the image
data before classifying them using a deep learning algorithm model.
The preprocessing methods used include cropping, noise cleaning,
and converting the images to grayscale.

(a) Cropping: Cropping involves manually selecting a specific
region of interest within each image using image processing
software. This step helps to optimize the processing of the
dataset by focusing on the relevant parts of the images. By
cropping the images, you can remove any unwanted
background or irrelevant areas, ensuring that the model
focuses on the essential features. It also helps in achieving a
consistent image size, which is often required for deep
learning algorithms that expect inputs of the same dimensions
(Chadha et al., 2012).

(b) Noise Cleaning: Noise cleaning is performed to improve the
quality of the dataset by reducing any unwanted artifacts or
disturbances present in the images. This process involves
manually inspecting the images and removing any pixels or
regions that might negatively impact the classification
performance. Noise in images can arise from various sources,
such as sensor noise, compression artifacts, or unwanted
objects in the background. By carefully cleaning the images,

Figure 1
Face images with and without masks
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you can reduce the presence of noise and enhance the
dataset’s overall quality, leading to better classification results
(Diwakar & Kumar, 2018).

(c) Converting to Grayscale: Converting the images to grayscale
involves transforming the original color images into grayscale
representations. Grayscale images contain only shades of
gray, typically represented by a single channel, where each
pixel represents the intensity level. This conversion simplifies
the images and makes them easier to interpret, as it removes
color variations and focuses solely on the brightness or
luminance information. Additionally, converting to grayscale
reduces the computational complexity of the deep learning
algorithm, resulting in faster processing. It also reduces the
file size of the images, requiring less storage space and
making them more manageable (Saravanan, 2010).

By performing these preprocessing steps, the image data are
optimized and refined to meet the requirements of the deep
learning algorithm. Cropping focuses on relevant regions of
interest, noise cleaning improves image quality, and converting to
grayscale simplifies and reduces computational overhead. These
steps collectively contribute to improving the accuracy and
efficiency of the deep learning model when classifying the images.

2.3. Classification using deep learning

Deep learning is an artificial neural network algorithm for
identifying and categorizing input data into predetermined classes
or categories (Zhong et al., 2019). The process of deep learning
classification typically demands substantial volumes of data,
significant computational resources, and expertise in neural
network architectures and training methodologies. Nevertheless,
these algorithms have demonstrated their effectiveness as
formidable tools for addressing intricate classification challenges
across various domains. Their applications encompass image and
speech recognition, natural language processing, and predictive
analytics, among others (Sarker, 2021).

Deep learning revolves around the training of artificial neural
networks with multiple layers, aiming to learn hierarchical
representations of data. The core concept entails training these
networks to extract meaningful and abstract features from input
data autonomously, without explicit human intervention. Deep
learning models are composed of interconnected artificial neurons
organized into multiple layers. Each layer receives input from the
preceding layer and applies mathematical transformations to the
data. Through layer stacking, the network progressively acquires
more intricate and abstract representations of the input data. The
hierarchical nature of deep learning allows the network to capture
both local and global patterns in the data. Lower layers specialize
in learning simple and localized features like edges or textures,
while higher layers grasp complex and global features like object
shapes or semantic information. One significant advantage of deep
learning is its ability to automatically learn features directly from
raw data, eliminating the need for manual feature engineering
(Khan et al., 2020b; Shrestha & Mahmood, 2019). Additionally,
deep learning models are known for their scalability and
capability to handle large-scale datasets. Deep models possess a
multitude of parameters, enabling them to acquire intricate
patterns from extensive datasets. This characteristic renders them
highly effective, especially in scenarios where large labeled
datasets are accessible (Najafabadi et al., 2015).

Deep learningmodels also have the advantage of transferability.
They can learn generic representations that can be transferred to

different tasks or domains. The hierarchical representations
learned by deep models tend to capture general features that are
useful for various related tasks. This transferability enables
reusing pre-trained models or fine-tuning them on different tasks,
saving time and computational resources. Overall, deep learning
harnesses the potential of neural networks with multiple layers to
autonomously acquire hierarchical representations of data. This
unique capability empowers the models to directly extract
significant features from raw input. The remarkable triumph of
deep learning across diverse domains, including image and speech
recognition, natural language processing, and beyond, can be
attributed to this inherent ability (Shinde & Shah, 2018).

The architecture of an artificial neural network refers to how its
layers and connections are organized. Choosing the right architecture
depends on the specific problem and characteristics of the input data.
Designing the model architecture involves considering factors like
the number and size of layers, the type of activation function
used in each layer, and the optimization algorithm employed for
parameter adjustment during training (Khan et al., 2020a). In this
study, the chosen architecture for the artificial neural network is
the convolutional model as shown in Figure 2 (Mas-Pujol et al.,
2022). It comprises convolutional and down-sampling layers,
followed by one or more fully connected layers. The fully
connected layer establishes connections between each neuron in
the layer and all neurons in the preceding layer. This connectivity
enables the integration of features learned across the entire image,
enabling the identification of more comprehensive patterns. The
final fully connected layer encompasses the features required for
image classification. As a result, the output size parameter in the
last fully connected layer corresponds to the number of classes
within the target data (Mas-Pujol et al., 2022).

The training procedure consists of iterative forward propagation
and backpropagation loops. In the forward propagation step, input
data are transmitted through the network to generate predictions.
The discrepancy between the predicted output and the true label is
computed, and this error is employed to modify the connection
weights in the network during backpropagation. The objective of
the training is to reduce the error between the predicted and
correct labels throughout the iterations, or epochs, of the training
process. Setting the learning rate, which determines the magnitude
of weight updates, is a crucial parameter to consider during
training (Montesinos López et al., 2022). The network structure
utilized in this research is outlined as:

• The initial parameter in the convolutional layer determines the
dimensions of the filter used to scan the images. The following
parameter signifies the number of filters, representing
the neurons that connect to specific regions of the input. This

Figure 2
Deep learning algorithm architecture
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parameter directly influences the number of feature maps
produced.

• The parameter setup included the incorporation of Batch
normalization layers in the network architecture. These layers
play a role in normalizing the activations and gradients flowing
through the network, leading to smoother training during the
optimization process. The batch normalization layerswere strategically
positioned between convolutional layers and nonlinearities.
Additionally, ReLU layers were implemented to expedite
network training and reduce sensitivity to network initialization.

• Following the application of convolutional layers with activation
functions, it is sometimes beneficial to incorporate aMax Pooling
Layer. This layer performs a down-sampling operation to reduce
the spatial dimensions of the feature map and remove redundant
spatial information. By employing down-sampling, deeper
convolutional layers can accommodate a larger number of filters
without significantly increasing computation per layer. One
common technique for down-sampling is through the use of
max pooling. In the max pooling layer, rectangular regions of
the inputs are defined by the first parameter, and the layer
retrieves the maximum values from these regions.

• Following the convolutional and down-sampling layers, one or
more fully connected layers are utilized. In a fully connected
layer, every neuron in the current layer is connected to all
neurons in the previous layer. This enables the integration of
features extracted by preceding layers from the entire image to
identify important patterns. The last fully connected layer
consolidates these features for image classification. Hence, the
“Output Size” parameter of the final fully connected layer aligns
with the number of classes in the target data.

• The Softmax Layer utilizes the SoftMax activation function to
normalize the output of the fully connected layer. This
normalization process ensures that the resulting output from the
SoftMax layer consists of positive numbers that sum up to one.
These normalized values can be interpreted as probabilities for
classification and are subsequently utilized by the following
classification layer. Therefore, it is advisable to include a
SoftMax layer after the final fully connected layer.

• The classification layer, situated at the network’s conclusion,
employs the probabilities derived from the SoftMax activation
function for each input. These probabilities are utilized to assign
the input to a specific class from a set of mutually exclusive
options and compute the associated loss.

Furthermore, as an optimization algorithm for training, we
opted to use stochastic gradient descent with momentum (SGDM).
The standard stochastic gradient descent algorithm sometimes
displays oscillation as it seeks the optimal solution along the
steepest descent path. To address this oscillation, integrating a
momentum term into the parameter update process can be an
effective strategy (Murphy, 2012). The SGDM update is written.

θ‘þ1 ¼ θ‘ � αrE θ‘ð Þ þ γ θ‘ � θ‘�1ð Þ

where γ determines the contribution of the previous gradient step to
the current iteration. After the training process is complete, the model
is evaluated on a separate validation dataset to measure the accuracy
and performance of the system that has been created.

3. Result and Discussion

The research findings are presented by showcasing the computed
metrics of precision, specificity, recall/sensitivity, and accuracy. These
values are derived by comparing the predicted results with the actual

dataset, as visualized in the confusion matrix illustrated in Figure 3
(Athoillah et al., 2022). The calculations are obtained through
system testing using hold-out validation. This validation method
involves randomly selecting a portion of the samples and reserving
them as a validation set, while utilizing the remaining samples for
training purposes. This process is repeated 10 times, and the overall
evaluation of the model’s performance is based on the average
performance across all validation sets used in each iteration
(Athoillah et al., 2022; Xu & Goodacre, 2018).

Overall, the experimental outcomes demonstrate that the deep
learning classification model performs exceptionally well across all
four metrics of sensitivity, specificity, precision, and accuracy. The
subsequent section provides a comprehensive breakdown of the
results obtained from each individual experiment.

Table 1 describes the performance results of a system trained to
detect the use of face masks based on some input data. The model
was tested in ten different experiments and the table shows the
results obtained for each experiment. In the table, there are several
values that stand out, including the following:

➢ Sensitivity/Recall: This metric reflects the system’s ability to
correctly detect positive cases, which refers to situations where
face masks are being worn. The values range from 88.00% to
97.33%, with an average sensitivity/recall of 93.47%. This
indicates that, on average, the system can accurately identify
approximately 93.47% of the cases where face masks are
being used.

➢ Specificity: This metric measures the system’s capacity to
correctly identify negative cases, which corresponds to
instances where face masks are not being worn. The values
range from 89.33% to 100.00%, with an average specificity of
96.00%. This suggests that, on average, the system can

Figure 3
Confusion matrix

Table 1
Overall experiment results (%)

Trial Sensitivity/Recall Specificity Precision Accuration

1 96,00 100,00 100,00 98,00
2 96,00 98,67 98,63 97,33
3 93,33 98,67 98,59 96,00
4 93,33 94,67 94,59 94,00
5 90,67 97,33 97,14 94,00
6 96,00 96,00 96,00 96,00
7 90,67 90,67 90,67 90,67
8 93,33 97,33 97,22 95,33
9 88,00 97,33 97,06 92,67
10 97,33 89,33 90,12 93,33
Avg 93,47 96,00 96,00 94,73
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accurately classify around 96.00% of the cases where face masks
are not present.

➢ Precision: This metric indicates the system’s ability to avoid false
positives, representing the proportion of correctly identified
positive cases. The values range from 90.12% to 100.00%,
with an average precision of 96.00%. This suggests that, on
average, the system correctly identifies around 96.00% of the
cases it classifies as positive, minimizing the occurrence of
false positives.

➢ Accuracy: This metric measures the overall correctness of the
system’s predictions, considering both positive and negative
cases. The values range from 90.67% to 98.00%, with an
average accuracy of 94.73%. This implies that, on average,
the system can correctly identify approximately 94.73% of all
cases, regardless of whether face masks are being worn or not.

In summary, the results demonstrate that the system performs well in
detecting the use of face masks, with high sensitivity, specificity,
precision, and accuracy scores, indicating its effectiveness in
distinguishing between positive (masked) and negative (unmasked)
cases.

In addition to the average values, there are notable observations
to be made from the table:

➢ Experiment 1 achieved the highest scores in terms of specificity
and precision, both reaching 100%. This indicates that in this
particular experiment, the model excelled in avoiding false
positives and accurately identifying positive cases.

➢ Experiment 5 obtained the second-highest sensitivity in the table
at 90.67%, while maintaining a reasonably high specificity and
precision. This suggests that in certain cases, the model may
produce false negatives, but overall, it demonstrates good
performance in correctly identifying both positive and negative
cases.

➢ Experiment 7 shows consistent values across all evaluation
metrics, with 90.67% for sensitivity, specificity, precision, and
accuracy. This implies that in this specific experiment, the
model struggles to effectively distinguish between positive
and negative cases, resulting in a relatively weaker overall
performance compared to other experiments.

➢ Experiment 10 exhibits the highest sensitivity in the table, with a
value of 97.33%, but relatively lower specificity and precision.
This indicates that while the model may produce false
positives in some instances, it generally performs well in
accurately identifying positive cases.

Overall, these observations highlight the varying performance of
the model across different experiments, with some experiments
showcasing exceptional performance in specific metrics while
others demonstrate potential limitations or trade-offs in terms of
false positives and false negatives.

4. Conclusion

This research aimed to create a face mask detection system by
employing a deep learning algorithm. The system underwent training
and testing on a dataset comprising both masked and unmasked face
images. Preprocessing techniques, such as cropping, noise removal,
and converting images to grayscale, were implemented to enhance
the data for classification purposes. The deep learning model
utilized a CNN architecture, which facilitated the learning of
hierarchical representations from the input data. To optimize the
model, training was performed using the SGDM optimization
algorithm.

The results obtained from the face mask detection system were
highly encouraging. The system achieved an overall accuracy of
95%, with a precision of 92%, specificity of 96%, and recall/
sensitivity of 94%. These metrics indicate that the system is
proficient at identifying individuals wearing face masks correctly.
By accurately detecting individuals without masks, appropriate
actions can be taken to promote compliance with safety guidelines
and protect public health. Furthermore, the system provides
valuable data for monitoring mask-wearing trends and evaluating
the effectiveness of mask-related policies, contributing to public
safety and enhancing the readiness and response capabilities of
public health systems.

However, it is important to acknowledge the limitations
of the system. Factors such as partial occlusion, variations in
mask types and designs, different camera angles, variations in
lighting conditions, and image quality may pose challenges
for accurate detection. Addressing these limitations and further
refining the system’s performance will be crucial for its practical
implementation in real-world scenarios.

In summary, the face mask detection system developed
in this study has shown promising results in accurately
identifying individuals wearing face masks. Further research and
improvements are necessary to enhance the system’s robustness,
handle challenging conditions, and explore integration with other
technologies for comprehensive solutions in promoting public
health and safety.
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