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Abstract: The implementation of new Industry 4.0 technologies in robotics (mobile and collaborative robotics) with artificial intelligence (AI)
is reshaping maintenance planning in advanced manufacturing. This paper analyzes the application of robotic systems combining
collaborative robots (cobots) and autonomous mobile robots (AMRs) as support for predictive maintenance. Predictive maintenance is
based on continuous real-time visual monitoring with the goal of managing faults. A mixed-methods approach was used, combining
quantitative metrics such as downtime reduction, mean time to repair, and return on investment with qualitative staff assessments. The
results of implementing robotic systems to support predictive maintenance indicate a significant reduction in production downtime,
increased operational efficiency, and faster resolution of faults in the manufacturing process. In addition to technical efficiency, the study
analyzes the economic feasibility, stability, and challenges of implementing Al vision systems within Industry 4.0. Compared to
previously published studies in this field, this work is distinguished by the implementation of a cobot and an AMR in a unified system
for visual inspection and control, with real-time data used for predictive maintenance. The system is connected to Computerized
Maintenance Management Systems software for maintenance planning and monitoring and Enterprise Resource Planning software for
real-time business activity planning. The results demonstrate that the integration of advanced robotics, computer vision, and machine
learning algorithms enables the transformation of the traditional reactive approach into a proactive asset management model, thereby

ensuring a long-term sustainable increase in reliability, safety, and competitiveness of the manufacturing processes.
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1. Introduction

In modern industrial environments, the demands for
maintenance have shifted toward unprecedented levels of
precision, operational safety, and efficiency. Conventional
maintenance approaches increasingly struggle to meet these
requirements, especially given the costly consequences of
unplanned production line interruptions, which can lower
productivity and weaken an organization’s competitive position.
Historically, two main maintenance models have been dominant:
reactive maintenance—performed only after a breakdown—and
preventive maintenance—conducted at fixed intervals regardless
of equipment condition. While the first leads to unpredictable
operational stoppages, the second often causes unnecessary
interventions and resource expenditures when the equipment is
still functioning optimally [1, 2]. The growing complexity of
production systems, coupled with stricter requirements for
continuous operation, has accelerated the adoption of predictive
maintenance (PdM) and autonomous inspection systems. Enabled
by Industry 4.0 innovations, PdM integrates real-time sensor data
with advanced analytics to anticipate potential failures before they
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occur [3, 4]. This approach leverages technologies such as
industrial Internet of Things (IoT) networks, sensor arrays, and
artificial intelligence (Al) algorithms, offering benefits that
include reduced downtime, improved spare parts management,
extended asset lifespan, and enhanced occupational safety.
Compared with preventive and reactive strategies, PAM provides a
more targeted and cost-efficient solution, aligning maintenance
efforts directly with the actual condition of machinery.
Autonomous mobile robots (AMRs) and collaborative robots
(cobots) have emerged as enabling technologies for implementing
PdM in real-world industrial environments. AMRs equipped with
advanced vision systems and localization technologies are capable
of navigating complex layouts and performing inspections of
critical infrastructure points without human intervention [5]. Their
integration with Al and computer vision enables fully automated
monitoring, predictive decision-making, and reduced exposure of
personnel to hazardous conditions. Cobots, in contrast, are
designed for safe interaction with human workers in shared
workspaces without physical barriers. They excel in tasks that
require fine diagnostics, rapid part replacement, and real-time data
processing, thereby enhancing the flexibility and responsiveness
of maintenance workflows. Hybrid systems, which combine
mobile robotic platforms with collaborative arms, further expand
operational possibilities. For example, mobile cobots such as the
KUKA KMR iiwa can achieve sub-7 mm accuracy through
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feature mapping, making them suitable for high-precision industrial
inspections [6—8]. Other configurations, like the Jackal platform
combined with the Kinova Gen3 manipulator, are deployed in
environments where autonomy and stability need to be carefully
balanced. Moreover, the application of Prognostics and Health
Management frameworks, supported by deep learning models,
facilitates accurate fault forecasting and timely intervention, leading
to cost optimization and minimal production disruptions. The
literature highlights that performance evaluation of such systems
typically focuses on coverage of inspection points, adaptability to
changing operating conditions, and interoperability with other digital
tools [9]. Successful implementation requires a systemic approach
encompassing infrastructure readiness, robust data analytics, and
stringent safety protocols [10]. Unlike prior studies that typically
address either mobile robots or cobots in isolation, the novelty of this
research lies in the integration of a MiR200 AMR and a UR10e
cobot into a unified system for visual inspection and PdM. A
distinctive contribution of this study is that the robotic setup is fully
connected to Computerized Maintenance Management Systems
(CMMS) and Enterprise Resource Planning (ERP) platforms in real
time, enabling direct translation of inspection data into maintenance
and operational decisions. To our knowledge, such a comprehensive
integration has not been documented in the existing literature, which
highlights the innovative character of the present research. This paper
aims to analyze the potential and limitations of AMRs and cobots for
industrial inspection and maintenance in real time. Particular attention
is given to their role in reducing downtime through autonomous
visual inspection, enhancing operational efficiency, and improving
system reliability. Additionally, the study examines the comparative
advantages of these systems over conventional maintenance methods,
along with technical and organizational challenges associated with
their integration into operational workflows.

2. Theoretical Framework and Literature Review

In this chapter, the theoretical basis for the application of AMRs
and cobots in inspection, monitoring, and maintenance tasks of
manufacturing processes in real time is established. The core
Industry 4.0 technologies, the operational role of service robots in
visual inspection enhanced by Al and machine learning (ML), and
error management techniques are examined, while empirical
evidence providing insights into downtime reduction and
maintenance costs is simultaneously analyzed. Robotic systems are
evolving from task executors to proactive data collectors and
analyzers with the aim of continuously optimizing manufacturing
processes. By integrating sensor networks, advanced analytics, and
digital twin technologies, adaptive systems are obtained that are
capable of making decisions reflecting the current state of
equipment in the production process and its environment.

2.1. Predictive maintenance and core technologies

PdM is a maintenance approach that relies on continuous data
monitoring, using robotic systems equipped with advanced sensor
technology and AL, which are capable of predicting when
equipment failure might occur in the production process, thereby
preventing unexpected breakdowns and ensuring optimal use of
equipment in manufacturing operations. Previous studies have
identified several different architectural models for PdM, such as
the Open System Architecture for Condition-Based Maintenance
(OSA-CBM) model, PdAM 4.0, and cloud computing—based
platforms, which represent a core technology of Industry 4.0. The
methodology itself ranges from classical ML algorithms to deep
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neural networks designed for fault detection and remaining useful
life prediction [11]. Notable successful industrial implementations
have been reported in the literature, where companies such as
Aquanta and Gecko Robotics have used integrated robotic systems
for monitoring, control, and supervision of production systems,
applying predictive analytics to detect failures and thus significantly
reduce downtime and optimize maintenance. PAM is enabled by
technologies that include temperature, ultrasonic, vibration, light
detection and ranging (LiDAR), and pressure sensors, Al systems,
and big data processing; these integrated technologies facilitate real-
time decision-making. The mentioned technologies operate within a
comprehensive cyber-physical infrastructure that connects devices with
IoT networks, big data frameworks, and cloud computing resources.
Enhanced by additive manufacturing, augmented reality, and virtual
reality technologies, they represent the fundamental technologies of
Industry 4.0, enabling remote monitoring and control of production
processes [12]. This approach transforms reactive maintenance into
interactive maintenance, thereby extending the lifespan of equipment
and providing a competitive advantage in the global market.

2.2. Service robots in industrial settings

Service robots are defined as autonomous or semi-autonomous
systems designed to perform useful tasks that support human
operators or equipment in professional and industrial environments
[13]. The primary categories in industrial use include AMRs,
cobots, and specialized inspection robots. Their deployment has
substantially improved safety, reliability, and operational efficiency,
with port logistics being a notable application area. To better
understand global adoption patterns, an analysis of professional
service robot implementations over the past 13 years, based on
statistical data published by the International Federation of
Robotics, the United Nations Economic Commission for Europe,
and the Organisation for Economic Co-operation and Development.
The findings, illustrated in Figure 1(a), show a consistent upward
trend, underscoring the increasing strategic importance of robotics
in contemporary industrial systems [14—16].

By analyzing Figure 1(a), we conclude that in the period from
2013 to 2023, there has been significant use of service robots for
professional purposes, with a notable increase from 2016. The
most significant application of service robots has occurred in
recent years: in 2022, 346,000 robot units were deployed, and by
2023, the deployment increased to 580,000 robot units. The result
of such an application of service robots for professional use is the
implementation of core Industry 4.0 technologies, and robotic
technology is one of the fundamental technologies without which
the implementation of Industry 4.0 in manufacturing processes
cannot be imagined. The increase in the implementation of robotic
technology in manufacturing processes is driven by technological
innovations, the increased automation of manufacturing processes
themselves, and the reduction in the cost of robotic systems. In
Figure 1(b), the trend of service robot use in logistics in the
period from 2014 to 2023 is shown. The use of service robots in
logistics showed a continuous upward trend from 2014 to 2018.
In the period from 2018 to 2020, the trend slightly declined,
which can be associated with the impact of the COVID-19
pandemic. The trend of significant growth in the use of service
robots in logistics began in 2021, so that in 2022, around 86,000
robot units were deployed, and by the following year, 2023, the
highest growth was recorded, with 316,000 robot units deployed.
In recent years, in all highly developed countries, there has been
the implementation of Industry 4.0 and significant automation of
all processes. The growth trend in the use of service robots is
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Figure 1
Deployment of service robots for (a) professional applications
and (b) logistics worldwide, 2013-2023
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associated with increased trade, higher demand for rapid package
processing, and the implementation of advanced technologies in
mobile robotics. Service robots for professional use are applied in
all segments of industrial sectors to perform tasks hazardous to
human health, including monitoring and control of manufacturing
processes for the early detection of potential failures.

Figure 2 shows different designs of AMRs equipped with
advanced sensor systems for comprehensive inspection, monitoring,
and condition analysis of manufacturing processes [17, 18].

2.2.1. Collaborative robots (cobots): Technological
foundations and industrial applications

Cobots are second-generation industrial robots and differ from
standard first-generation industrial robots because they are more

advanced, safe to work alongside humans, easy to program, and
adaptable for performing various tasks [19]. The advantages of cobots
stem from their role in supporting rather than replacing human labor
in collaborative workplaces. Collaboration with cobots requires
multiple levels of human safety strategies, so many implementations
still lack adequate safety protocols and compliance with standards.

The development of cobots is the result of progress in several
technological fields such as:

Advanced sensor technologies: Cobots are equipped with 3D
cameras, LiDAR systems, and force and torque sensors,
enabling them to detect human presence and immediately stop
operation to prevent accidents.

Artificial intelligence and machine learning: By using Al, cobots
learn from environmental feedback, recognize behavioral
patterns, and adjust their operations, thereby reducing the
number of tasks and the need for frequent reprogramming.

Safety engineering: Cobots are designed in accordance with
international standards such as ISO/TS 15066, which ensures
strict limits on force, speed, and reaction time without
interfering with human response.

Simple programming: Unlike first-generation industrial robots, cobots
can be trained through intuitive methods such as demonstrations
performed by operators, allowing the robot to learn through tasks.

These advantages are particularly beneficial for small and medium-
sized enterprises (SMEs):

Efficient flexibility: For various production processes, cobots can be
easily moved and reprogrammed and can be simply adapted for
mass production.

Cost-effectiveness: They are less expensive than first-generation
industrial robots, have lower maintenance costs, improve
workplace safety, and actively contribute to reducing workplace
injuries.

Increased productivity: The joint action of human knowledge and
robot precision leads to increased productivity and reduced
production errors.

Currently, the implementation of cobots takes place in all
sectors such as packaging, assembly, welding, laboratories, quality
control, food and pharmaceutical production, etc. Robot
manufacturers such as FANUC, ABB, Universal Robots,
Techman Robot, and KUKA are driving innovations in this field,
expanding the range of their applications. It is particularly
important to highlight the company Universal Robots, which in
2008 launched the URS cobot—one of the earliest commercially
available robots that is safe to work alongside humans. They have
developed models such as UR3, URS5e, UR10e, and UR20, which
are used in industrial facilities around the world. The trend of
cobot applications worldwide is shown in Figure 3 [14-16].

Figure 2
Structural variations of service robots utilized in predictive maintenance applications
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Figure 3
Implementation trends of collaborative robots (2017-2025) and
2023 deployment compared to traditional industrial robots
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The growth trend of cobot applications on an annual basis is
illustrated in Figure 3 for the period from 2017 to 2023, showing
a clear increase from 11,000 to 58,000 robot units. The trend of
cobot implementation is positive but still insufficient, as in 2023,
it accounted for only 10% compared to traditional industrial
robots (Figure 3). The growth trend in cobot applications is
associated with the implementation of Industry 4.0 and its core
technologies, such as Al, cloud computing, the IoT, and digital
twins, which enable improved operational flexibility and
integration of cobots within smart manufacturing processes.

Cobots are not used as a replacement for human labor but work
together with humans to increase productivity, safety, and flexibility of
manufacturing processes [20]. They are well-suited for use in SMEs
and can be integrated into existing production processes with
minimal disruptions. A notable area of cobot application is in PdM,

where they operate together with a mobile platform equipped with
all the mentioned sensors, as shown in Figure 4. Their use in PdAM
optimizes operational efficiency and reduces downtime [21-23].

Cobots represent a support in the transition to manufacturing
processes that are not only highly automated but also adaptable and
intelligent [24]. They are increasingly used for advanced tasks in
inspection and maintenance. A significant example is the company
Air-Cobot, which enables autonomous visual inspection of aircraft
in close coordination with human operators. By implementing these
advanced technologies, cobots today can operate in unpredictable
and dynamic environments, providing high value in industries
where safety and precision are paramount. The implementation of
cobots promotes deeper integration of Industry 4.0 technologies,
thereby giving SMEs access to advanced technologies that were
previously economically unattainable for them [25].

2.3. AI/ML-enhanced visual inspection

Modern robotic inspection platforms leverage an array of
sensing technologies—ranging from 2D/3D cameras to LiDAR,
stereoscopic setups, and time-of-flight sensors—supplemented by
robust software frameworks like OpenCV, PyTorch, and
TensorFlow. This synergy ensures high repeatability and precision
in identifying defects and irregularities. Deep learning techniques,
for example, have been applied in the automotive sector to detect
scratches, select components, and locate anomalies via object
detection, segmentation, and anomaly detection models [26]. In
industrial scenarios, the shortcomings of 2D vision systems—such
as sensitivity to lighting variations and airborne particles—are
often addressed through the deployment of 3D sensors and
advanced real-time algorithms. Coupling these systems with Al-
driven modules allows on-the-fly adjustment of inspection
parameters based on changing environmental conditions, thereby
reducing false positives and missed detections. When integrated
with digital twin technology, these platforms enable virtual testing
and process optimization before physical rollout, transforming
inspection from a reactive quality control step into a proactive
element of predictive and preventive maintenance.

2.4. Integrated real-time fault management

Managing equipment faults in real time involves linking robotic
systems to platforms like CMMS and ERP solutions to align
technical, logistical, and administrative workflows. Within
inspection-based operations, intuitive human—machine interfaces
give operators visibility into system status, the ability to trigger
inspections, and access to live analytical feedback [26]. This level
of integration reduces fault response time by enabling the

Figure 4
Design variations of collaborative robots on mobile platforms for predictive maintenance applications
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automatic generation of repair orders based on sensor data. More
sophisticated implementations—such as hydro-inspection systems—
combine automated anomaly detection with operator guidance and
multi-system connectivity. In an Industry 4.0 framework, these
capabilities are enhanced through IoT networks, cloud-based analytics,
and digital twins, allowing for proactive intervention planning and
resource optimization. The outcome is greater system reliability,
minimized downtime, and improved operational sustainability.

2.5. Evidence from practice: efficiency gains and
cost reductions

Field data consistently demonstrate that autonomous robotics
and Al-supported PdM can produce significant operational
savings while extending asset lifespans. For example, predictive
platforms have helped companies such as Coca-Cola and Siemens
Energy lower maintenance expenses by as much as 23% annually
through early problem detection and improved scheduling.

On automated lines, the deployment of cobots such as the
UR10e in welding and assembly has halved production cycle
times and boosted overall throughput—critical advantages for
SMEs constrained by limited human resources [27]. Similar trends
appear in mining, where autonomous inspection units have
replaced manual checks, leading to both improved safety and
reduced downtime. In one food processing facility, integrating
mobile robots into a CMMS environment cut emergency
interventions by 35% and saved approximately USD 180,000
annually. Positions shown in Figure 5 clearly demonstrate that the
benefits of robotic system implementation extend beyond direct
maintenance cost reductions, encompassing significant decreases
in unplanned downtime, which in turn enhances overall
production capacity. Furthermore, improvements in workplace
safety and the reduced exposure of workers to hazardous tasks
constitute an additional—albeit less quantifiable—advantage

[28, 29]. Empirical evidence indicates that the integration of
mobile and collaborative robots with advanced analytics platforms
fosters sustainable operational advantages and strengthens the
competitive positioning of enterprises within the Industry 4.0
framework.

3. Research Methodology

3.1. Methodological framework

In this paper, we adopt an integrated methodological concept by
combining qualitative and quantitative approaches to obtain a
comprehensive assessment of the role of cobots and AMRs in the
autonomous process of control, monitoring, and maintenance
within the production process. The analytical model in Figure 6
illustrates the selection of a case study, how the roles of an AMR
or a cobot can be defined, and how their performance can be
evaluated based on predefined key performance indicators (KPI).

In this paper, the numerical analysis is focused first on
collecting and then processing measurable efficiency indicators,
taking the mean time to repair (MTTR), then the mean time
between failures (MTBF), total number of stoppages, and total
downtime. The analytical part of the research is through a case
study. It enabled us to gain an in-depth understanding of the
adoption of Industry 4.0 technologies within the production
process in any environment. The experimental research was
conducted according to a predefined test scenario in which an
AMR and a cobot perform their tasks, which include control,
monitoring, inspection, and PAM. A comparative analysis with
data from before the implementation of robotic systems gives us a
clear picture for assessing changes in operational efficiency. Such
a mixed-methods approach is recognized in industrial and mobile
robotics research to achieve a balance between empirical results
and contextual insights [30, 31].

Figure 5
Impact of robotic systems implementation on downtime reduction and annual cost savings
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Figure 6
Methodological framework of the study
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3.2. Selection of industrial setting and case study
design

The research is based on a case study conducted in the
automotive industry, a sector identified for its advanced
integration of Industry 4.0 technologies [32]. The selected
production line comprises multiple stages, including subassembly,
visual inspection, and final quality testing, with a strong emphasis
on meeting stringent safety and reliability requirements.

The decision to focus on the automotive sector was guided by
several factors:

Advanced automation infrastructure — established readiness for
robotic and digital system integration.

High financial impact of downtime — unplanned stoppages can incur
losses exceeding several tens of thousands of euros per hour.
Complex inspection requirements — necessitating the integration of visual
and sensor-based inspection technologies relevant to this research.

The production environment integrates cobots at various
workstations with AMRs responsible for intralogistics tasks, such as
component transport and preliminary inspection. This hybrid
configuration offers an optimal platform for assessing the combined
performance of mobile and collaborative robotic systems in real
industrial conditions. The case study was conducted in a European
automotive manufacturing facility characterized by a high degree of
automation and digitalization. Data were obtained through a
combination of direct and indirect sources. Primary data included
automated records from the CMMS platform, financial and
operational data from the ERP system, and IoT-enabled sensor
streams generated by the robotic units. Secondary data included
internal company reports on production efficiency and maintenance
costs, which were accessed under confidentiality agreements. The
experimental setup employed two robotic units: one MiR200 AMR
and one URI10e cobot. Together, these robots covered the
inspection and maintenance of a critical production line segment
that historically exhibited frequent unplanned downtimes. This
hybrid configuration enabled the collection of quantitative
performance indicators and qualitative feedback from operators,
ensuring a comprehensive evaluation of the system’s effectiveness.

3.3. Functional role of mobile and collaborative
robots in the system

The system under analysis employed a MiR200 AMR and a
UR10e cobot. The AMR is equipped with multiple sensing modalities:
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LiDAR for autonomous navigation and obstacle avoidance,
RGB-D camera for visual inspection,
Ultrasonic sensors for detecting objects in close proximity.

The UR10e cobot is integrated with both 2D and 3D industrial
imaging systems and operates in combination with anomaly detection
algorithms based on convolutional neural networks (CNNs)
implemented in the PyTorch framework. In this study, a ResNet-50
CNN architecture was employed, trained on a dataset comprising
12,000 annotated images of real-world components. The MiR200
AMR is equipped with a SICK LiDAR LMSI111 sensor (0.25°
angular resolution, 20 m range) and an Intel RealSense D435 RGB-D
camera (1280 x 720 pixels). The UR10e cobot is integrated with a
Basler ace2 Pro 3D camera (3.2 MP, 60 fps). Interfacing with CMMS
and ERP platforms is achieved via the MQTT protocol for IoT
integration, alongside the OPC UA standard to ensure industrial
interoperability. The deep learning models were trained using a dataset
of actual production line components to detect micro-cracks, surface
scratches, and deformations that are not discernible to the human eye.

The integration of an AMR and a cobot, both equipped with
advanced sensor arrays, enables a fully automated inspection
workflow, as shown in Figure 7 [33].

The workflow diagram of'the integrated AMR—cobot inspection
process, shown in Figure 8, illustrates data collection via sensors,
CNN-based analysis, classification of components, and automatic
integration with CMMS/ERP platforms. The AMR transports
components to the inspection station, where the cobot performs a
visual assessment. The captured data are processed by an Al
algorithm, which classifies the inspected items as compliant (OK)
or non-compliant (NOK).

Classification results are automatically transmitted to the
CMMS and ERP platforms.

This hybrid robotic configuration aims to reduce human
involvement in repetitive inspection tasks, enhance fault detection
accuracy, and minimize response times to failures.

3.4. Performance evaluation
System efficiency was assessed using the following KPIs:

MTTR (mean time to repair) — the average time required to restore
functionality after fault detection.

MTBF (mean time between failures) — the mean operational time
between two consecutive breakdowns.

Unplanned downtime frequency — the total number of unexpected
operational interruptions.
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Figure 7
Autonomous mobile robot and collaborative
robot equipped with multiple sensors

Source: Mobile Industrial Robots (2025). “MiR-Go Enabled
Robotics MC250” product page.

Figure 8
Workflow diagram of the integrated
AMR-cobot inspection process
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Total downtime duration — the cumulative length of all stoppages
within the observation period.

ROI (return on investment) — calculated from maintenance cost
reductions and productivity gains.

3.5. Data acquisition and processing
Data were collected from three primary sources:

CMMS - automated records of failures, repair durations, and
preventive maintenance actions.

ERP platform — financial and operational data related to production,
procurement, and maintenance costs.

Sensor-based monitoring — IoT-enabled data streams from the AMR
and cobot, including visual data, temperature readings, and
vibration measurements.

The processing workflow included:

Data cleaning — removing incomplete records and correcting
anomalies.

Data integration — consolidating heterogeneous datasets into a
unified database via ETL (Extract, Transform, Load) processes.

Data analysis — applying statistical and ML methods to identify
operational patterns and trends.

Visual datasets underwent preprocessing, including noise
filtering, contrast normalization, and object segmentation [34]. Al
models were trained in GPU-accelerated environments using
TensorFlow and PyTorch, while results were visualized in
Tableau dashboards.

Data validation was performed to ensure that measurement results
were unaffected by production load changes or external variables.
Control  groups—production line sections without robotic
integration—were monitored in parallel, allowing the isolation of
effects attributable solely to the new automation technology.

4. Results and Discussion

4.1. Quantitative analysis of outcomes

The evaluation covered two consecutive six-month periods—
one before and one after the robotic system deployment.
Statistical validation was conducted using a paired #-test (p < 0.05)
to determine the significance of changes in KPI values [35]. The
results demonstrated a notable decrease in MTTR and a
significant increase in MTBF, accompanied by a measurable
reduction in total downtime. ROI analysis indicated a 32% return
in the first year following implementation Table 1.

Beyond standard statistical validation using the z-test, an
analysis of effect size was performed. The findings reveal a
substantial impact of the robotic system implementation on key
performance metrics, namely, MTTR (Cohen’s d=1.21) and
MTBF (d=1.05). Additionally, 95% confidence intervals were
computed: MTTR CI95% [1.7-2.5 h], MTBF CI95% [180-240
h]. These results further substantiate the significance and
robustness of the observed improvements in system performance.

Table 1
Key performance indicators (KPIs) before and
after robotic system implementation

Before After Change
KPI indicator implementation implementation (%)
MTTR (Mean Time 4.8 h 2.1h -56.3%
to Repair)
MTBF (Mean Time 120 h 210 h +75.0%
Between Failures)
Number of 15 6 -60.0%
Unplanned
Downtimes
Total Downtime 540 140 -74.1%
Duration (h)
ROI in First Year — 32% —
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The integration of the robotic system into the manufacturing process
resulted in significant improvements across key performance
indicators, particularly in reducing downtime and maintenance
costs. Data were systematically collected over two consecutive six-
month periods—before and after the robotic system implementation
—allowing for a robust longitudinal evaluation of automation’s
impact on production continuity and enabling precise quantification
of its benefits. Prior to the system’s deployment, production
disruptions were predominantly caused by human errors,
operational inconsistencies, and maintenance irregularities, all of
which negatively affected operational efficiency and output.
Following the introduction of the robotic system, the production
process exhibited marked stabilization, as evidenced by a
substantial decrease in unplanned stoppages and enhanced overall
system reliability. Furthermore, the robotics-enabled continuous
monitoring of equipment conditions and the execution of PdM
protocols contributed to further reductions in maintenance
expenditures and associated downtime. These empirical results
highlight the critical role of advanced technological integration in
optimizing industrial workflows and elevating standards of
operational excellence.

Graphical Illustration of Downtime Before and After Robotic
System Implementation

Downtime remains a vital metric for assessing the effectiveness
of automation [35]. Figure 9 presents a comparative analysis chart
illustrating the total downtime, expressed in hours, across selected
production lines before and after the robotic system adoption.

The graph shown in Figure 9 presents the total downtime,
expressed in hours, for five production lines before and after the
implementation of robots. Comparative analysis of total downtime
(in hours) across five production lines before and after robotic
implementation. Bars represent mean values, while error bars
indicate the 95% confidence intervals. The asterisk (*) denotes a
statistically significant difference (p < 0.05) between pre- and post-
robotic implementation values. All lines recorded a significant
reduction in downtime following the introduction of robotic systems.

The largest decrease was observed on Line 1, where downtime
dropped from 120 to 35 h, while the smallest reduction occurred on
Line 3, from 140 to 50 h. A similar trend is evident across the
remaining lines, with reductions ranging from approximately
60% to 80%.

The monthly trend of total downtime (expressed in hours)
before and after the implementation of the robotic system, shown
in Figure 10, indicates a continuous decrease throughout the

Figure 9
Comparative analysis graph of total downtime (in hours) on five
production lines before and after robot introduction (95% CI)
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Figure 10
Monthly trend of total downtime (in hours) before and after
robotic system implementation
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evaluation period. These results indicate that the application of
robots has a direct positive impact on reducing operational
interruptions and increasing production efficiency. Overall, the
data in the table confirm a consistent pattern of performance
improvement across all analyzed production lines.

4.2. Qualitative insights and operator feedback

In addition to the quantitative metrics demonstrating the
enhanced efficiency and productivity achieved through the
implementation of the robotic system, this study placed significant
emphasis on evaluating operator experience and subjective
perceptions of the technology’s integration into daily workflows.
Data were collected through in-depth interviews, structured
questionnaires, and focus group discussions, with a total of 42
operators surveyed. Three predominant themes were identified: (1)
heightened perception of safety, (2) alleviation of work monotony,
and (3) the necessity for additional training. All participants had
been continuously employed at the facility for at least six months
prior to the implementation of the robotic system. This ensured
that respondents were familiar with the production processes both
before and after the system’s deployment, allowing them to provide
informed and experience-based assessments of the technological
integration. Moreover, correlation analysis demonstrated a significant
relationship between operator satisfaction with Human—Robot
Interaction (HRI) and the reduction of operational errors (r=0.62,
p<0.01). These findings indicate that the qualitative insights are
directly aligned with quantitative performance outcomes, highlighting
the interplay between human factors and robotic system effectiveness.

The results of the key performance indicators (MTTR, MTBEF,
downtime, ROI) before and after the implementation of the robotic
system, shown in Figure 11, clearly demonstrate significant
improvements in operational efficiency.

The majority of operators expressed a high degree of satisfaction
with the system’s intuitive design and ease of use. Over 85% of
respondents reported that the user interface facilitated straightforward
operation without necessitating extensive technical knowledge or
complicated instructions. Operators highlighted that the automation
of repetitive tasks and the clear visibility of controls considerably
reduced occupational stress and uncertainty, thereby fostering greater
confidence in their interactions with the robotic system.
Such positive reception is instrumental in mitigating resistance to
technological adoption, a commonly identified barrier in
manufacturing  digital transformations [36]. Supporting these
findings, Marino et al. [12] emphasize that clear and user-friendly
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Figure 11
Comparative bar chart of key performance indicators (MTTR, MTBF, downtime, ROI) before and after robotic system
implementation
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interfaces accelerate the acceptance of robotic systems and improve
operator satisfaction. Safety emerged as a critical concern among
operators, particularly regarding work in close proximity to
autonomous robots. The necessity for seamless coordination between
human workers and robotic agents often introduces apprehension and
caution. However, the implementation of advanced safety protocols
—including human presence detection sensors and automated
emergency stop mechanisms—was reported to substantially enhance
perceived workplace safety. Approximately 90% of respondents
indicated increased feelings of security due to these measures, which
in turn alleviated stress associated with robot proximity and fostered
a more positive work environment [37]. Corroborating these
observations, Saleem et al. [38] identify safety technologies such as
LIDAR sensing and designated safety zones as pivotal in reducing
risk perception among workers in highly automated facilities. Despite
favorable evaluations of the system’s simplicity, approximately 60%
of operators underscored the importance of ongoing and advanced
training, especially concerning robotic control, programming
fundamentals, and task customization. This finding underscores the
necessity of comprehensive educational programs and continuous
technical support to maximize the benefits of automation technology
[39]. The institution of regular training sessions, workshops, and e-
learning modules is advocated to equip operators with the skills to
manage unanticipated scenarios and optimize operational processes
independently. Such capacity building not only elevates workforce
competency but also reduces reliance on external technical services,
ultimately contributing to operational cost savings and increased
production flexibility. Fan et al. [40] similarly highlight the critical
role of continuous education in the successful integration of cobots
within manufacturing environments.

Operator feedback further revealed positive impacts on human—
robot interaction quality. Participants reported a notable reduction in
monotonous and physically demanding tasks, which translated into
improved job satisfaction and decreased fatigue and stress during
work shifts. This advancement has a direct positive effect on overall
productivity and error reduction, enabling operators to concentrate
on quality assurance and process optimization while delegating
repetitive activities to robotic systems. Enhanced coordination
between human personnel and automation technologies reflects the
successful application of collaborative robotics principles in the

production setting. Faccio et al. [41] similarly document that the
incorporation of cobots positively influences employee motivation
and satisfaction, with downstream benefits for manufacturing
efficiency. Figure 12 illustrates operators’ overall satisfaction with
the robotic system across multiple dimensions including usability,
safety, training adequacy, and impact on work-related stress. The
bar chart displays that over 85% of operators rated usability and
safety as highly satisfactory, while approximately 60% emphasized
the need for expanded training programs.

The qualitative analysis substantiates that robotic system
deployment delivers significant advantages in usability, safety, and
operator satisfaction. Concurrently, it identifies essential areas for
improvement through targeted training and support frameworks. This
integrated approach, addressing both technological and human
dimensions, is foundational for the sustainable and effective adoption
of advanced automation technologies in contemporary industrial
production.

While the findings of this study clearly demonstrate the positive
impact of integrating mobile and collaborative robots on
reducing downtime and improving operational efficiency, certain
limitations must be acknowledged when interpreting the results.

Figure 12
Operators’ overall satisfaction with the robotic system
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First, the experimental setup involved a limited number of robotic
units and was focused on a specific sector—the automotive
industry—which may restrict the generalizability of the results to
other industrial domains with different process requirements.
Furthermore, the evaluation period was relatively short, meaning
that long-term effects on performance sustainability and economic
viability require further investigation. In addition, the
implementation took place in a facility with a high level of
digitalization and automation, which may imply that results could
differ in less technologically advanced environments. Future
research should include a broader range of industrial sectors, a
larger number of robotic units, and extended monitoring periods
to verify the stability and transferability of the observed benefits.

5. Conclusions

The results presented in this paper confirm the justification for
implementing robotic systems in manufacturing processes for PdM,
as production downtime is significantly reduced and operational
efficiency is increased. By implementing these systems, average
daily downtime is reduced by approximately 75%, which
improves productivity, task execution accuracy, and workplace
safety through the introduction of advanced detection and
protection systems. The conducted research provides practical
guidelines for the successful implementation of robotic systems in
manufacturing processes, including the use of modular
architectures for easier scalability, addressing technical and
economic challenges, and organizing operator training programs.
Although the research was conducted with a limited number of
units in a pilot environment, it represents a basis for further
studies in this field. Future research should focus on investigating
long-term performance, integration with IoT and other smart
factory systems, and application in various industrial sectors to
verify and validate the results. Subsequent studies should focus on
cross-sectoral validation of results and comparability in industries
such as food processing and pharmaceuticals, using quantitative
measures such as downtime, production quality, and operational
efficiency. Likewise, long-term and scalable studies should be
conducted over a period of at least 24 months, with quarterly
assessments monitoring indicators such as maintenance costs,
robot failure rates, and software update performance. Future
development is directed toward integration with the latest
technologies, such as 5G networks, digital twins, and edge Al,
with the aim of improving predictive analytics, while also
presenting challenges regarding system interoperability and
cybersecurity. Product lifecycle assessment, taking into account
economic, environmental, and social impacts, is crucial for the
overall evaluation of benefits, as are automation costs. For
sustainable industrial transformation, adapting the workforce
through reskilling and organizational change is essential. The
research in this paper provides a new demonstration of
implementing a cobot and an AMR in an integrated PdM
architecture. The study is original because it combines a real-time
robotic inspection system with CMMS and ERP software,
resulting in improved technical characteristics and direct
organizational and economic benefits. This is precisely what
distinguishes this research from other similar studies addressing
robotics for the maintenance of manufacturing systems.
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