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Abstract: This study systematically evaluates the consistency and applicability limits of photoplethysmography (PPG)-derived pulse rate
variability (PRV) versus electrocardiogram (ECG)-derived heart rate variability (HRV) in real-world settings. It integrates three method-
ological dimensions: 24-hour multi-context monitoring, dual-level consistency analysis (inter- and intra-individual), and controlled motion
intensity via a 27-level acceleration gradient. Data from 14 healthy participants were collected using synchronized wrist-worn PPG, portable
ECG, and triaxial accelerometry. Standardized preprocessing and motion artifact suppression based on acceleration thresholds enabled the
extraction of time-domain, frequency-domain, and nonlinear HRV and PRV metrics. Consistency was assessed using Pearson correlation
and root mean square error, with false discovery rate-corrected significance testing. Results show strong PPG-ECG agreement during sleep
(r > 0.9 for HR, MeanNN, Prc80NN) but marked degradation under high motion. Notably, Prc20NN demonstrated exceptional robustness
across contexts, retaining significant correlation even during active phases. Stringent motion filtering substantially improved correlations.
These findings delineate metric-specific validity boundaries for wearable PRV, distinguishing motion-induced errors from inherent phys-
iological discrepancies, and offer evidence-based recommendations for deploying PRV in context-appropriate applications such as sleep
monitoring, passive health tracking, and longitudinal stress assessment.
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1. Introduction

Heart rate variability (HRV) has emerged as a critical biomarker
for assessing autonomic nervous system function and predicting
adverse health outcomes across multiple clinical domains [1, 2].
Traditionally measured through an electrocardiogram (ECG), HRV
quantifies the temporal fluctuations between consecutive heartbeats,
offering insights into the dynamic balance between sympathetic and
parasympathetic nervous system activity. Over the past three deca-
des, mounting evidence has established HRV as a robust predictor
of cardiovascular mortality, a physiological marker of mental health
disorders, and a measurable target for therapeutic interventions.

However, the clinical utility of ECG-based HRV monitoring
faces significant practical constraints in real-world applications.
Standard ECG systems require specialized clinical environments,
while ambulatory Holter monitors often suffer from user discom-
fort, limited battery life, and poor compliance during extended
monitoring periods. These limitations have catalyzed growing inter-
est in photoplethysmography (PPG), a noninvasive optical sensing
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technology that has been rapidly integrated into consumer-grade
wearable devices such as smartwatches and fitness trackers. PPG
offers compelling advantages including unobtrusiveness, continu-
ous monitoring capability, and seamless integration into daily life
activities [3].

Despite widespread adoption, the validity of PPG-derived
pulse rate variability (PRV) as a surrogate for ECG-derived
HRV remains incompletely characterized, particularly in naturalis-
tic, ambulatory settings. While controlled laboratory studies have
demonstrated promising agreement under resting conditions, the
performance of PPGdeteriorates substantially during physical activ-
ity due to motion artifacts, skin tone variations, and physiological
changes in peripheral vasculature [4–6]. Furthermore, existing com-
parative studies exhibit considerable heterogeneity in measurement
protocols, device types, and analytical approaches, resulting in con-
flicting conclusions regarding which HRV metrics can be reliably
estimated from PPG signals across different contexts [4].

Critical gaps persist in our understanding of context-dependent
boundaries for PPG-ECG concordance. First, most validation stud-
ies focus on aggregate-level correlations rather than examining
intra-individual consistency patterns that are essential for per-
sonalized health monitoring. Second, the differential impact of
motion intensity on specific HRV metrics—spanning time-domain,
frequency-domain, and nonlinear dimensions—has not been sys-
tematically quantified through controlled threshold analyses. Third,
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no consensus exists regarding which HRV features demonstrate
cross-context robustness suitable for implementation in real-world
wearable applications.

2. Literature Review

2.1. Clinical importance of HRV

HRV shows how the sympathetic and parasympathetic
branches of the autonomic nervous system work together in a com-
plex way. HRV is a noninvasive marker of autonomic regulation that
provides us with a unique look at how the cardiovascular system
adapts to changes in both the body and the mind. The fundamen-
tal guidelines set forth by Malik et al. [7] established the basis for
standardized HRV metrics and their physiological interpretation,
thereby facilitating their clinical implementation.

Over the past three decades, HRV has emerged as a robust
biomarker for risk stratification in cardiovascular disease. In a
seminal study of the Framingham cohort, Szurhaj et al. [8] estab-
lished that diminished HRV, specifically lower Standard Deviation
of Normal-to-Normal (SDNN) intervals and Root Mean Square of
Successive Differences (RMSSD) values, significantly forecasted
sudden cardiac death. In a similar study, Herman et al. [9] dis-
covered that diminished HRV in chronic heart failure patients
correlated with increased all-cause and cardiac mortality, highlight-
ing its significance as a longitudinal prognostic marker. Liu et al.
[10] expanded this comprehension by framing HRV as an indicator
of neurovisceral integration, associating autonomic imbalance with
increased cardiovascular risk.

Beyond cardiology, HRV also plays an important role in mental
health and neuropsychological conditions. Goffi et al. [11] reported
consistently lower HRV in patients with major depressive disorder,
supporting its relevance as a physiological index of affective dysreg-
ulation   and increasedmortality.Al Jowfet al. [12] further established
that HRV serves as a physiological indicator of post-traumatic stress
disorder (PTSD), aiding in both diagnosis and therapeutic moni-
toring. These results have prompted the incorporation of HRV into
psych cardiology and psychoneuroimmunology paradigms.

HRV is also responsive to therapeutic modulation. Lehrer
et al. [13] demonstrated that HRV biofeedback could significantly
improve autonomic flexibility and diminish symptom severity in
individuals with hypertension and anxiety. This is in line with
what Zucker et al. [14] found when they added HRV tracking to
a multisensory virtual reality protocol for PTSD. In their research,
wearable sensors recorded variations in HRV throughout treatment
sessions, offering objective indicators of psychological response and
treatment effectiveness.

Recent clinical studies have identified HRV as a downstream
indicator of systemic inflammation and metabolic health. Wang
et al. [15] showed that giving probiotics to people on hemodialysis
not only helped them sleep better and lowered the levels of inflam-
matory toxins, but it also raised HRV indices like low-frequency
(LF) and low-frequency/high-frequency (LF/HF) ratio significantly,
which supports its use in research on the gut–brain–immune axis.
In a similar vein, Loh et al. [16] demonstrated that vitamin D defi-
ciency in hypertensive patients was associated with reduced HRV
and an increased probability of undergoing coronary revascular-
ization, highlighting the relationship between micronutrient status,
autonomic regulation, and cardiovascular intervention.

These findings collectively underscore HRV’s multifaceted
clinical significance spanning cardiology, psychiatry, immunology,
and behavioral medicine. However, translating this clinical potential
into real-world applications requires measurement technologies that

are accurate, unobtrusive, and scalable—demands increasingly met
by consumer-grade wearable devices, yet with validation challenges
that remain incompletely characterized.

2.2. HRV monitoring: from lab to real-world
settings

The measurement of HRV has experienced a substantial
paradigm shift over the past two decades. Early research restricted
HRV assessment to controlled laboratory settings, but technological
advances and growing recognition of HRV as a dynamic biomarker
have driven progressive emphasis on real-world ambulatory
contexts.

Pioneering work by Shishavan et al. [17] demonstrated the fea-
sibility of ambulatory HRV monitoring for assessing occupational
stress during normal working hours, facilitating HRV’s transition
from clinical observation to behavioral health monitoring. Kim et al.
[18] further validated HRV-derived indices as reliable stress reac-
tivity markers in semi-naturalistic contexts through comprehensive
meta-analysis.

As wearable technology matured, researchers increasingly
investigated HRV in free-living conditions. Taskasaplidis [19]
demonstrated continuous stress monitoring using wrist-worn sen-
sors in academic settings, while Berntson et al. [20] provided a
theoretical framework for HRV as a psychophysiological marker
in ambulatory research, strengthening methodological validity for
out-of-lab measurements. Recent emergence of validated com-
mercial wearables has enabled HRV monitoring in domestic and
sleep environments, with studies demonstrating that consumer-
grade devices can provide reliable nighttime autonomic profiles
comparable to clinical-grade recordings [21, 22]. This evolution
from isolated clinical observations to continuous life-integrated
monitoring has intensified demands for accurate, scalable measure-
ment approaches—a transition that positions PPG-based wearables
as promising solutions, though with context-dependent accuracy
boundaries requiring systematic characterization.

2.3. ECG: gold standard for HRV estimation

ECG remains the gold standard for HRV estimation due
to its high temporal resolution and signal fidelity in detecting
R-peaks within the QRS complex. HRV is calculated as the
temporal variation between consecutive R-R intervals (normal-to-
normal intervals), providing insights into autonomic nervous system
dynamics [7, 23].

ECG enables comprehensive HRV analysis across time-
domain metrics (SDNN, RMSSD), frequency-domain parameters
(LF, HF, LF/HF ratio reflecting sympathetic-parasympathetic bal-
ance) [20], and nonlinear indices. Clinical guidelines from the
European Society of Cardiology and North American Society of
Pacing and Electrophysiology endorse ECG-based HRV as diagnos-
tic and prognostic tools for cardiovascular and autonomic disorders
[7]. HRV has proven utility in risk stratification for heart failure,
sudden cardiac death, post-myocardial infarction monitoring, and
mental health assessment [24].

However, ECG’s practical applicability in continuous real-
world monitoring faces significant constraints. Standard 12-lead
systems are clinic-bound, while ambulatory Holter monitors and
patch-based wearables suffer from user discomfort, movement
restriction, and limited battery life [25]. Recent technological inno-
vations have substantially improved ECG wearability: flexible
substrate electrodes and dry capacitive sensing eliminate con-
ductive gel requirements [26, 27], and miniaturized single-lead
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configurations achieve consumer-grade form factors while main-
taining diagnostic quality [28]. Wireless transmission platforms
now enable real-time arrhythmia detection at scale. Despite these
advances, fundamental limitations persist: all ECG modalities
require direct skin contact, electrical sensing remains vulnerable to
electrostatic interference [26], and device costs remain substantially
higher than optical PPG sensors.

2.4. PPG: a practical wearable alternative

PPGoffers a practical alternative to ECG forHRVestimation in
wearable applications. Originally developed in the 1930s as a non-
invasive method for measuring peripheral blood volume changes
[29], PPG has evolved from clinical pulse oximetry to a core
biosensing modality in modern wearables. The fundamental prin-
ciple involves light emission and detection, with returning signals
varying with arterial pulsation. Pulse-to-pulse intervals extracted
from PPG waveforms enable estimation of HRV metrics [30].

Validation studies demonstrate promising PPG-ECG concor-
dance under controlled conditions. Lu et al. [31] showed the
feasibility of accurate time-domain HRV estimation using wristband
PPG during rest, while Castiglioni et al. [21] validated commercial
wrist-worn devices for nocturnal HRV with significant ECG con-
cordance across multiple metrics. Consumer wearables including
Empatica E4, Fitbit, and Apple Watch have been evaluated across
various activity states (sleep, meditation, cognitive stress), achiev-
ing Pearson correlations ≥ 0.85 for RMSSD and SDNN compared
to HRV [22, 32–34].

Despite these promising results, PPG faces inherent limita-
tions. Motion artifacts, skin tone variations, ambient light inter-
ference, and vasoconstriction degrade signal quality, particularly
during movement or physiological stress [22]. Frequency-domain
HRV estimation accuracy remains contested due to waveform dis-
tortion and pulse transit time (PTT) variations [35]. However,
PPG’s compelling advantages—compactness, low cost, seamless
smartwatch/ring integration, and superior long-term wearability
[21]—position it as the pragmatic choice for continuous health
monitoring, sleep tracking, and stress analysis in free-living pop-
ulations, provided its context-dependent accuracy boundaries are
systematically characterized.

2.5. Gaps in comparative studies between PPG and
ECG

Despite growing literature comparing PRV to HRV estimation,
three critical deficiencies persist, limiting clinical translation:

1) Context-dependent validity remains poorly quantified. While
multiple studies demonstrate strong PPG-ECG agreement for
time-domain metrics (RMSSD, SDNN) during rest or sleep
(r > 0.80) [34, 36], performance deteriorates substantially during
movement [36, 37]. However, no systematic threshold analy-
sis quantifies the motion intensity boundaries separating reliable
from invalid estimation. Schäfer and Vagedes [35] highlighted
that PPG performswell formean heart rate but fails to track high-
frequency oscillations under dynamic states like exercise, yet the
precise activity thresholds defining applicability remain unestab-
lished. This gap prevents practitioners from determining when
to trust PRV versus when to withhold clinical interpretation.

2) Metric-specific validation hierarchies are absent. Most compar-
ative studies report aggregate performance or focus on subset
metrics, obscuring critical distinctions between HRV features
[4, 38]. Time-domain indices may exhibit motion-remediable

errors amenable to algorithmic correction, while frequency-
domain parameters could suffer fundamental physiological
discordance resistant to artifact removal. Elgendi et al. [37]
found PRV systematically overestimates parasympathetic tone
due to PTT fluctuations, particularly during hemodynamic
changes—an issue unresolvable by noise suppression. With-
out empirically categorizing which metrics demonstrate cor-
rectable versus fundamental errors, algorithm developers risk
sophisticated solutions to unsolvable measurement problems.

3) Validation frameworks lack standardization and mechanistic
insight. Existing studies differ widely in device types, sampling
rates, preprocessing pipelines, and metric selection, under-
mining reproducibility and meta-analytic synthesis [38]. More
critically, most studies emphasize inter-individual correlation
(group-level ranking consistency) but omit intra-individual
validation (within-person tracking reliability)—the essential cri-
terion for personalized longitudinal monitoring applications.
Furthermore, studies report statistical correlation without error
decomposition to explain disagreement mechanisms.

We systematically evaluate the consistency between PRV and
HRV across 15 established metrics, examining both inter-individual
and intra-individual agreement patterns. This study addresses these
methodological gaps through three integrated innovations:

1) Comprehensive 24-hour multi-context protocol: Synchronized
PPG, ECG, and triaxial accelerometry across sleep, controlled
rest, and unconstrained free-living activity in 14 healthy par-
ticipants, capturing the full spectrum of autonomic states and
motion intensities encountered in real-world wearable use.

2) Dual-level consistency framework: Systematic evaluation at
both inter-individual (group-level ranking preservation, critical
for population screening) and intra-individual (within-person
temporal tracking, essential for personalized health monitoring)
levels across 15 establishedHRVmetrics spanning time-domain,
frequency-domain, and nonlinear dimensions.

3) Systematic motion threshold control: Novel gradient analy-
sis employing 27 thresholds (∞ to 0.1 m/s²) to quantify
the dose-response relationship between motion intensity and
measurement concordance, enabling empirical identification of
context-specific “reliability boundaries” for each metric.

The findings presented herein establish empirical boundaries
for PRV estimation, identify metrics with cross-context reliability,
and provide application recommendations for integrating wearable-
derived autonomic biomarkers into clinical decision-making and
consumer health applications. By distinguishing motion-remediable
errors from fundamental physiological discordance, this work pro-
vides the validation framework necessary for evaluating whether
advanced signal processing algorithms—including emerging deep
learning approaches—deliver genuine clinical value or merely sta-
tistical improvements detached from physiological validity. By
revealing the dual-pathway mechanisms underlying PPG-ECG
discordance—encompassing both motion artifacts and physiolog-
ical vascular reactivity—this work advances toward more accu-
rate, scalable, and ecologically valid approaches for continuous
cardiovascular health monitoring in free-living populations.

3. Materials and Methods

3.1. Participants and experimental design

This study included 14 healthy adult participants (6 males,
8 females; age range: 21–28 years) with compliant vasculature,
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homogeneous skin tones, and no history of cardiovascular disease.
All participants were screened from Tsinghua University through
structuredquestionnairesandpre-experimental interviews toconfirm
they had no history of known cardiovascular diseases and had not
taken any medications that could affect autonomic nervous system
activity (such as beta-blockers or sedatives) within two weeks prior
to the experiment.

This study protocol was approved by the Ethics Committee of
Tsinghua University (Approval Number: THU-04-2025-1084), and
all participants signed written informed consent forms. To compre-
hensively assess the consistency of PPG and ECG across different
scenarios, the experimental design included the following three
tasks:

1) Resting state: Participants sat quietly for 10 minutes in a
laboratory with soft lighting and controlled temperature, main-
taining limb stillness and avoiding verbal communication, to
obtain baseline resting-state PPG, ECG, and three-dimensional
acceleration signals;

2) Sleep stages: Participants slept naturally in a home environment,
self-reporting their bedtime and wake-up time;

3) Active period: Defined as the daily active period excluding sleep
stages during the 24-hour day.

3.2. Data acquisition

Amultimodal physiological signal co-acquisition strategy was
employed, with hardware time stamps used for calibration to ensure
signal temporal alignment. Each participant was instructed to wear
a custom-designed wristband and a portable ECG monitor for
a one-day multimodal physiological measurement, as shown in
Figure 1(a). The specific equipment used is as follows:

Wristband (Psychorus, Huixin, Beijing, China): This custom-
designed device, validated in previous daily-context studies by Shui
et al. [39], He et al. [40], and Shui et al. [41], continuously collected
triaxial acceleration (ACC) signals at 50 Hz (range: ± 2g, sensitiv-
ity: 0.000061 g/digit) and PPG signals at 500 Hz. The wristband
was worn on the left wrist, 2−3 cm proximal to the radial styloid
process, with sufficient tightness to maintain skin contact without
obstructing blood flow.

Portable dynamic ECG monitor (ER1, Lepu Medical, Beijing,
China): A single-lead dynamic ECG device (250 Hz sampling rate)
with electrodes attached to the left anterior chest, suitable for long-
term ambulatory monitoring [42, 43].

Figure 1
(a) Portable dynamic electrocardiogram monitor;

(b) wristband device; (c) flowchart of data analysis

3.3. Feature extraction

All raw signals underwent feature extraction after standardized
preprocessing. The raw triaxial acceleration data is converted tom/s²
in the International System of Units, the data for each axis are zero-
corrected, and the gravity component is estimated by a low-pass
filter and subtracted from the signal to obtain the linear acceleration
Ax, Ay, Azof three axes.

The preprocessing of ECG signals aimed at removing noise
artifacts and extracting key heartbeat information to guarantee the
accuracy of subsequent HRV metrics calculation. The complete
ECG processing pipeline consisted of the following steps:

1) Missing data handling: For signal segments containing missing
values (NaN), we first removed these values while maintain-
ing index mapping to the original timeline for subsequent peak
location restoration.

2) Signal cleaning: Raw ECG signals were processed using Neu-
roKit2’s (version 0.2.0) [44] “ecg_clean()” function, which
applied a 0.5–40 Hz band-pass filter to simultaneously remove
low-frequency baseline drift, high-frequency EMG interference,
and power-line noise. The filtered signal was then demeaned to
eliminate the DC offset.

3) R-peak detection: The cleaned signal underwent R-peak extrac-
tion using NeuroKit2’s “ecg_peaks()” function with the fol-
lowing configuration: 1 algorithm: integrated multi-method
detector combining Pan-Tompkins, Hamilton, Christov, and
other classical algorithms through an ensemble voting mecha-
nism; 2 artifact correction: enabled to automatically identify
and correct nonphysiological beats; and 3 output: R-peak
indices in the cleaned signal timeline.

4) Peak location restoration: Detected R-peak positions were
mapped back to the original signal timeline using preserved
index information, accounting for any removed NaN values.
This comprehensive preprocessing pipeline ensured the continu-
ity and physiological validity of the resulting RR interval time
series.

PPG signals in their raw state were often subjected to var-
ious interferences such as motion artifacts and environmental
noise, necessitating systematic preprocessing to guarantee pulse
peak detection accuracy. The complete PPG processing pipeline
consisted of the following steps:

1) Missing data imputation: Signal segments containing missing
values were first processed using linear interpolation to ensure
signal continuity.

2) Band-pass filtering: The BioSPPy (version 2.2.0) [45] signal
processing module was employed to apply a 4th-order Butter-
worth band-pass filter with cutoff frequencies of 0.5–4.0 Hz.
This frequency range was specifically selected to encompass
typical heart rate ranges (30–200 beats per minute) while
excluding motion artifacts and high-frequency measurement
noise.

3) Wavelet denoising: The filtered signal underwent additional
noise reduction using hybrid wavelet denoising with the
following specifications: wavelet basis: db4, decomposition
level: 9.

4) Peak detection: Pulse peaks were identified using the
Elgendi2013 algorithm (ppg.find_onsets_elgendi2013()), an
adaptive dual-threshold detection method specifically designed
for PPG signals. This algorithm demonstrated superior robust-
ness against motion artifacts compared to conventional
derivative-based methods and has been validated in ambulatory
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Table 1
HRV metrics

Metric Interpretation Unit
HR Average Heart Rate beats per minute (bpm)
MeanNN Mean NN Interval milliseconds (ms)
Prc20NN 20th Percentile of NN Intervals milliseconds (ms)
MedianNN Median NN Interval milliseconds (ms)
Prc80NN 80th Percentile of NN Intervals milliseconds (ms)
SDNN Standard Deviation of NN Intervals milliseconds (ms)
RMSSD Root Mean Square of Successive Differences milliseconds (ms)
pNN50 Percentage of NN Interval Differences > 50 ms percentage (%)
pNN20 Percentage of NN Interval Differences > 20 ms percentage (%)
LF Low-Frequency Power milliseconds² (ms²)
HF High-Frequency Power milliseconds² (ms²)
TP Total Power milliseconds² (ms²)
LFHF Low-Frequency/High-Frequency Ratio -
ApEn Approximate Entropy -
LZC Lempel–Ziv Complexity -

monitoring contexts. The resulting pulse interval (PI) sequence
served as the basis for subsequent PRV analysis and cross-modal
consistency evaluation with HRV.

In this study, we computed multidimensional characteristics
based on the sequence of heartbeat intervals and PI sequences.
HRV and PRV metrics were extracted using the open-source toolkit
pyHRV [46], which supports HRV calculation based on time-
domain, frequency-domain, and nonlinear dimensions, specifically
including the feature dimensions in Table 1.

3.4. Segment-based quality control

All signals were processed in segments with a basic unit of
30 seconds, and the following quality control steps were performed:

Integrity check: If the data loss rate for any channel
(PPG/ECG/ACC) exceeds 5% in a segment, that segment is
discarded.

Motion artifact screening: Calculated the acceleration vector
magnitude Amag = √A2

x + A2
y + A2

z .
Effective segment concatenation: Connected segments that

pass the integrity check in chronological order to form continuous
analysis segments to enhance the stability of parameter estimation.

3.5. Consistency analysis

3.5.1. Inter-individual consistency analysis
Extract the overall HRV and PRV parameters for each sub-

ject during resting, active, and sleep periods. Evaluate the overall
consistency from the two signal sources across different subjects
by calculating the Pearson correlation coefficients and root mean
square error (RMSE) between PPG and ECG for each parameter.

3.5.2. Intra-individual consistency analysis
To further validate stability at the individual level, for each

subject, nonoverlapping 5-minute segments were divided accord-
ing to task phases (sleep stages/active period), and the following
operations were performed:

1) Validity criteria: Each 5-minute segment must contain at least 6
valid 30-second sub-segments (validity rate ≥ 60%).

2) Parameter extraction: Calculate PRV from PPG and HRV from
ECG for each 5-minute segment.

3) Consistency assessment: Calculate the Pearson correlation coef-
ficient between PRV and HRV parameters for all 5-minute
segments of the same subject.

4) Group analysis: Average the correlation coefficients across sub-
jects to obtain the intra-individual consistency metric for that
phase.

3.6. Motion strength threshold control

To quantify the impact of acceleration on the PPG signal, a
motion intensity threshold control was introduced:

1) Set a series of decreasing thresholds 𝜏 (including no control, i.e.,𝜏 =∞): [∞, 10, 8, 6, 4.5, 4.3, 4.1, 3.9, 3.7, 3.5, 3.3, 3.1, 2.9, 2.7,
2.5, 2.3, 2.1, 1.9, 1.7, 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3, 0.1] m/s2.

2) Further exclude segments with Amag exceeding 𝜏 based on
quality control, and assess the trend of consistency as motion
intensity decreases.

3.7. Statistical analysis

Consistency analysis employed two complementary statistical
metrics to assess PPG-ECG agreement: (1) Pearson correlation coef-
ficient (r) to evaluate the linear association strength between PRV
and HRV parameters, indicating whether the two modalities capture
the same rank-order patterns, and (2) RMSE to quantify absolute
numerical deviations in HRV parameter estimates between the two
signals, reflecting measurement precision. Additionally, we have
provided Bland–Altman plots for all indicators to visually and sta-
tistically demonstrate the limits of agreement and any systematic
biases. These Bland–Altman plots are publicly accessible at: https://
cloud.tsinghua.edu.cn/d/9629ab21aaba4f03a70d/.

Inter-individual consistency analysis examined agreement
across participants by computing correlations for each metric at the
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group level. Statistical significance of correlation coefficients was
assessed using standard Pearson correlation tests.

Intra-individual consistency analysis evaluated within-person
tracking reliability by computing correlations between PPG and
ECG within each participant across multiple 5-minute epochs, then
performing group-level statistical inference on these individual-
specific correlations. A one-sample t-test was employed to deter-
mine whether the mean intra-individual correlation coefficient
across all participants significantly exceeded the empirical con-
sistency threshold of r = 0.2. This threshold represents the
minimum correlation required for clinically meaningful longitudi-
nal tracking, below which within-person monitoring is considered
unreliable.

The statistical significance threshold was uniformly set at
p < 0.05 for all analyses. To control for multiple comparisons
and reduce false discovery rates (FDRs), corrections were applied
using the FDR method with context-specific correction factors: (1)
baseline consistency analysis (no motion control, 𝜏 = ∞): FDR
correction with a factor of 15 (PFDR_15), corresponding to the
number of HRV metrics simultaneously examined. This correction
addresses the multiple testing problem arising from evaluating 15
distinct features within each experimental context (resting state,
activity period, sleep stages); and (2) motion threshold-controlled
analysis (𝜏 ranging from∞ to 0.1 m/s²): FDR correction with a fac-
tor of 27 (PFDR_27), corresponding to the number of acceleration

threshold levels examined. This correction strategy reflects the
study’s focus on identifying stable, threshold-invariant metrics suit-
able for robust real-world deployment. Since the primary scientific
question concerns which HRV features maintain consistency across
varying motion intensities (rather than whether motion control
improves any single metric at specific thresholds), the correction
factor is determined by the number of threshold conditions tested for
each metric. Additionally, we calculated the minimum detectable
effect (MDE) to make the detection capability boundary of this
study clearer. The MDE refers to the smallest true effect that can be
reliably detected by statistical testing to specify efficacy.

All statistical analyses were performed using Python 3.9
with scipy.stats and statsmodels libraries. Correlation coeffi-
cients, p-values, FDR-adjusted p-values, and RMSE values for all
comparisons are provided in the supplementary materials.

4. Results

4.1. Data overview

This study collected synchronized data from 14 participants
during both active and sleep periods, as shown in Figure 2.
Preliminary visual analysis revealed that PPG and ECG signals
exhibited varying degrees of motion interference during different
tasks. At low exercise intensities, the waveforms of the two signals

Figure 2
(a) Active period with low linear acceleration, (b) active period with high linear acceleration, (c) sleep stages with low linear

acceleration, and (d) sleep stages with high linear acceleration
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exhibited high synchrony; however, at high exercise intensities, the
PPGwaveform frequently exhibited pulse wave loss and peak shifts,
while the ECG signal remained stable. This phenomenon suggests
that exercise interference may affect the quality of the PPG signal,
thereby impacting the consistency between the two signals.

4.2. Inter-individual consistency analysis

Figures 3−5 show the scatter plots of various HRV and PRV
indicators during resting, active, and sleep states. Figure 6 shows the
Pearson correlation coefficients between HRV and PRV parameters
in the three states. Table 1 in the S1 of the supplementary materials
provides the specific Pearson correlation coefficients, p-values, and
FDR-corrected p-values.

During sleep, multiple parameters exhibited excellent agree-
ment, characterized by high correlations (r > 0.75), low RMSE,
and strong statistical significance after FDR correction (PFDR_15 <
0.01). For instance, HR achieved r = 0.961 (PFDR_15 < 0.001, 95%
CI [0.864, 0.990]) with an RMSE of only 2.17 bpm. MeanNN and
MedianNN achieved r = 0.975 (PFDR_15 < 0.001, 95% CI [0.896,
0.994]) and 0.991 (PFDR_15 < 0.001, 95%CI [0.951, 0.998]), respec-
tively, with RMSE below 25 ms. Prc80NN (r = 0.994, PFDR_15 <
0.001, 95% CI [0.961, 0.999]), SDNN (r = 0.758, PFDR_15 = 0.003,
95% CI [0.378, 0.920]), and spectral power parameters (LF and
TP, r ≈ 0.78) were also robust. Notably, the LFHF reached statis-
tical significance during sleep (r = 0.754, PFDR_15 = 0.003, 95%
CI [0.370, 0.919]), suggesting potential utility in stable physio-
logical conditions. Complexity measures (ApEn and LZC) showed

Figure 3
Resting state: visualization of PRV and HRV parameters

Figure 4
Activity period: visualization of PRV and HRV parameters
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Figure 5
Sleep stages: visualization of PRV and HRV parameters

Figure 6
Inter-individual Pearson correlation coefficients between PRV and HRV parameters

Note: **: PFDR_15< 0.01, * PFDR_15 < 0.05

moderate but significant correlations (r ≈ 0.60 – 0.65), indicating
that PPG can partially capture autonomic complexity during sleep.

During the resting state, HR and MeanNN showed moderate-
to-good correlations (r > 0.68) and relatively low RMSE (HR: 11.07
bpm; MeanNN: 111.6 ms). Although they did not reach statistical
significance after FDR correction, they remain practically useful. In
contrast, other parameters such as SDNN (r = 0.126, p = 0.766, 95%
CI [−0.423, 0.603]), RMSSD (r = 0.037, p = 0.930, 95%CI [−0.500,
0.558]), and HF (r = 0.584, p = 0.129, 95% CI [0.064, 0.852]) were
unreliable due to either very low correlation or excessively large
RMSE.

During the activity period, all metrics deteriorated substan-
tially: correlations were generally below 0.55, RMSE increased
markedly (e.g., SDNN: 139 ms; RMSSD: 240 ms; LF: >18000
ms²), and none reached statistical significance after FDR cor-
rection (minimum PFDR_15 = 0.372). Even the best-performing

metrics—MeanNN (r = 0.542, p = 0.069, 95% CI [−0.003, 0.832])
and MedianNN (r = 0.592, p = 0.043, PFDR_15 = 0.372, 95% CI
[0.077, 0.856])—exhibited high RMSE (123 and 100 ms, respec-
tively). This indicates that motion artifacts severely disrupt the
correspondence between PPG waveforms and true R–R intervals,
rendering HRV analysis unreliable in dynamic environments. These
findings demonstrate that motion artifacts fundamentally compro-
mise PPG’s ability to accurately capture beat-to-beat variability
during unconstrained physical activity.

Power analysis indicates that, under the current sample size
(N = 14), significance level (𝛼 = 0.05), and target power (1−β =
0.80), the inter-individual correlation analysis is only sufficiently
powered to reliably detect large effect sizes (Pearson’s r ≥ 0.688),
which defines the MDE in this analysis. Consistent with this, most
metrics that achieved statistical significance also exhibited effect
sizes exceeding the MDE, supporting their robustness. However,

Pdf_Fol io:808



Smart Wearable Technology Vol. 00 Iss. 00 2025

during sleep, HF, ApEn, and LZC reached statistical significance
despite effect sizes below the MDE (r < 0.688). This suggests
that their significance may stem from reduced inter-individual
variability—due to physiological homogenization during sleep—
or favorable sampling fluctuations, thereby carrying a risk of false
positives. The actual consistency of these metrics is likely weak
and warrants cautious validation in larger cohorts. Conversely, in
the resting state, MeanNN, Prc80NN, and ApEn, although not sta-
tistically significant, demonstrated effect sizes above the MDE
(r ≥ 0.688), implying that their lack of significance is likely
attributable to limited statistical power rather than true null effects.
Notably, ApEn showed a strong trend toward individual-specific
consistency during rest, reflecting its sensitivity to autonomic com-
plexity in the awake state. In contrast, its statistically significant
but low-effect correlation during sleep reveals a lack of individual
discriminability.

This contrast underscores a critical principle: the utility of
a PRV metric depends not merely on statistical significance but
more importantly on its ability to provide robust, individualized
characterization within physiologically heterogeneous contexts.
The agreement between PRV and HRV metrics is highly state-
dependent: sleep represents an optimal condition for signal fidelity;
resting state offers only limited reliability—primarily for mean-rate
measures; and physical activity largely compromises the validity
of PRV estimation. Therefore, when employing wearable devices
for PRV assessment, researchers should stratify analyses by phys-
iological state and prioritize metrics that concurrently demonstrate
high correlation, low RMSE, and statistical significance within the
intended application context.

4.3. Intra-individual consistency analysis

The sleep and active period data of each subject were divided
into nonoverlapping 5-minute segments, and HRV indices of PPG
and ECG were calculated separately (as shown in Figures 7−11).

The intra-individual Pearson correlation coefficients were then cal-
culated based on the corresponding values between these segments.
Figures 12 and 13 show the Pearson correlation coefficients and
RMSE between PPG and ECG HRV parameters in the two tasks.
Table 2 in the S1 of the supplementary materials provides the
specific values.

During sleep, most indices demonstrated strong agreement
across both linear and absolute dimensions, supported by signifi-
cant FDR-adjusted p-values. HR (r = 0.650, RMSE = 5.06 bpm,
PFDR_15 < 0.001, 95% CI [0.512, 0.788]) and MeanNN (r = 0.689,
RMSE = 54.4 ms, PFDR_15 < 0.001, 95% CI [0.558, 0.820]) showed
the highest consistency. Distribution-related indices such as Medi-
anNN (r = 0.761, RMSE= 50.4ms,PFDR_15 < 0.001, 95%CI [0.641,
0.881]), Prc20NN (r = 0.663, RMSE = 79.4 ms, PFDR_15 < 0.001,
95% CI [0.539, 0.787]), and Prc80NN (r = 0.536, RMSE = 80.9 ms,
PFDR_15 = 0.009, 95% CI [0.323, 0.749]) were also robust (PFDR_15
< 0.01). SDNN (r = 0.404, RMSE = 80.9 ms, PFDR_15 = 0.009, 95%
CI [0.310, 0.498]) and ApEn (r = 0.464, RMSE = 0.129, PFDR_15
< 0.001, 95% CI [0.375, 0.553]) demonstrated moderate but reli-
able correlations with acceptable RMSE (77–128 ms), suggesting
that PPG can effectively estimate multiple HRV dimensions under
low-motion conditions.

In contrast, RMSSD, pNN50, pNN20, LF, HF, and TP exhib-
ited poor within-person tracking reliability (r < 0.25) with large
RMSE values, indicating poor reproducibility within individuals.
The LFHF reachedmarginal significance (r = 0.289, RMSE= 1.140,
p = 0.040, PFDR_15 = 0.075, 95% CI [0.195, 0.383]), implying
limited interpretability under stable physiological conditions.

During the activity, consistency deteriorated substantially.
Only Prc20NN remained significant (r = 0.516, RMSE = 94.66ms,
PFDR_15 < 0.001, 95% CI [0.391, 0.641]). All other parameters
degraded to near-random levels, including HR (r = 0.213, RMSE =
17 bpm, p = 0.439, 95% CI [0.064, 0.362]) and MeanNN (r = 0.210,
RMSE = 163.3 ms, p = 0.455, 95% CI [0.046, 0.374]), accom-
panied by large RMSE values (HR: 17.3 bpm; SDNN: 192.8 ms;

Figure 7
HR: comparison between ECG and PPG within individuals
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Figure 8
Heartbeat interval distribution: comparison between ECG and PPG within individuals. (a) MeanNN; (b) Prc20NN;

(c) MedianNN; (d) Prc80NN

Figure 9
Time-domain metrics: comparison between ECG and PPG within individuals. (a) SDNN; (b) RMSSD; (c) pNN50; (d) pNN20
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Figure 10
Frequency-domain indicators: comparison of ECG and PPG within individuals. (a) LF; (b) HF; (c) TP; (d) LFHF

Figure 11
Nonlinear indicators: comparison of ECG and PPG within individuals. (a) ApEn; (b) LZC

LF: >20,000). These findings indicate that motion artifacts during
free activity severely impair the capacity of PPG signals to track
intra-individual HRV variations.

Power analysis indicates that, with the current sample size
(N = 14), significance level (𝛼 = 0.05), and target power (1−β =
0.80), the one-sample t-test used to evaluate whether within-subject
average correlations exceed a threshold of 0.2 is only adequately
powered to detect large effect sizes (Cohen’s d ≥ 0.702), which
defines the MDE in this analysis. All metrics that achieved statis-
tical significance also exhibited effect sizes exceeding the MDE,
reinforcing the practical robustness of their PPG–ECG consis-
tency. In summary, the sleep stage provides the optimal context for
intra-individual PRV-HRV consistency, with multiple parameters
exhibiting stable and statistically significant agreement. Prc20NN
is the only HRV index achieving significant consistency in both
activity and sleep, demonstrating high application potential.

4.4. Effect analysis of acceleration threshold control

4.4.1. Inter-individual consistency analysis
By progressively reducing the motion intensity threshold (𝜏),

this study revealed distinct sensitivity patterns of different HRV
indicators to motion interference. The integration of Pearson corre-
lation coefficients and RMSE provided a comprehensive assessment
of PPG-ECG agreement across measurement contexts. Overall, cor-
relation exhibited an upward trend as the linear acceleration thresh-
old decreased, with the most pronounced improvements observed
during the active period and smaller gains during sleep stages.
However, error reduction patterns varied substantially across metric
types, revealing three distinct response profiles: Pattern 1: Dual-
Improvement Metrics (HR and Interval Distribution Parameters);
Pattern 2: RMSE-Dominant Improvement Metrics (Time-Domain
Variability Indices); and Pattern 3: Correlation-Resistant Metrics
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Figure 12
Intra-individual Pearson’s correlation coefficient between PPG and ECG HRV parameters variability

Figure 13
Intra-individual RMSE between PRV and HRV parameters

(Frequency-Domain Parameters). All inter-individual analytical
results for consistency and linear acceleration are in “S2, S3, and
S4” of the supplementary materials.

HR demonstrated optimal responsiveness to motion control,
exhibiting coupled improvements in both correlation and RMSE
across all contexts. As illustrated in Figure 14, during the active
phase, the correlation increased from 0.501 (  p = 0.097, PFDR_27
= 0.286) at 𝜏 = ∞ to 0.813 m/s2 (  p = 0.001, PFDR_27 = 0.020) at𝜏 = 0.1 m/s2, while RMSE decreased substantially from 13.16 bpm
to 5.69 bpm, representing a 57% error reduction. In the resting
state, correlation improved steadily from 0.704 (  p = 0.051, PFDR_27
= 0.053) to 0.898 (  p = 0.015, PFDR_27 = 0.051), with RMSE
decreasing from 11.07 bpm to 7.14 bpm (35% reduction). During
sleep stages, HR maintained exceptionally high consistency, with
correlation increasing from 0.961 (  p < 0.001, PFDR_27 < 0.001) to
0.993 (  p < 0.001, PFDR_27 < 0.001) and RMSE declining from 2.17
bpm to 1.07 bpm (51% reduction). These parallel improvements in
correlation and RMSE validate motion artifacts as the primary error

source for HR estimation, establishing PPG as a reliable surrogate
for ECG-derived heart rate under controlled motion conditions.

Interval distribution metrics (Prc20NN,MedianNN, Prc80NN)
demonstrated context-dependent dual-improvement patterns with
notable initial deterioration phases. As shown in Figure 15,
Prc80NN during the active phase exhibited a characteristic
U-shaped trajectory: correlation decreased from 0.184 (  p = 0.567,
PFDR_27 = 0.638) to a minimum of 0.030 (  p = 0.922, PFDR_27
= 0.922) before gradually recovering to 0.776 (  p = 0.002, PFDR_27
= 0.049). Concurrently, RMSE showed parallel dynamics, increas-
ing from 227.32 ms (𝜏 =∞) to a maximum of 221.60 ms (𝜏 = 10.0
m/s2) before decreasing to 94.75 ms (𝜏 = 0.1 m/s2), achieving a
58% error reduction from baseline. During sleep stages, Prc80NN
maintained stable high performance with minimal RMSE variation
(25.74 ms → 18.13 ms, 30% reduction) and consistently elevated
correlation (r > 0.994). Resting state showed intermediate behavior
with correlation ranging from 0.664 to 0.744 and RMSE fluctuat-
ing between 200-215 ms. Prc20NN exhibited superior cross-context
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Figure 14
HR: relationship between inter-individual Pearson’s correlation coefficient and 𝜏

Figure 15
Prc80NN: relationship between inter-individual Pearson’s correlation coefficient and 𝜏

Figure 16
SDNN: relationship between inter-individual Pearson’s correlation coefficient and 𝜏

robustness: during activity, correlation increased from 0.443 (  p
= 0.149, PFDR_27 = 0.502) to 0.705 (  p = 0.007, PFDR_27 = 0.192),
with RMSE increasing from 47.74 ms to 83.30 ms; during sleep,
correlation reached 0.959 (  p < 0.001, PFDR < 0.001) with RMSE of
41.54 ms.

SDNN and RMSSD exhibited asymmetric improvement pat-
terns characterized by substantial RMSE reduction but minimal
correlation enhancement, revealing a fundamental dissociation
between absolute error and rank-order consistency. As shown in
Figure 16, during the active phase, SDNN correlation increased
modestly from 0.045 (  p = 0.890, PFDR_27 = 0.941) to 0.374
(  p = 0.208, PFDR_27 = 0.915), failing to reach statistical significance
despite stringent motion control. Conversely, RMSE decreased
substantially from 139.02 ms to 97.65 ms (30% reduction), indi-
cating improved measurement precision without a corresponding

enhancement in inter-individual discrimination capability. During
sleep stages, SDNNmaintainedmoderate correlation (r≈ 0.73) with
RMSE fluctuating between 54.38 and 58.49 ms, suggesting that
motion artifacts contribute less to SDNN discrepancy during low-
activity states. The resting state showed similar patterns with RMSE
fluctuating between 155 and 176 ms.

RMSSD showed even more pronounced dissociation: active-
phase correlation remained near-zero across all thresholds (0.026→ 0.359, p > 0.2), while RMSE decreased from 239.51 to 168.11
ms (30% reduction). Sleep-stage RMSSD exhibited consistently
low correlation (r ≈ 0.50) despite excellent absolute agreement
(RMSE: 114.68 → 100.91 ms). This pattern suggests that while
PPG can track within-individual SDNN/RMSSD changes under
motion control, it fails to preserve the between-individual ranking
structure that ECG captures, likely due to PTT variability
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and nonlinear PPG-ECG relationships in beat-to-beat interval
differences.

Frequency-domain metrics (LF, HF, TP, LFHF) exhib-
ited paradoxical behavior: substantial RMSE reduction coincided
with unstable or deteriorating correlations, revealing fundamental
PPG-ECG differences beyond motion artifact contamination. Dur-
ing the active phase, LF RMSE decreased from 18278 ms² to
8464 ms² (54% reduction), yet correlation showed non-monotonic
fluctuation from 0.263 (  p = 0.409, PFDR_27 = 0.442) to 0.204
(  p = 0.504, PFDR_27 = 0.504), failing to achieve significance
at any threshold. HF demonstrated similar patterns with RMSE
improving from 25492 ms² to 14522 ms² (43% reduction), while
correlation oscillated between 0.219 and 0.373 without consistent
directionality. Sleep stages showed moderately high LF correlation
(r ≈ 0.78) but substantial RMSE (2331 ms² → 2022 ms²), with
minimal error reduction despite maintained correlation. LFHF ratio
exhibited the most erratic behavior: active-phase correlation fluctu-
ated wildly between -0.113 and 0.355 across thresholds, suggesting
near-random agreement.

ApEn and LZC demonstrated moderate sensitivity to motion
control with context-dependent patterns. The relatively better per-
formance of complexity metrics compared to frequency-domain
indices suggests they may capture complementary autonomic
information less susceptible to PTT artifacts, warranting further
investigation in larger cohorts.

4.4.2. Intra-individual consistency analysis
Intra-individual consistency analysis examined whether PRV

metrics could reliably track within-person fluctuations over time,
a critical requirement for personalized health monitoring appli-
cations. By segmenting continuous recordings into 5-minute
epochs and computing correlations within each participant, this

analysis revealed the feasibility of using PPG for longitudinal
self-tracking across different physiological states. Intra-individual
analysis employed one-sample t-tests to determine whether aver-
aged within-person correlations exceeded the empirical consistency
threshold. This threshold represents minimal clinically meaningful
tracking capability, where correlations below 0.2 indicate unreliable
within-person monitoring. All intra-individual analytical results for
consistency and linear acceleration are presented in S5 and S6 of the
supplementary materials.

HR demonstrated context-dependent dual-improvement pat-
terns, with both correlation and RMSE showing synchronized
enhancement under motion control. As shown in Figure 17, dur-
ing the active period, baseline HR showed inadequate tracking
(r = 0.213, p = 0.439, PFDR_27 = 0.455, RMSE = 17.25 bpm),
improving dramatically to robust consistency (r = 0.747, p = 0.003,
PFDR_27 = 0.010, RMSE = 3.61 bpm, 79% error reduction) at 𝜏
= 0.1 m/s2. The correlation achieved significance at 𝜏 ≈ 2.5 m/s2
(r = 0.430, p = 0.009, PFDR_27 = 0.022), while RMSE crossed
clinical acceptability thresholds (< 5 bpm) at 𝜏 ≈ 1.5 m/s2(RMSE
= 9.68 bpm → 3.61 bpm). This dual convergence validates that
stringent motion control (𝜏 < 2.5 m/s²) is necessary and sufficient
for reliable activity-based HR self-tracking. During sleep stages,
HR maintained consistently excellent performance: baseline (r
= 0.650, p < 0.001, PFDR_27 < 0.001; RMSE = 5.06 bpm) improved
to final (r = 0.806, p < 0.001, PFDR_27 < 0.001; RMSE = 3.06 bpm,
40% error reduction). The universally significant t-tests across all
thresholds combined with clinically acceptable RMSE values (< 6
bpm throughout) establish PPG as a validated tool for overnight HR
monitoring without requiring motion filtering algorithms.

Prc20NN demonstrated exceptional baseline robustness com-
bined with significant error reduction potential. As shown in
Figure 18, during activity, Prc20NN was the only metric achieving

Figure 17
HR: relationship between intra-individual Pearson’s correlation coefficient and 𝜏

Figure 18
Prc20NN: relationship between intra-individual Pearson’s correlation coefficient and 𝜏
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significance without motion control (r = 0.516, p < 0.001, PFDR_27 <
0.001), though baseline RMSE was substantial (94.66 ms). Motion
control produced dramatic improvements: correlation increased to
0.867 (  p < 0.001,PFDR_27 < 0.001), while RMSE decreased to 65.51
ms (31% reduction) at 𝜏 = 0.1 m/s2. The persistent significance
across all 27 thresholds (  p < 0.001 throughout), combined with
monotonic RMSE improvement, validates Prc20NN as the premier
metric for unconstrained activity tracking.

Critically, Prc20NN’s RMSE trajectory shows two distinct
phases: (1) plateau phase (𝜏 = ∞ to 𝜏 = 4.5 m/s2): RMSE fluctu-
ates 91−96 ms with minimal improvement, correlation stable at r ≈
0.50 − 0.55; and (2) rapid improvement phase (𝜏 < 4.5 m/s2): RMSE
decreases sharply 91 ms → 65 ms, correlation jumps to r > 0.65.
This biphasic pattern suggests a critical motion threshold around
4.5 m/s², above which artifacts dominate and below which physi-
ological signal prevails. During sleep, Prc20NN maintained stable
consistency (r > 0.62, all p < 0.001) with minimal RMSE variation
(79.44 ms→ 75.68 ms, 5% reduction).

Prc80NN showed severe activity-phase limitations: despite
RMSE improvement (319.49 ms → 70.48 ms, 78% reduction—
the largest among all metrics), correlation remained nonsignifi-
cant throughout (r = -0.034 → 0.566, all p > 0.07, PFDR_27 > 0.5).
This correlation-RMSE dissociation reveals that while motion con-
trol reduces measurement noise for upper-tail intervals (bradycardic
beats), it fails to preserve rank-order tracking capability, likely due
to differential pulse wave loss during slow heart rates. Sleep-stage
Prc80NN performed moderately (r = 0.536 → 0.829, PFDR_27 <
0.001; RMSE: 80.92 ms→ 39.01 ms, 52% reduction).

MedianNN demonstrated strong dual improvements in both
contexts: activity (r = 0.255 → 0.939, PFDR_27 < 0.001 at 𝜏 < 1.9;
RMSE: 150.24 ms → 23.39 ms, 84% reduction) and sleep (r =
0.761 → 0.860, PFDR_27 < 0.001; RMSE: 50.42 ms → 32.81 ms,
35% reduction). The exceptional RMSE values during activity (<
25 ms at 𝜏 = 0.1 m/s2, approaching ECG-grade precision) establish
MedianNN as a viable alternative to mean-based metrics for within-
person tracking, particularly when extreme heart rate values may
introduce bias.

Despite substantial RMSE reductions (30–48%), SDNN and
RMSSD failed to achieve meaningful correlations, revealing fun-
damental incompatibility between PRV and HRV for within-person
tracking.

As shown in Figure 19, during activity, SDNN showed near-
zero correlations across all thresholds (r = 0.144 → 0.056, all
p > 0.68), yet RMSE improved markedly from 192.82 ms to
100.30 ms (48% reduction). This pattern indicates that motion
control reduces random measurement noise (lowering RMSE) but
fails to improve systematic tracking of true within-person SDNN

fluctuations (correlation remains near-zero). The dissociation
likely reflects individual-specific PTT biases that remain stable
across measurements, allowing reduced variance but obscuring
true temporal dynamics. Sleep-stage SDNN exhibited even more
concerning patterns: baseline significance (r = 0.404, p < 0.001,
PFDR_27 = 0.007) deteriorated progressively under motion control
to non-significance (r = 0.252, p = 0.163, PFDR_27 = 0.163 at 𝜏
= 0.1 m/s2), despite RMSE remaining stable (77.62 ms → 65.15
ms, 16% reduction). The paradoxical correlation decline suggests
stringent thresholds exclude physiologically meaningful low-
amplitude movements (e.g., sleep position changes) that genuinely
correlate with SDNN variations, providing no net accuracy benefit
since baseline motion is already minimal.

RMSSD showed complete failure across all conditions. Activ-
ity: correlations ranged 0.046 to -0.264 (all p > 0.68), despite
dramatic RMSE improvement (263.44 ms → 160.33 ms, 39%
reduction). Sleep: correlations consistently near-zero (r = 0.166→ 0.144, all p > 0.69), with moderate RMSE reduction (127.86
ms → 105.68 ms, 17% reduction). The universal failure indi-
cates PPG cannot track beat-to-beat variability changes within
individuals under any examined condition. The RMSE-correlation
dissociation reveals that short-term variability metrics suffer from
nonstationary PPG-ECG coupling that varies unpredictably across
measurement sessions due to (1) state-dependent pulse wave mor-
phology changes (affecting peak detection differently than ECG
R-waves), (2) respiratory modulation of PPG amplitude creating
nonequivalent oscillations to ECG heart rate variations, and (3)
autonomic effects on peripheral vascular tone that decouple PRV
from cardiac electrical variability.

Frequency-domain parameters demonstrated complete failure
for intra-individual tracking despite substantial RMSE reduc-
tions, confirming fundamental incompatibility with within-person
monitoring. Activity: All frequency metrics showed (1) near-
zero/negative correlations (LF: 0.068→ 0.088; HF: 0.065→ -0.241;
LFHF: 0.084 → 0.234), (2) 100% nonsignificant t-tests across all
thresholds (  p > 0.12), and (3) substantial RMSE improvements (LF:
20903 ms² → 7597 ms², 64% reduction; HF: 29347 ms² → 11915
ms², 59% reduction). Sleep-stage results were equally discouraging:
(1) persistently low correlations (LF: 0.234→ 0.189; HF: 0.148→
0.158), (2) all p > 0.08, and (3) modest RMSE reductions (LF: 6,19
ms² → 3,82 ms², 44% reduction; HF: 10,68 ms² → 7,47 ms², 34%
reduction).

The LFHF showed particularly erratic behavior. Activity:
RMSE decreased minimally (1.67→ 1.56, 7% reduction—smallest
among all metrics), while correlation fluctuated wildly (-0.068 to
0.234) without achieving significance (  p > 0.39). Sleep: correla-
tion ranged 0.261–0.301 (all p > 0.03, all PFDR_27 > 0.08), while

Figure 19
SDNN: relationship between intra-individual Pearson’s correlation coefficient and 𝜏
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RMSE showed paradoxical patterns (1.14 → 0.90, 21% reduction
but non-monotonic trajectory).

ApEn showed context-dependent moderate performance with
coupled correlation-RMSE improvements during activity but ceil-
ing effects during sleep. Activity: ApEn correlation increased from
0.244 (  p = 0.117, PFDR_27 = 0.122, marginally nonsignificant) to
0.410 (  p = 0.091, PFDR_27= 0.101, marginally nonsignificant at𝛼 = 0.05), while RMSE decreased substantially from 0.225 to 0.142
(37% reduction). The failure to achieve formal significance despite
approaching the r = 0.2 threshold and substantial error reduction
suggests ApEn captures some genuine within-person variability but
with insufficient reliability for clinical applications. During sleep,
ApEn maintained consistent significance (r = 0.464 → 0.481, all
p < 0.001, PFDR_27 < 0.001) with excellent RMSE performance
(baseline 5.06→ final 3.06, 40% reduction).

LZC showed weak performance in both contexts. Activity:
correlations remained nonsignificant throughout despite moderate
RMSE reduction (0.361 → 0.253, 30% reduction). Sleep: LZC
achieved marginal baseline consistency (r = 0.273, p = 0.101) that
improved to borderline significance at stringent thresholds (r =
0.349 at 𝜏 = 0.1, p = 0.008, PFDR_27 = 0.066), with minimal RMSE
improvement (0.223→ 0.174, 22% reduction). The marginal statis-
tical significance, combined with modest error reduction, suggests
LZC has limited practical utility for within-person tracking even
under optimal conditions.

5. Discussion

This study systematically revealed the consistency boundaries
between PRV and HRV parameter estimation through multi-
scenario synchronous comparative analysis: PPG can replace ECG
for basic time-domain HRV analysis in low-motion interference
environments (especially during sleep), but strict motion control and
algorithm optimization are required in high-dynamic scenarios or
frequency-domain/nonlinear parameter assessments.

During sleep, PPG and ECG exhibit strong correlations in time-
domain metrics such as HR, MeanNN, and MedianNN, which align
closely with validation results from the Oura ring (nighttime HRV
correlation r² = 0.98) [47]. Additionally, we computed the MDE
based on our sample size (N = 14), significance level (𝛼 = 0.05),
and target power (1−β = 0.80), confirming that the study was suf-
ficiently powered to detect large effects (r ≥ 0.688 for correlation
analyses). This consistency stems from three physiological foun-
dations: (1) blood flow stability: during sleep, sympathetic tone
decreases, weakened peripheral vascular constriction, and improved
PPG signal-to-noise ratio [48]; (2) minimization of motion artifacts:
the absence of limb movement reduces acceleration interference,
avoiding pulse wave loss and peak shifts [48]; and (3) regularity of
respiratory rhythm: during slow-wave sleep, respiratory frequency
remains stable (0.1–0.3 Hz), reducing modulation of the PPG wave-
form morphology [49]. Notably, the high robustness of distribution
tail metrics such as Prc20NN/Prc80NN during sleep suggests that
PPG is better at capturing trends in the interbeat interval distribution
than discrepant metrics (e.g., SDNN), which is consistent with the
reported sensitivity of PPG to short-term heart rate fluctuations [4].

Compared to the sleep state, consistency significantly
decreases during the active state, especially for commonly used
HRV time-frequency-domain metrics such as SDNN, RMSSD, and
LF, whose PPG estimation results in the active state show almost
no correlation with ECG (r < 0.13), indicating that these parameters
are highly sensitive to PPG signal quality and susceptible to inter-
ference from movement. Especially in intra-individual consistency
analysis, basic indicators such as HR and MeanNN even degrade to

random levels during activity, further indicating that unprocessed
PPG signals struggle to reliably reflect true HRV characteristics
under natural conditions. The significant decline in consistency
during activity is primarily driven by dual physical-physiological
pathways: (1) signal physical level: high linear acceleration causes
optical misalignment, leading to PPG waveform distortion, whereas
ECG electrical signals exhibit stronger resistance to motion inter-
ference [50]; and (2) physiological level: increased sympathetic
activation during movement elevates vascular tension, reduc-
ing PPG amplitude and increasing peak detection error rates by
over fivefold [48]. It is worth noting the universal limitations of
frequency-domain and nonlinear indicators: parameters such as
LF/HF and ApEn lose their correlation during activity (r < 0.1),
consistent with Krolak and Pilecka’s conclusion [4] (decreased
correlation of frequency-domain features after exercise). The main
reason is that these parameters rely on long-term steady-state sig-
nals, while PPG motion artifacts disrupt the physiological coupling
of heart rate oscillations [49, 51].

By controlling the acceleration threshold, this study quantified
the sensitivity of different parameters to exercise interference. As
the threshold was gradually reduced, the consistency of key indi-
cators such as HR, MeanNN, and Prc80NN significantly improved,
particularly during the active phase, confirming that graded control
of exercise intensity is the core strategy for enhancing the accu-
racy of PRV. This result extends Lin et al.’s finding [50] that PPG
can restore HRV estimation capability during the “post-exercise
recovery period,” while this study further quantifies the exercise
intensity threshold. Future research can combine two enhance-
ment approaches: hardware level, using multi-wavelength PPG to
suppress motion artifacts [52], and algorithm level, introducing a
dynamic weighting model based on exercise thresholds to down-
weight high-exercise segments. It is worth noting that some metrics
(e.g., LFHF, ApEn, LZC) exhibit low correlation and significant
variability across all scenarios, potentially due to their reliance
on long-term data segments and signal stability. This suggests
that these advanced complexity metrics may be more suitable for
high-quality ECG signals rather than dynamic PPG recordings.

Interestingly, Prc20NN, as a distribution metric, exhibits sig-
nificant consistency during both sleep and active stages, maintaining
moderate correlation even under high interference conditions, and
remains consistent at both the individual and population levels.
Prc20NN’s cross-context reliability may stem from intrinsic resis-
tance to pulse PTT variability. This metric measures the 20th
percentile of interbeat intervals, representing the “fast heartbeat
zone” typically occurring during mild sympathetic activation (light
physical activity, emotional arousal). During these tachycardic peri-
ods, peripheral vasoconstriction stabilizes PTT at relatively short
durations. In contrast, mean-based metrics (MeanNN) aggregate
intervals spanning both sympathetic (short PTT) and parasym-
pathetic (long PTT, 250–350ms) dominance, experiencing sub-
stantially greater PTT-induced PPG-ECG timing discrepancies. By
exclusively sampling from the PTT-stable fast heartbeat zone,
Prc20NN minimizes exposure to state-dependent PTT fluctuations
that degrade other metrics. Supporting evidence from our data:
during activity, Prc20NN maintained significance (r = 0.516, p <
0.001) while MeanNN failed (r = 0.210, p = 0.455), consistent with
MeanNN’s vulnerability to mixing PTT-stable and PTT-variable
intervals. During sleep, both metrics performed well (Prc20NN r
= 0.663; MeanNN r = 0.689), suggesting PTT variability rather
than absolute PTT magnitude drives the activity-phase divergence.
Therefore, Prc20NN can serve as a key indicator for estimatingHRV
from PPG in dynamic scenarios and warrants further validation and
promotion in clinical and home settings.
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Our findings provide recommendations for prioritizing future
signal processing efforts. Metrics showing dual correlation-RMSE
improvements (HR, Prc20NN, MedianNN) represent motion-
remediable errors where advanced algorithms—whether deep
learning-based artifact removal or adaptive filtering—can expect
proportional returns. Conversely, metrics exhibiting RMSE reduc-
tion without correlation improvement (SDNN, RMSSD: 30–48%
error reduction, p > 0.1 for tracking) or complete failure despite
substantial RMSE gains (frequency-domain: 40–64% reduction,
zero within-person correlation) indicate fundamental physiologi-
cal discordance resistant to artifact removal alone. For these Tier
2–3 metrics, algorithmic efforts should pivot from noise suppres-
sion to physiologically informed correction (e.g., PTT modeling)
or alternative approaches leveraging PPG-native features rather
than mimicking ECG-derived indices. By establishing which met-
rics warrant correction versus redesign, our validation framework
ensures that future algorithmic innovations target the right problems
with appropriate techniques.

6. Study Limitations and Generalizability
Considerations

Several limitations warrant careful interpretation of our
findings.

1) Sample size and representativeness: This study included 14
healthy young adults (aged 21–28). Although this sample size
is sufficient for preliminary exploration, its statistical power
in estimating inter-individual correlations is limited. In addi-
tion, due to the strict criteria for removing motion artifacts,
some subjects may be excluded due to insufficient valid data,
further reducing the available samples and limiting the gen-
eralizability of the results to a wider population. It is worth
noting that this sample represents a best-case scenario for PPG
accuracy—young adults exhibit compliant vasculature, minimal
arterial stiffening, and homogeneous skin tones that optimize
optical signal penetration. Older adults, diverse ethnic groups
with varying melanin content, and individuals with cardiovas-
cular diseases (arterial stiffening, autonomic neuropathy) will
likely demonstrate worse PPG-ECG concordance. However,
this limitation strengthens rather than weakens our core find-
ings: if metrics fail to achieve reliable within-person tracking
(  p < 0.05) in this sample, they will certainly fail in more
challenging populations. In intra-individual analysis, statisti-
cal power remains adequate despite the small sample size.
Each participant contributed multiple 5-minute epochs and each
participant’s correlation coefficient represents an independent
observation derived from dozens of measurements. We adopted
conservative statistical practices including FDR correction and
explicit confidence interval reporting to guard against false pos-
itives. The independent replication of our core finding in Kiran
Kumar et al.’s 50-person cohort [53] provides convergent valid-
ity evidence, though we acknowledge this cannot substitute
for adequate power in our own sample. We therefore frame
all inter-individual findings as preliminary estimates requir-
ing larger-sample validation, while presenting intra-individual
results with appropriate confidence given adequate statistical
power.”

For intra-individual analysis—our primary scientific
contribution—statistical power remains adequate despite the
small sample size. Each participant contributed multiple 5-minute
epochs, and each participant’s correlation coefficient represents an

independent observation derived from dozens of measurements.
We adopted conservative statistical practices including FDR cor-
rection and explicit confidence interval reporting to guard against
false positives. The independent replication of our core finding in
Kiran Kumar et al.’s 50-person cohort [53] provides convergent
validity evidence, though we acknowledge this cannot substitute
for adequate power in our own sample. We therefore frame all
inter-individual findings as preliminary estimates requiring larger-
sample validation, while presenting intra-individual results with
appropriate confidence given adequate statistical power.

2) Device-specific validation: This study employed a single
custom-built wristband (Psychorus, Beijing, China) validated in
prior daily life studies [39–41]. Results may not generalize to
the diverse ecosystem of consumer wearables (AppleWatch, Fit-
bit, Garmin) due to differences in optical sensor configurations
(wavelength, sampling rate), algorithmic preprocessing (pro-
prietary peak detection and filtering), and wearing placement
(wrist vs. finger vs. chest). However, our core contribution—
metric-specific validity hierarchies (motion-remediable and fun-
damentally discordant)—reflects physiological PPG-ECG cou-
pling patterns likely generalizable across devices. For instance,
frequency-domain metric failure stems from PTT variability
and respiratory-vascular coupling—fundamental physiological
phenomena independent of device choice. We recommend that
future studies apply our validation framework (dual-criteria
assessment with motion threshold analysis) to commercial
wearables to determine whether similar Tier structures emerge.

3) Applicability in pathological states is uncertain: Cardiovascular
disease patients exhibit increased vascular stiffness, expanding
PTT differences between PPG and ECG and thus widening PRV-
HRV discrepancies [49, 54]. Autonomic neuropathy (common
in diabetes) may alter peripheral vascular reactivity [55], decou-
pling pulse wave characteristics from cardiac electrical activity
in unpredictable ways. Our findings establish PPG validity in
healthy populations but cannot be extrapolated to clinical cohorts
without dedicated validation. However, the mechanistic insights
we provide—distinguishing motion artifacts from physiological
vascular reactivity as dual error sources—can guide the design
of pathology-specific validation studies.

4) Breathing pattern effects: Controlled breathing significantly
impacts HRV metrics, particularly frequency-domain parame-
ters, by synchronizing respiratory sinus arrhythmia [49]. Our
study did not monitor respiratory rate or enforce breathing
protocols, introducing uncontrolled variance. However, this nat-
uralistic approach enhances ecological validity for real-world
wearable applications where breathing cannot be controlled.
The persistent failure of frequency-domain metrics despite this
“real-world” tolerance suggests their unreliability is not merely
an artifact of experimental constraints but reflects fundamental
limitations.

These limitations collectively suggest our findings provide
necessary but not sufficient conditions for PPG-HRV validity: met-
rics failing in young healthy adults using controlled devices will
certainly fail in broader applications, while metrics succeeding here
require further validation across ages, ethnicities, health statuses,
and devices before clinical deployment.
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