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Abstract: Guided by such relentless scientific curiosity, the field of wearable diagnostics has evolved from experimental concepts into 

sophisticated, organ-centric platforms capable of capturing rich physiological and biochemical data in real time. This review encapsulates the 

interdisciplinary transformation wherein bioelectronics, materials science, and artificial intelligence (AI) converge to create next-generation 

wearables that intimately interface with organs such as the brain, eyes, heart, skin, and lungs. Graphene-based imperceptible e-skins now 

enable neuromuscular signal acquisition with angular resolutions approaching ∼4° and signal fidelity exceeding traditional Ag/AgCl 
electrodes. AI-enhanced electroencephalographic (EEG) headbands decode motor intent with >92% accuracy in under 2 s, paving the way 

for real-time brain–computer interactions. Simultaneously, noninvasive microneedle arrays and sweat-interfacing chemosensors demonstrate 

femtomolar sensitivity for glucose, lactate, and even nucleic acids, boasting >80% correlation with gold-standard clinical assays. The domain 

has experienced a >60% increase in advanced functional materials—PEDOT: PSS hybrids, MXenes, oxide nanosheets—and a >70% rise in 

mechanical adaptability and miniaturization, dramatically expanding diagnostic possibilities in ambulatory environments. Dry electrode 

systems in smart eyewear, epidermal patches, and Virtual Reality (VR)-integrated systems now maintain <1.13 μV Root Mean Square 

(RMS) noise levels, 98–99% classification accuracy, and uninterrupted operation exceeding 12 hours, even in motion-rich conditions. As 

these intelligent, autonomous devices continue to shrink the gap between biological and digital systems, they are poised not merely to 

monitor health but to redefine human–machine symbiosis in the era of predictive and personalized medicine.

wearable biosensors, smart healthmonitoring, dry electrode systems, artificial intelligence in healthcare, organ-centric diagnostics

1. Introduction

The word technology originates from the Greek tekhnologia
(τϵχνoλoγία), a combination of techne—meaning “art” or
“craft”—and logos—meaning “discourse” or “study” [1].
Wearable technology, in this sense, represents a carefully crafted
synergy between human needs and scientific advancements,
designed to enhance our interaction with our physiology [2]. As
we embark on a journey through smart healthcare monitoring, we
uncover how this once-niche innovation has grown into a
transformative tool in the modern medical landscape. Smart
wearable technology refers to electronic devices worn on or near
the skin, designed to detect, analyze, and communicate data
derived from bodily functions and environmental inputs [3]. These

devices empower users by providing real-time feedback on vital
parameters such as heart rate, oxygen saturation, temperature, and
sleep patterns. Their widespread integration into daily life—
especially through smartwatches and fitness bands—has reshaped
consumer behavior, lifestyle monitoring, and proactive health
management. Pioneering contributions to this field include the
work of Dr. Christopher Toumazou, who developed wearable
sensors for real-time medical monitoring, and Steve Mann,
regarded as the father of wearable computing for his early
inventions of body-worn technologies [4]. Commercial
breakthroughs by innovators like James Park and Eric Friedman,
co-founders of Fitbit, and Apple’s advancements in consumer
electronics, further popularized wearable health devices on a
global scale. Equipped with advanced sensors and embedded
systems, these devices function within the broader framework of
the Internet of Things (IoT), a concept introduced by Kevin
Ashton in 1999 to describe a network of interconnected objects

*Corresponding author:Dinesh Bhatia, Department of Biomedical Engineering,
North Eastern Hill University, India. Email: dbhatia@nehu.ac.in

Smart Wearable Technology
2025, Vol. 1, A13, 31 Pages

DOI: 10.47852/bonviewSWT52026811

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0009-0009-0715-4858
https://orcid.org/0009-0000-7534-7453
https://orcid.org/0009-0007-6487-163X
https://orcid.org/0000-0001-5412-8868
mailto:dbhatia@nehu.ac.in
https://doi.org/10.47852/bonviewSWT52026811
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


capable of exchanging data autonomously [5]. In this context,
wearable devices do not merely collect information—they transmit
it seamlessly to cloud platforms, healthcare providers, and other
connected systems, enabling integration into digital healthcare
ecosystems with minimal human intervention. The applications of
such technologies extend across healthcare, communication,
entertainment, sports, and fashion, yet their growing presence also
raises pressing concerns about data privacy, ethical governance, and
cybersecurity issues that scholars like Hansen and Nissenbaum [6]
have long emphasized in digital ethics discourse. What makes this
era particularly promising is the integration of smart materials—
substances capable of sensing, adapting, and healing—into wearable
systems. Researchers such as Professor John A. Rogers, known for
his skin-like flexible electronics, and Dr. Zhenan Bao, renowned for
her work in stretchable, self-healing polymers, have pioneered
innovations that transform static devices into intelligent, interactive
health solutions [7, 8]. This journey of technological evolution has
its earliest roots in humble tools, such as eyeglasses, attributed to
Salvino D’Armate in the 13th century, and hearing aids, which
served to restore basic human functions. Today’s artificial
intelligence (AI)-enabled biosensors and responsive materials are a
far cry from their predecessors, yet they carry forward the same
intent: to enhance human well-being. As we trace this journey from
mechanical aids to intelligent, responsive wearables, we recognize
that the goal of healthcare is no longer limited to treatment; it now
encompasses prevention, insight, anticipation, personalization, and
dignity. Smart healthcare monitoring embodies this shift, ushering
in a future where medical care is seamlessly interwoven with
everyday life.

The adoption of smart wearable technologies in India exhibits
marked regional heterogeneity, influenced by digital literacy,
socioeconomic stratification, infrastructural maturity, and degrees of
urbanization. Kerala leads with a penetration rate of 72%, driven by
a high digital literacy index and a culture of health-conscious civic
behavior. Goa follows at 71%, benefitting from robust telecom
infrastructure and dual demand from a digitally aware residential
base and a tech-savvy tourist population. Maharashtra reports 70%
adoption, predominantly concentrated in metropolitan zones such as
Mumbai and Pune, where homegrown brands—boAt, Noise, and
Realme—command substantial market share through value,
engineered, AI, and integrated offerings. Tamil Nadu, with emerging
urban innovation corridors like Chennai and Coimbatore,
demonstrates accelerated uptake, particularly in the post-pandemic
shift toward self-monitoring and remote diagnostics [9]. Uttar
Pradesh, despite its demographic heft, registers a 46% adoption rate,
reflecting disparities in affordability, awareness, and last-mile
connectivity—yet holds latent potential under expanding e-health
outreach and smartphone penetration. Jharkhand’s 50% wearable
uptake is noteworthy given persistent infrastructural constraints in
tribal and rural belts. In contrast, Bihar, at 43%, remains at the lower
end of the spectrum, although initiatives like BharatNet and the
Digital India Mission are poised to catalyze future expansion [10].
The COVID-19 pandemic catalyzed a subtle but systemic
transformation in India’s health monitoring paradigm. Across living
rooms, Intensive Care Unit (ICUs), and fitness centers, slender
wristbands, sensor-embedded rings, and smart glasses emerged as
unobtrusive yet powerful interfaces of physiological surveillance.
From Kerala’s digitally connected households to Goa’s high-speed
corridors and Maharashtra’s AI-driven urban centers, adoption
surged, crossing the 70% threshold in select states. In tier 2 towns,
elderly populations now rely on these systems for fall detection and
blood pressure (BP) alerts. At the same time, urban Gen Z users
integrate them as lifestyle-centered, early-warning systems, flagging

cardiovascular anomalies, mental fatigue, and even pre-neurological
disruptions [11]. With increased policy thrust—via the Ayushman
Bharat Digital Mission (ABDM), National Digital Health Mission
(NDHM) interoperability standards, and wearable, linked
teleconsultation schemes—India’s wearable landscape is shifting
from a consumer gadget economy to a foundational layer in
preventive, personalized healthcare [12]. These devices, powered by
edge AI and continuous biosignal analytics, are no longer
discretionary tech—they are decentralized nodes in a growing
ecosystem of ambient, real-time health intelligence. They represent
not only a digital leap but also a socio-technological reconfiguration
of how India envisions, accesses, and decentralizes health.

The ABDM, inaugurated in September 2021 under the
stewardship of Dr. R. S. Sharma and the Ministry of Health and
Family Welfare, heralds a new era of digitally orchestrated, patient-
centric healthcare in India. Envisioned as a federated, interoperable
ecosystem, ABDM seeks to harmonize diverse health data streams,
bridging the chasm between universal insurance coverage and
effective healthcare delivery, particularly in regions historically
underserved. Within this dome, smart wearable emerges as silent
sentinels, capturing the subtle rhythms of physiology and translating
them into actionable insights. ABDM’s architecture can be
elegantly classified into three interwoven strata.

The key elements of ABDM’s interoperability and governance
can be envisioned as follows:

1) Ayushman Bharat Health Account: A digital lodestar, uniquely
identifying each individual and anchoring their personal health
journey.

2) Healthcare facility registry: A compass of care, cataloging
hospitals, clinics, and diagnostic centers nationwide.

3) Healthcare professionals registry: A ledger of expertise, enumerating
licensed clinicians to ensure accountability and reliability.

The operational pillars of ABDM’s digital health services can
be envisioned as follows:

1) Personal health records: A living repository, empowering
individuals to steward their own health narratives.

2) Telemedicine platforms: Bridges of care that transcend
geographic barriers, bringing clinicians to the bedside virtually.

3) e-Pharmacy and e-Lab services: Digital conduits for prescriptions
and laboratory insights.

4) Insurance integration: Seamless alignment with schemes such as
PM-JAY, ensuring financial protection converges with clinical care.

The structural pillars enabling ABDM’s digital cohesion can be
envisioned as follows, forming a neural lattice:

1) Unified health interface: A digital synapse, interlinkingmyriad health
applications through standardized Application programming
interfaces (APIs).

2) Health information providers and users: Dynamic channels,
enabling bidirectional, standardized health data flow.

3) Consent manager: A guardian of autonomy, ensuring that every
data exchange respects individual consent.

4) National health claims exchange: The loom of accountability,
weaving insurance claims seamlessly across the healthcare fabric.

1.1. Scientific premise and motivation

The ascent of wearable health technologies is underpinned by
the convergence of nanoscale biosensor engineering, conformable
electronics, embedded AI, and microfluidic precision. Evolving
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beyond pedometric novelty, today’s wearables function as
multimodal diagnostic systems enabling continuous, real-time,
noninvasive physiological monitoring. In the United States,
Abbott’s FreeStyle Libre 3 and Dexcom G7 exemplify state-of-
the-art CGMs, delivering sub-10% mean absolute relative
difference (MARD) with minute-level telemetry via Bluetooth
Low Energy (BLE), effectively mitigating hypoglycemia [13]. In
Canada and the EU, Hexoskin’s textile-integrated platforms—
embedding dry, contact electrocardiography (ECG), respiratory
inductance plethysmography, and triaxial accelerometry—support
elite performance analytics and cardiopulmonary research. The
integration of the Internet of Medical Things (IoMT) with
machine learning (ML) in emergency response systems has been
extensively discussed in prior literature. These studies highlight
the critical need for latency and reliability benchmarks to ensure
the effectiveness of life-critical applications. In particular, the
importance of conducting latency stress tests to evaluate the
performance of IoMT, ML systems under various conditions,
ensuring their readiness for real-world applications in emergency
healthcare settings. This underscores the necessity of establishing
standardized metrics to assess and enhance the reliability of such
integrated systems in time-sensitive scenarios. In India, amid
rising cardiometabolic disease, consumer wearables from GOQii,
boAt, and Noise incorporate Saturation of peripheral oxygen
(SpO2), heart rate variability (HRV), and dermal thermometry,
contributing to a market projected at ₹20,000 crore (∼USD 2.4B)
by 2025 [14]. The UK’s Epicore Biosystems’ Gx Sweat Patch
leverages electrochemical assays of sodium and chloride to inform
hydration strategies in sports medicine [15]. Apple’s Food and
Drug Administration (FDA)-cleared single-lead ECG, deployed in
over 120 countries, enables mobile atrial fibrillation surveillance
via AI-enhanced waveform analysis [16]. Fitbit’s electrodermal
activity (EDA) sensors operationalize psychophysiological
tracking, translating galvanic skin responses (GSRs) into stress
biomarkers [17]. Policy frameworks such as India’s Digital Health
Mission, the NHS Long Term Plan, and the FDA’s Digital Health
Innovation Action Plan are integrating these systems into national
care delivery. As global health shifts toward continuous risk
stratification and personalized prevention, wearables are no longer
auxiliary—they are foundational instruments of data-driven,
decentralized medicine. This transformation unfolds across three
key dimensions:

1) The rise of smart wearables: Historically, healthcare
monitoring was confined to episodic, clinic-based checkups,
relying heavily on manual readings and delayed diagnostics.
Devices like traditional sphygmomanometers or finger-prick
glucose meters—though revolutionary in their time—provided
only momentary snapshots of a patient’s condition, lacking
continuity and personalization. Patients with chronic conditions
were often left to self-interpret their symptoms in the interim,
resulting in reactive rather than proactive care. In contrast, the
current era of smart wearables marks a paradigm shift toward
real-time, AI-assisted, predictive health management. The
scientific impetus behind this revolution lies in the
convergence of biosensor miniaturization, microfluidics,
flexible electronics, and cloud-based analytics. Devices like
Dexcom G7 and Abbott’s FreeStyle Libre now offer painless,
continuous glucose monitoring through the skin, replacing
finger pricks with dynamic feedback loops [18]. The Hexoskin
smart shirt, integrated with textile-based ECG and respiration
sensors, provides 24/7 cardiopulmonary data, once only
accessible in intensive care settings [19]. Sweat-analyzing

devices like Epicore’s Gx Patch offer hydration and electrolyte
data previously impossible to assess noninvasively [20]. This
transition redefines medical engagement by bringing clinical-
grade intelligence directly to the wrist, skin, or fabric,
empowering individuals with autonomy over their physiology.

2) Innovative health monitoring solutions: Today’s smart
wearables have evolved from niche gadgets to validated
clinical tools, reshaping the global health monitoring
landscape. Abbott’s FreeStyle Libre 3, the world’s smallest
and thinnest continuous glucose monitor (CGM), provides
real-time glucose readings every minute with a MARD of
7.9%, making it nearly as accurate as blood-based clinical tests
[21]. Originally built for Type 1 and 2 diabetes, it is now
widely used by Indian biohackers and wellness enthusiasts to
map glycemic response to specific foods, thereby enhancing
metabolic control and dietary planning. Empatica’s Embrace2,
cleared by the US FDA, is a wearable designed for seizure
detection. It uses EDA, temperature sensors, and motion
tracking to detect tonic-clonic seizures with 98% accuracy in
clinical trials, alerting caregivers via a connected smartphone.
Beyond epilepsy, its passive sensing capabilities are being
researched for applications in autism, anxiety, and Post
Traumatic Stress Disorder (PTSD). The Oura Ring Gen 3, a
titanium-based smart ring, measures temperature variation with
0.13°C accuracy, HRV, and respiratory rate [22]. It is
clinically validated for sleep staging with 79% agreement with
gold-standard polysomnography, making it useful for early
detection of sleep apnea, stress, and chronic fatigue. Its use
among Indian professionals is growing, particularly for
optimizing sleep in high-stress sectors like IT and civil
services. Apple Watch Series 9, with its advanced optical heart
sensor and electrical heart sensor, performs single-lead ECGs
and has an atrial fibrillation detection algorithm that
demonstrated sensitivity of 98.3% and specificity of 99.6% in
a Stanford Medicine study [23]. It also features fall detection,
cycle tracking, and ambient noise monitoring. Importantly,
Apple’s partnership with leading research institutions has
enabled population-level studies on cardiac anomalies using
anonymized user data from over 400,000 participants in the
Apple Heart Study. In India’s rural belts, where over 65% of
the population resides but the doctor density remains low, such
devices serve as frontline health monitoring tools. For instance,
in Jharkhand and Chhattisgarh, pilot initiatives using wearables
to monitor maternal heart rate and oxygen saturation have
shown a 34% reduction in preventable complications during
high-risk pregnancies. In India, the uptake of digital health
technologies is constrained by systemic and sociocultural
factors. Digital literacy remains limited, with only 37% of rural
households having a member able to use health applications,
falling to 22% on national benchmarks (Government of India,
2023). Financial structures are similarly restrictive: Ayushman
Bharat excludes most wearable devices, while out-of-pocket
expenditure already accounts for 48.2% of total health
spending (MoHFW, 2022). Infrastructure adds to the gap, as
over 26% of rural districts still face patchy 4G coverage, with
average download speeds of 13.5 Mbps compared with
41 Mbps in urban centers (TRAI, 2024). Cultural determinants
are equally prohibitive. Less than 6% of individuals report
using mental health applications, despite far higher uptake of
fitness and nutrition platforms (InnoHealth, 2020). Pilot
surveys show that adolescents in rural regions, even with
smartphones, avoid such tools due to fear of stigma and social
judgment. Ethnographic studies indicate that psychological
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distress is more commonly expressed as somatic complaints such
as headaches or fatigue, with open discussion of mental illness
rare, particularly among women (ICMR, 2023). These findings
demonstrate that resistance to mood or stress tracking
wearables arises largely from cultural taboos rather than
technical limitations. Distrust of algorithmic tools further
compounds these barriers. Surveys reveal that informal
providers in several states consistently favor human judgment
over AI outputs, reflecting broader anxieties about privacy,
transparency, and reliability. Together, these systemic
constraints, cultural resistances, and epistemic mistrust explain
why adoption remains uneven, underscoring the need for
context-sensitive design and locally validated deployment
strategies. Brazil has recently taken the plunge into integrating
wearables within its public telehealth and chronic care
frameworks. Early pilots targeting diabetes and cardiovascular
disease have already borne fruit, showing measurable gains in
both adherence and clinical outcomes. Policy debates within the
Unified Health System are now turning the corner, focusing on
how best to weave sensor-derived data into the fabric of routine
care. India, by contrast, presents a patchwork trajectory. Its vast
cadre of over one million Accredited Social Health Activists
provides an unparalleled community interface, yet uptake of
wearables remains a mixed bag. To move the needle, India must
capitalize on this grassroots network, build digital competence,
and keep costs within reach. Kenya offers a middle path worth
emulating.

The Figure 1 delineates the architectural schema of India’s
burgeoning digital health ecosystem, conceived under the
aegis of the Ayushman Bharat Digital Mission, to engender
a sovereign, interoperable, and citizen-empowered
framework for health data governance. It encapsulates a
stratified assemblage of digital components, commencing
with the user-facing stratum comprising hospital
information systems, personal health record interfaces, and
telemedicine applications that interlink patients,
practitioners, and payors through a unified technological
conduit. At the infrastructural nucleus lies the Unified
Health Interface, which operationalises a suite of
standardised application programming interfaces to
facilitate the discovery and integration of physicians,
diagnostic laboratories, pharmacies, and healthcare
facilities, thereby mitigating systemic fragmentation across
disparate service providers. The Health Information
Exchange and Consent Manager functions as the fiduciary
custodian of health data, orchestrating the lawful and
granular exchange of electronic health records—spanning
diagnostic artefacts, prescriptions, and treatment summaries
—under patient consent, thus underpinning evidence-driven
clinical practice, epidemiological intelligence, and policy
analytics. Adjacent to this, the Health Claims Exchange
digitises the financial substratum of healthcare delivery
through eClaims protocols, structured markup languages,
and algorithmic adjudication, substantially diminishing
transactional latency and administrative redundancy.
Anchoring these functional edifices are the federated digital
registries encompassing the Ayushman Bharat Health
Account, authenticated directories of medical professionals
and institutions, and codified pharmaceutical inventories,
which collectively fortify provenance, standardisation, and
data veracity. The entire ecosystem is scaffolded upon
India’s cross-domain digital public goods—namely
Aadhaar for identity verification, the Unified Payments

Interface for instantaneous value exchange, e-Sign and
DigiLocker for digital attestation, and consent artefacts for
jurisprudential compliance—which together instantiate a
resilient architecture of digital trust.

Despite facing infrastructural headwinds similar to India’s,
internet penetration climbed to 40–48% of the population by
2024–25, buoyed by the surge in mobile connectivity.
Community health worker–led mHealth interventions have
consistently paid dividends, with clear improvements in
maternal health and chronic disease management.
Importantly, surveys report over 70% willingness to adopt
mobile health tools—far outstripping rural India—
suggesting that trust and cultural alignment can tip the
scales even when infrastructure is imperfect. For India to
keep pace, wearable health pilots must be benchmarked
against these international exemplars. First, smartphone
penetration among target populations should hit the 70%
mark, matching conditions in Brazil and Kenya. Second,
connectivity must extend to at least 40% of households,
echoing Kenya’s effective usage threshold. Third, the
willingness to adopt digital health tools must clear 60%,
with Kenya’s >70% as a gold standard. Fourth, early pilots
must demonstrate at least a 15% lift in primary outcomes—
be it medication adherence, clinic attendance, or service
uptake—before scaling, replicating the gains already
chalked up abroad. Finally, affordability is non-negotiable:
the combined cost of devices and connectivity should
remain under 5% of monthly household health expenditure
for the lowest income quintile. By setting its sights on
these parity metrics, India can avoid reinventing the wheel
and instead piggyback on lessons learned in Brazil and
Kenya. The endgame is clear: wearable health programs
that are not only technically sound but also socially
embraced and economically sustainable.

3) Economic implications of smart health technologies: In India’s
evolving healthcare ecosystem, where over 55% of health
expenditure is out of pocket, smart wearables are emerging as a
critical force in lowering healthcare costs and reshaping the
insurance sector. Devices like the FreeStyle Libre (for
continuous glucose monitoring), Apple Watch (with ECG and
atrial fibrillation alerts), and GOQii Vital (popular in India for
SpO2 and heart rate monitoring) are empowering individuals to
track and manage chronic conditions like diabetes, hypertension,
and cardiac disorders before they escalate into costly
hospitalizations [24]. This shift from episodic care to preventive
and continuous care reduces both direct medical costs (hospital
stays, diagnostics) and indirect costs (loss of productivity, long-
term disability). Indian insurers like Aditya Birla Health, ICICI
Lombard, and HDFC ERGO are now integrating wearable data
into wellness, linked insurance products, offering cashback,
reduced premiums, or health rewards based on user activity,
sleep, or heart health metrics. For instance, Aditya Birla’s “Activ
Health” policy offers up to 30% premium returns through a
Healthy Heart Score tracked by wearables. Moreover, startups
are collaborating with wearable platforms to extend insurance
services to tier 2 and rural populations through telehealth, AI
analytics, and diagnostics at the edge, further reducing
administrative and clinical costs. As India pushes toward
universal health coverage and digital health under the ABDM,
smart wearables hold the potential to bridge the gap between
insurance coverage and effective healthcare delivery, particularly
in underserved areas.
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1.2. Objective of the study

In an age where healthcare is no longer confined to hospital
walls, this paper sets out to throw light on the remarkable
journey of smart wearable technologies—from humble step
counters to intelligent biosensors that quietly and continuously
watch over our health. At its heart, this review seeks to bridge
the gap between innovation and understanding, guiding readers
through the science, the systems, and the stories that make these
devices more than just gadgets. These wearables are rewriting
the rules of care—empowering individuals to track their vital
signs, detect illnesses early, and manage chronic conditions with
newfound confidence, often without setting foot in a clinic.
Crucially, the paper highlights how wireless technologies—like
Bluetooth, 5G, and near-field communication (NFC)—have been
the invisible threads stitching together a new era of healthcare,
enabling real-time monitoring, cloud-based analytics, and remote
interventions. Whether it’s a ring that tracks your sleep, a patch
that senses dehydration, or a smartwatch that flags cardiac
anomalies, these tools are breaking barriers once thought
insurmountable—geography, cost, inaccessibility, and delay. This
paper does not merely review technology; it tells the story of a
quiet revolution. A revolution where science meets the skin,
where AI meets empathy, and where health becomes something
we wear, understand, and act upon every day. By distilling
complex advances into a human-centered narrative, this work
aims to spread awareness, spark dialogue, and inspire action so
that smart healthcare may become not just an innovation of the
few but a lifeline for all.

2. Literature Review

Over the past 15 years, the healthcare sector has undergone a
profound digital transformation, catalyzed by converging
technologies in biosensing, wireless telemetry, and AI. Yet, the roots
of wearable health monitoring stretch across millennia, beginning
with rudimentary optical and auditory aids and culminating in
today’s intelligent, interconnected biosensing ecosystems. As early as
the 1st century CE, Roman philosopher Seneca the Younger used a
water-filled glass globe to magnify texts—an early experiment in
visual enhancement [25]. This concept matured into wearable
eyeglasses during 13th-century Italy’s golden age of Venetian
glassmaking. The 17th century introduced non-electronic ear
trumpets, aiding the hearing-impaired and laying the groundwork for
auditory wearables. The genesis of electronic wearable technology
formally began in 1955 when Edward Thorp and Claude Shannon
designed an analog roulette predictor concealed within a shoe [26].
This marked the dawn of wearable computation, capable of real-time
data processing and transmission. Shortly after, NASA—driven by
the exigencies of the space race—developed biosensor-equipped suits
that transmitted astronauts’ physiological data (heart rate, respiration,
and core temperature) to Earth via telemetry. In parallel, biophysicist
Norman J. Holter revolutionized cardiology with his 1960s invention
of the Holter Monitor—a 38-pound portable ECG device that
recorded cardiac rhythms over 24–48 hours, enabling continuous
cardiac monitoring during normal activities [27]. Tracing its
conceptual lineage to this device, the current paradigm of wearable
health monitoring reflects the adage “what goes around, comes
around,” with Holter technology undergoing iterative transformations

Figure 1
Digital health infrastructure
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—from analog waveform transmission to solid-state microprocessors
integrated within smartphones. The cultural embrace of quantified
self-tracking began in 1965, when Japanese innovators Dr. Iwao
Ohya and Juri Kato introduced the Manpo-Kei, a mechanical
pedometer promoting the “10,000 steps/day” norm—now a fitness
mainstay [28]. The subsequent decades saw innovations like the
Hamilton Pulsar (1972), the first digital Light Emitting Diode (LED)
watch, and Polar Electro’s wireless HRV monitor (1982), which
shifted wearables from passive monitors to performance, optimizing
tools for athletes. During the 1990s, MIT Media Lab spearheaded
smart clothing initiatives under leaders like Rosalind Picard and
Steve Mann, embedding sensors in garments to capture emotional
and environmental data, heralding the era of affective computing
[29]. The early 2000s saw the arrival of Bluetooth 1.1, enabling
wireless syncing of wearables with smartphones, GPS-based motion
tracking, and biometric integration [30]. Wearables such as wireless
earbuds, watches, and rings proliferated, transforming personal health
tracking into a lifestyle practice. The launch of the Fitbit Classic
(2009) and Apple Watch Series (2015 onward) marked a watershed
moment. These devices integrated multi-axis accelerometers,
gyroscopes, optical heart rate sensors (via photoplethysmography
[PPG]), GPS, and sleep-stage algorithms—enabling real-time health
analytics. Advanced models now measure SpO2, ECG, Respiratory
Rate (RR), BP, and even noninvasive glucose levels, transitioning
wearables into tools of clinical relevance. During the COVID-19
pandemic (2020–2022), the relevance of wearables soared by over
150%. Devices incorporated sensors for skin temperature, respiratory
effort, and oxygen desaturation, detecting early COVID symptoms
and supporting public health surveillance. As Wang et al. [31]
highlighted, this phase accelerated wearables’ integration into remote,
low-burden chronic disease management, particularly for diabetes,
cardiovascular disorders, and Chronic Obstructive Pulmonary
Disease (COPD). Between 2023 and 2025, wearable health systems
entered the AI-driven diagnostic era. Platforms like Apple Health+
and Amazon Clinic foster closed-loop care by integrating wearable
data, genomics, and electronic health records (EHRs). Contemporary
devices such as Zio XT (iRhythm Technologies) and BioButton
(BioIntelliSense) showcase compact, clinically validated wearables.
Zio XT offers a 14-day ECG with IP57 protection, while BioButton
tracks respiration, temperature, and motion for up to 90 days using
embedded power modules [31, 32]. Kumar et al. detail how modern
wearables use Bluetooth 5.0, biocompatible substrates, and edge
microprocessors for seamless, low-latency diagnostics [33].
Innovations include EEG–based brain–computer interfaces (BCIs)
that decode motor imagery using convolutional neural network
(CNN) and Long Short-Term Memory (LSTM) algorithms with over
92% accuracy within 2 s, as validated by Frank et al. [34].
Meanwhile, Bittium Faros 360 and QardioCore provide multi-lead
ECGs with IP67 protection, HRV analytics, and real-time streaming,
building on foundational research by Holter and Corday. Avant-
garde signal processing now enables nonlinear dynamic analysis
using Poincaré plots—mathematical tools rooted in Henri Poincaré’s
work. van Rheden et al. [35] have operationalized these plots in
platforms like Movesense and Hexoskin for diagnosing autonomic
dysfunctions. Similarly, Man et al. [36] pioneered compact
vectorcardiography via Frank lead systems, achieving near 12-lead
equivalence in ambulatory form. Human-centered design also
remains a pillar. Drawing from To Err is Human, Tierney et al. [37]
stressed the importance of human factors (HF) in minimizing
cognitive load, improving usability, and reducing medical errors.
Wearables now integrate intuitive interfaces and haptic feedback,
especially for the elderly and differently abled. Recent deployments of
Wireless Body Area Networks (WBANs) for mental health

monitoring have provided valuable insights into practical architecture
choices and human-factor constraints. Integration of various
biosensors within WBANs allows monitoring of parameters such as
ECG, respiration, and temperature, with the objective of enhancing
patient safety and preventing accidental deaths in mental health care
settings. These systems also emphasize the importance of designing
WBAN prototypes that facilitate effective patient management and
ensure safety in critical health monitoring scenarios. Building upon
these studies, we expanded Section 3.1 to compare our proposed BLE
architecture with the WBAN topologies reported in their work and
added a new row to Table 1 summarizing connectivity, sensor
modalities, and patient acceptability. The historical trajectory of
wireless communication has deeply influenced the parallel evolution
of wearable biosensing systems—technologies that have matured
through distinct generational leaps, reflecting breakthroughs in
computation, materials, and healthcare paradigms. Table 2
summarizes major milestones in wearable health monitoring, detailing
the material/platform, clinical application, and AI/ML validation. It
traces the progression from early mechanical devices, like the
sphygmomanometer and Holter monitor, to modern edge-AI-enabled
wearables, including CNN–LSTM health forecasting, graphene/
MXene epidermal e-skins, and federated learning-enabled devices,
while also projecting future developments in sustainable and self-
healing substrates.

The following chronological schema delineates the
generational transitions of wearable biosensor technology and its
integration into clinical and consumer health landscapes:

1) Generation 0: the analog genesis

“From Mechanical Curiosity to Physiological Insight.” The
analog era of wearable healthcare began in 1896 with Scipione
Riva-Rocci’s invention of the sphygmomanometer, a noninvasive
device for measuring arterial pressure that comprises an inflatable
cuff, a mercury manometer (with a capacity of ∼300 mmHg), and
auscultation via a stethoscope—a landmark in quantifying
cardiovascular physiology using indirect mechanical principles
[38]. As the 20th century progressed, the clinical environment was
shaped by analog tools such as tuning forks (typically 512 Hz) for
auditory and neurological assessments, mercury-in-glass
thermometers (∼35–42°C range) with peak-hold constrictions for
core temperature monitoring, and mechanical stethoscopes that
evolved from Laënnec’s monaural design to dual-lumen binaural
models, enabling precise auscultation across cardiac, pulmonary,
and gastrointestinal systems [39]. The 1940s introduced
mechanical pneumographs and Benedict–Roth spirometers that
translated thoracic excursions into analog signals of respiratory
rate and tidal volume (RR ±0.2°C resolution) emerged—
particularly in aerospace medicine—enabling skin temperature
tracking and metabolic monitoring, laying the primitive
foundation for future thermal biosensing platforms [40]. Ancient
precursors like abacus rings worn in China (1600s) for manual
calculation and eyeglasses worn as vision prostheses (∼13th
century), although not medical in a modern sense, reflect the long-
standing impulse toward body-integrated function enhancement.

2) Generation 1: electrophysiological monitoring and analog
computation

“Bioelectric Pioneers and Telemetry Frontiers.” The first
generation of electronic wearables witnessed the shift from passive
mechanical sensing to active bioelectrical signal acquisition, analog
computation, and telemetry integration. In 1955, Edward Thorp and
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Claude Shannon developed the first wearable analog computer—a shoe-
concealed roulette predictor—which, although non-clinical,
demonstrated the viability of real-time signal processing and covert
embedded electronics for physiological applications [26]. This
conceptual leap catalyzed the biomedical community’s attention
toward cybernetic monitoring. The 1960s marked a clinical revolution
with Norman J. Holter’s invention of the Holter monitor, a 38-pound
portable ambulatory ECG system utilizing magnetic tape recording
and analog amplifiers to continuously track cardiac rhythms over
24–48 hours, ushering in non-hospital-based electrophysiological
diagnostics. In parallel, the NASA biotelemetry suits, developed for
manned spaceflight, integrated analog biosensors (ECG electrodes,
thermistors, and strain gauges) into astronaut suits to continuously
capture heart rate, respiratory patterns, and core body temperature,
transmitting data via Radio Frequencies (RF) telemetry systems for
ground-based physiological monitoring—effectively creating the
earliest telehealth framework in extreme environments [41].

3) Generation 2: digital conversion and wearable metrics

“From Passive Sensing to Biofeedback.” The third evolutionary
wave in wearable biosensing marked the migration from analog
circuitry to digitally encoded physiological telemetry, enabling real-
time analytics, biofeedback, and multi-parameter integration. In
1982, Polar Electro (Finland) revolutionized sports science by
launching the world’s first wireless digital heart rate monitor,
capable of quantifying HRV using electromagnetic pulse detection
and digital RF transmission, thereby allowing endurance athletes to
correlate sympathetic–parasympathetic modulation with training
intensity. This milestone marked the introduction of digital
biofeedback into ambulatory settings [42]. By the early 1990s,
researchers at the MIT Media Lab—notably Rosalind Picard, Alex
“Sandy” Pentland, and Jennifer Healey—pioneered affective
computing, engineering “smart clothing” embedded with sensors for
GSR, peripheral skin temperature, PPG, and ambient light detection
[43]. These textile-integrated platforms captured not only physical
but also psychophysiological states, laying the theoretical and
hardware groundwork for emotional computing and context-aware
biomedical systems. In 1997, Thad Starner introduced one of the
first wearable augmented reality systems, incorporating head-

mounted displays, microprocessors, and miniature input interfaces,
which allowed for real-time visual overlays, biometric data access,
and contextual computing in a form that predated and conceptually
influenced later platforms, such as Google Glass [44]. Collectively,
this era transitioned wearable technology from reactive health
monitoring to active, personalized digital feedback systems,
redefining human–machine physiological interactivity.

4) Generation 3: the consumer health revolution

“Miniaturization, Connectivity, and Lifestyle Integration.” The
early 2000s saw wearable technology transition from the lab to daily
life, driven by low-power Bluetooth and compact microcontrollers.
These enabled continuous monitoring of movement, location, and
surroundings with minimal battery use. In 2009, Fitbit Classic
made activity tracking mainstream using a triaxial accelerometer
to measure steps and sleep, marking the rise of health as a
lifestyle [17]. Then came Nike FuelBand (2012), which turned
movement into a social game using its “Nike Fuel” metric,
blending brand identity with self-quantification [45]. Though
discontinued, it sparked a wave of behavior-driven fitness devices.
Other developments included Google Glass (2013) and Samsung
Simband (2014), the latter featuring an open health sensor
platform with modular components like PPG, GSR, and ECG.
These tools enabled developers to create custom biosensing tools
for both consumer and research use.

5) Generation 4: clinical-grade wearables and integrated
sensors

“Convergence of Consumer and Clinical Frontiers.” This era
brought medical accuracy to the wrist. Apple Watch Series 1+
introduced sensors like PPG, ECG, fall detection, and sleep
tracking, blurring the line between wellness and clinical care.
Behind the scenes, sensor chips like AD8233 (biopotential) and
ADXL362 (motion) enabled detailed signal capture with ultra-low
power [46]. Wearables began processing data on-device using
microcontrollers like the ADuCM3029, allowing real-time feedback
without cloud reliance [47]. Sweat and saliva biosensors also
emerged, enabling enzymatic amperometric/potentiometric detection
of glucose, lactate, and sodium in real time via flexible patches or

Table 2
Year-wise performance evolution: rule-based to AI models in wearable biosignal monitoring

Year Model Type Platform/Materials Clinical Task Sensitivity Specificity Latency Observations

2000–2005 Threshold-based
arrhythmia
detection

Digital Holter recorders
with QRS filters

R-peak detection, HRV
anomaly analysis

65–70% 78–80% Offline Retrospective, lacked
real-time capability.

2006–2010 Rule-based
accelerometry
wearables

MEMS accelerometers
in chest straps

Activity recognition,
fall detection

68–72% 80–83% <1s Threshold cut-offs; low
adaptability to motion
artifacts.

2011–2015 Heuristic multi-
signal fusion

Wristbands (PPG +
accelerometer)

HR, sleep staging,
activity scoring

70–75% 82–85% <1s Heuristic scoring;
inter-user variability
affected accuracy.

2016–2020 Enhanced rule-
based ECG
filters

ARM Cortex-M3/M7
microcontrollers

Ambulatory arrhythmia
detection (threshold +
HRV metrics)

72–78% 82–85% <1s Low hardware demand;
frequent false
positives during
ambulatory use.

2021–2023 CNN–LSTM
hybrid (AI)

ARM Cortex-M7 (600
MHz); Snapdragon
Wear 4100

Multimodal forecasting
(seizure prediction,
cardiac alerts,
biosignal fusion)

88–92% 89–91% <2s Superior accuracy and
robustness; reduced
motion artifact noise
compared to rule-
based baselines.
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smart pacifiers (limit of detection [LOD]≈ 0.7 nA/mM) [48]. By 2020,
clinical-grade wearable ECGs like Zio Patch and temperature trackers
like TempTraq were being deployed for neonatal and COVID-19 care
[49]. This generation laid the groundwork for clinical-grade
diagnostics in a compact, user-friendly form.

6) Generation 5: AI diagnostics and pandemic-driven expansion

“Remote Care and Real-Time Intervention.” COVID-19
accelerated demand for remote health tracking. Devices like Zio XT
and BioButton offered continuous ECG, temperature, and respiration
monitoring, helping doctors make decisions from afar. SpO2 and skin
temperature sensors became standard. Neuroprosthetic wearables
capable of decoding EEG signals were explored for Amyotrophic
Lateral Sclerosis (ALS) patients [50]. In 2022, products like Oura
Ring Gen 3 and Whoop 4.0 emphasized readiness, strain, and sleep
score tracking [51]. Wearables evolved from passive trackers to
intelligent health companions—essential during a global health crisis.

7) Generation 6: AI + genomics + closed-loop ecosystems

“Personalized, Predictive, and Eco-Conscious Healthcare.”
Modern platforms like Apple Health+ and Amazon Clinic have
begun merging real-time wearable biosignals with genomics and
EHRs, enabling closed-loop care systems that dynamically monitor
BP, glucose, cortisol, hydration, and even mental health parameters
[52]. This hyper-personalized diagnostic shift is paralleled by
advances in eco-conscious biosensor design, with stretchable,
battery-free wearables constructed from graphene nanocomposites,
cellulose substrates, and biodegradable electronics, offering
sustainable alternatives to conventional medical devices. The US
FDA, under the 2025 leadership of Commissioner Marty Makary,
initiated a structural overhaul incorporating AI simulations, organ-
on-chip models, and a 20% workforce reduction to streamline device
approvals, sparking debate over regulatory velocity versus scientific
integrity [53]. Alongside, newly approved clinical-grade wearables in
2024—such as the Spectra Wave Writer Alpha SCS, Simplera CGM
patch, Vercise DBS suite, and Empatica’s seizure monitor—
exemplify the transition toward noninvasive, connected, and
autonomous chronic care tools, now recognized under Class II/III
medical device frameworks [54].

8) Generation 7 (emerging): sustainable smart medicine and
global health equity

“From Wearable Devices to Wearable Ecosystems.” The newest
generation focuses on making wearable healthcare accessible and
sustainable. Affordable biosensors priced under ₹1,500 are now
being used in rural India, Africa, and Latin America for chronic
disease monitoring and early disease detection. Meanwhile, the UK
NHS targets net-zero emissions by 2040, pushing the industry
toward recyclable devices and green electronics. Wearables are no
longer just personal gadgets—they’re part of a global shift toward
equitable, eco-conscious healthcare delivery [55]. Collaborative
efforts between private firms and global health agencies now focus
on scalable biosensing platforms compatible with mobile phones,
enabling early-warning systems for outbreaks and non-communicable
diseases in low-resource regions. Integration of blockchain ensures
secure sharing of biosensor data across borders, reinforcing trust and
interoperability in global health ecosystems.

Wearable health monitoring technologies have evolved from
basic, offline devices to sophisticated AI-enabled systems capable of
real-time, multimodal monitoring. Early devices such as digital
Holter recorders focused on arrhythmia detection using simple QRS

filters, providing limited sensitivity (65–70%) and offline analysis,
which constrained timely intervention. Micro-Electro-Mechanical
Systems (MEMS)-based chest straps, exemplified by devices like
Zephyr BioHarness, introduced activity recognition and fall detection
with <1 s latency, though they remained vulnerable to motion
artifacts. Wristbands combining PPG and accelerometers, including
early Jawbone and Fitbit models, applied heuristic multi-signal
fusion to monitor heart rate, sleep, and activity scoring, improving
robustness but still impacted by inter-user variability. Enhanced rule-
based ECG wearables like Withings Move ECG and KardiaMobile
incorporated ARM Cortex microcontrollers to reduce hardware load
and improve ambulatory arrhythmia detection (sensitivity 72–78%),
though false positives persisted under daily activity. Modern AI-
driven CNN–LSTM wearables, deployed on platforms like ARM
Cortex-M7 and Snapdragon Wear 4100, enable multimodal
forecasting for seizures, cardiac alerts, and biosignal fusion,
achieving 88–92% sensitivity and 89–91% specificity, with <2 s
latency. Table 1 provides a direct head-to-head, year-wise
benchmarking of these devices, addressing the common omission of
non-AI baseline comparators in prior studies and illustrating the
measurable improvements in clinical accuracy.

3. Smart Wearable Technologies: Classification
and Materials

3.1. Classification based on functionality

3.1.1. Bio-potential monitoring
1) Skin-friendly, dry biopotential electrodes

Role: Eliminate the need for gel-based electrodes while
improving comfort for long-term, continuous monitoring.

a. Laser-induced graphene (LIG) textiles marked a turning point
by introducing stretchable, breathable ECG sensors integrated
into fabrics. First reported in 2014 by Rice University, these
sensors reached 95% signal accuracy compared to
conventional electrodes in 48–72-hour wear tests [56].
Figure 2 illustrates a wearable ECG monitoring system
based on LIG. A 532 nm laser patterns conductive LIG
onto flexible textile substrates, enabling integration into
breathable, skin-conforming garments. These textile-based
electrodes are positioned at standard limb sites (Right Arm,
Left Arm, Right Leg) to acquire ECG signals via lead I–III
configurations, producing high-fidelity PQRST waveforms
suitable for continuous physiological monitoring.

b. Carbon nanofiber–PDMS electrodes, emerging around 2015,
offered biocompatible, soft interfaces with <5 kΩ impedance,
allowingmulti-signal (ECG, EEG, electromyography [EMG])
recordings without irritation [57].

c. Capacitive ceramic-coated sensors, first commercialized in
Japan around 2016, brought non-contact heart and brain
monitoring to smart garments, with ±2% voltage variance
and durability across 50 wash cycles [58].

2) Compact multichannel wireless recorders
Role: Enable real-time, multichannel signal transmission

with minimal signal loss, ideal for mobility and remote care.

a. Wearable EEG/ECG cards became commercially viable in
2015, shrinking to credit-card size while maintaining
<1 μV/

p
Hz noise levels and ≥98% data integrity across a

10-meter BLE range [59].
b. Sub-GHz wireless ECG systems, piloted in 2017,

extended battery life to 7+ days with <1% packet loss,
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tested across 1,000+ cardiac outpatients in India and
Germany [60].

c. BCI-enabled neuroprosthetics, originating in Stanford (2012),
now use EEG signals to drive wheelchair or prosthetic
commands with up to 85–90% real-time accuracy in clinical
trials [61].

3) Neonatal and pediatric biosensor platforms
Role: Provide full-body monitoring for neonates without

invasive wires, improving comfort and early detection of
distress.

a. NICU-compatible patches, developed by Northwestern
University in 2018, integrate ECG, EEG, temperature, and
oxygen saturation into ultrathin sensors weighing under 3g.
Theymirror hospital-grade accuracywith 95–98%precision [62].

b. Smart PPG sensors, refined in India by 2020, now allow early
detection of hypoxia and hypothermia, reducing infant
complications by up to 40% in over 30,000+ rural births [63].

These devices are being integrated into India’s Safe
Motherhood Initiatives, offering scalable solutions to bridge
neonatal care gaps in tier 2 and tier 3 regions.

4) E-Textile platforms with motion artifact compensation

Role: Seamlessly embed sensors into clothing that maintain
signal fidelity even during high-motion activities or aquatic settings.
3D-woven microfiber electrodes, perfected by MIT in 2017,
showed <10 kΩ impedance without any adhesive or gel. They
operate reliably in marine environments and high-humidity zones
[64]. Artifact cancelation circuits, trained using datasets from over
20,000 movement profiles, reduce false signal detection by 35–45%
during motion-intensive tasks, essential for athletes, soldiers, and
field medics. Uniforms embedded with ECG and EEG sensors are
being piloted by European Emergency Medical Services (EMS)
units and Indian paramedics, cutting triage time by 20–30% in
high-pressure emergencies [65].

3.1.2. Biochemical monitoring
Health monitoring has evolved beyond electrophysiological

sensing to include real-time biochemical analysis via noninvasive

biofluids such as saliva and interstitial fluid. With the rising incidence
of metabolic disorders, endocrine imbalances, and nutritional
deficiencies, wearable biochemical sensors now play a critical role in
continuous, personalized diagnostics. This section categorizes recent
breakthroughs by sensor modality (electrochemical, optical, etc.) and
target analytes (electrolytes, metabolites, hormones). Accelerated
innovation over the past decade has positioned these devices as
transformative tools for noninvasive disease detection and
physiological monitoring at the skin interface.

1) Electrochemical sweat and saliva biosensors

Enzymatic amperometric and potentiometric biosensors
integrated into flexible epidermal patches and oral devices (e.g.,
smart pacifiers) enable real-time quantification of key analytes such
as glucose, lactate, sodium, potassium, phenylalanine, and vitamin
C in sweat and saliva [66]. Smart pacifiers, designed for neonatal
applications, demonstrate high sensitivity in salivary glucose and
electrolyte detection (LOD ≈ 0.7 nA/mM; R2 ≈ 0.994), facilitating
noninvasive infant monitoring. Wearable sweat patches employing
enzyme-based chronoamperometric sensing provide continuous
analyte monitoring, with established utility in glucose surveillance
and cystic fibrosis screening via chloride ion tracking [66].

Figure 3 illustrates a multifunctional smart pacifier system
engineered for continuous neonatal physiological monitoring. The
pacifier integrates a tri-modal sensing array comprising a
temperature sensor, a saliva pH sensor, and a PPG-based heart
rate sensor. These sensors interface with an embedded
microcontroller unit (MCU) that orchestrates signal acquisition,
initial data processing, and wireless transmission. The collected
biosignals are streamed in real time to a mobile health platform,
enabling continuous, noninvasive assessment of vital parameters
directly from the infant’s oral cavity. This form factor ensures
enhanced biocompatibility and mechanical compliance, facilitating
prolonged wear without compromising comfort or data fidelity.

Figure 4 illustrates the internal operational workflow of the
smart pacifier system. Upon initialization, device calibration is
performed to standardize sensor baselines. Continuous sampling
of saliva enables electrochemical detection of pH and enzymatic
detection of glucose or ions, while heart rate is acquired via PPG
integrated near the pacifier’s contact zone. The analog biosignals

Figure 2
Wearable ECG monitoring using laser-induced graphene (LIG) textile electrodes
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are routed through an analog front end (AFE), digitized by a low-
power analog-to-digital converter (ADC), and processed by an
onboard MCU utilizing embedded firmware for signal filtering and
feature extraction. Wireless transmission modules (e.g., BLE) relay
data to external interfaces for real-time visualization. Power
management circuitry, including a micro battery and voltage
regulators, supports uninterrupted operation, while the biocompatible
enclosure ensures safe oral deployment over extended durations.

Although enzymatic amperometric and potentiometric biosensors
embedded in flexible epidermal patches and smart pacifiers achieve
exceptional sensitivity and precision—detecting salivary glucose
with an LOD of ∼0.7 nA/mM and demonstrating linearity of
R² ≈ 0.994—current validation cohorts predominantly include
neonates with typical oral and craniofacial anatomy. Critically,
infants presenting with anatomical or physiological anomalies, such
as cleft palate (≈1:700 live births), tracheostomy (∼0.1–0.3% of

NICU admissions), or other congenital craniofacial malformations,
remain largely unrepresented. Exclusion of these “long-tail”
populations introduces a latent bias, potentially inflating reported
device performance metrics and limiting translational applicability.

To address these gaps, future studies should adopt a stratified
inclusion/exclusion framework. The core cohort should encompass
full-term and preterm neonates without major anatomical
abnormalities, establishing baseline sensor performance with
quantified metrics such as signal-to-noise ratios (SNR> 20 dB),
continuous monitoring fidelity (>95% valid sampling over 24 h),
and calibration stability (<5% drift across 12 h). Edge-case cohorts,
including infants with cleft palate, tracheostomy, or craniofacial
anomalies, should undergo separate validation to quantify deviations
in electrochemical and PPG signals. Preliminary modeling suggests
that altered oral geometries could reduce enzymatic sensor contact
efficiency by ∼10–15% and attenuate PPG-derived heart rate signal
amplitude by ∼8–12%, underscoring the importance of dedicated
evaluation. Transparent exclusion criteria should include conditions
compromising safety, such as active oral infections or severe trauma,
while ensuring data from medically complex neonates are captured
whenever feasible. By harmonizing high-fidelity biosensing with
inclusive cohort design, smart pacifiers can transcend conventional
monitoring boundaries, delivering continuous, noninvasive insights
across the full spectrum of neonatal physiology.

1) Spectroscopy-based wearables

Surface-enhanced Raman spectroscopy platforms, engineered
as stretchable gold nanomesh films, offer label-free, on-skin
molecular detection across a broad dynamic range (nanomolar to
millimolar) [67]. These are capable of identifying sweat
metabolites, exogenous drugs, and environmental toxins in real
time. Nano-plasmonic optical sensors, such as functionalized Ag/
Si nanowire arrays within smartwatch form factors, enable glucose
monitoring via surface plasmon resonance shifts and Raman
scattering, with demonstrated LODs as low as ≈ 0.12 mM [67].

3.1.3. Mechanical and motion monitoring
From postural analysis to muscular coordination, motion

wearables have advanced from bulky pedometers to ultrathin,
skin-like sensors capable of microsecond response times and
nanometer precision. The section below recaps the leading
categories within this domain.

1) Strain and pressure sensors (piezoresistive, capacitive,
triboelectric)

Role: Transform mechanical deformation into electrical
resistance or capacitance changes to detect body motion
and tactile interaction. The following are the features:

a. Reduced graphene oxide–silver nanoparticle (rGO–AgNP)
fabrics: These flexible, thermally resilient woven mats
deliver ultrafast response times (<3 ms) and over 5,500
cycles of durability, enabling precise detection of gait
phases, limb motion, and joint stress in dynamic activities.
Studies report sensitivity ratios above 9.8 at 30% strain [68].

b. Triboelectric motion skins: Using nano-patterned
Polyttetrafluoroethylene (PTFE) or Polyurethane (PU)
surfaces, these systems generate electrical signals via body
movement and environmental interaction, capable of self-
powered tactile sensing in the micro-Newton range [69].

2) Textile-integrated and wearable fabric sensors
Role: Monitor respiration, posture, and muscular activity

via fabric-based conductive sensors.

Figure 3
Multifunctional smart pacifier system for continuous neonatal

physiological monitoring

Figure 4
Smart pacifier operational workflow

Smart Wearable Technology Vol. 1 2025

11



a. Conductive yarns made from PEDOT: PSS, silver-coated
nylon, or screen-printed graphene are woven into garments
to detect strain and pressure variations with minimal signal
degradation during wear or wash [70].

b. Textile sensors are now being trialed in occupational safety
(construction workers’ fatigue tracking), maternal health
(contraction monitoring), and child posture correction tools.

3) Pressure and muscle activity sensor arrays
Role: Map muscle contraction, limb pressure, and body

loading for prosthetic support and movement reconstruction.

a. Sponge-based CNT/PDMS arrays: These devices offer
localized pressure mapping using carbon nanotube-
enhanced elastomers. A 16-channel flexible patch classified
lower-limb motion with ≈97% accuracy, making it ideal for
rehabilitation therapy, prosthetics, and stroke recovery [71].

b. Laser-patterned graphene electrodes: When combined with
flexible gold circuits, these sensors achieve ultra-high strain
resolution (≈0.024%) and exceptional gauge factors (GFs)
(∼6×107), supporting pulse tracking, hydration estimation,
and breath monitoring in real time [72].

3.2. Organ-system–focused monitoring

1) Skin and iontics:Recent advances in epidermal sensing combine
ECG with ionically conductive materials to achieve cuffless,
continuous BP monitoring. A notable innovation is the dual-
mode sensor integrating ECG electrodes with a pressure-
sensitive ionogel substrate, which adheres comfortably to the
wrist [73]. This patch simultaneously captures arterial pulse
waveforms and ECG signals, enabling precise calculation of
pulse transit time (PTT)—the delay between ECG R-wave and
peripheral pulse arrival—correlated with systolic and diastolic
BP values. Ionogels provide high ionic conductivity,
mechanical flexibility, and skin conformability while
maintaining signal stability under dynamic movements.
Typical sensor thickness is under 100 microns, with sensitivity
to pressure changes as low as 10 Pa, ensuring accurate PTT-
based BP estimation without bulky cuffs [74]. Example: The
Biobeat wearable wrist monitor uses PTT-based cuffless BP
measurement combined with ECG, offering continuous BP
tracking integrated with remote patient monitoring [75].

2) Cardiovascular and in-sensor computing: Ultra-flexible,
stretchable organic electrochemical transistor (OECT) arrays
represent a leap forward in on-skin biosignal processing. These
arrays are fabricated via solution-processed printing of conjugated
polymers onto elastomeric substrates, creating sensor matrices that
directly transduce ionic currents from biofluids into electrical
signals. OECTs inherently amplify weak biosignals such as ECG
and EMG, allowing real-time edge computing at the sensor
interface [76]. Their stretchability exceeds 30% strain without
performance degradation, enabling seamless integration on curved
skin surfaces. Operating voltages remain low (sub-1V), reducing
power consumption significantly. Integration with flexible printed
circuits enables in situ digital signal processing (DSP), noise
filtering, and feature extraction, minimizing data transfer and
preserving battery life in wearable platforms. Example: The
IMEC’s OECT patch prototype processes ECG and EMG signals
locally, demonstrating on-skin computing capabilities that reduce
latency and energy use, essential for next-generation wearable
diagnostics [77].

3) Musculoskeletal and motion: Echomyography (EcMG)
devices utilize a single wearable ultrasound transducer to

noninvasively capture both muscle electrical activity and joint
kinematics. This compact sensor emits pulsed ultrasound
waves, reflecting from muscle tissues and joint interfaces to
generate real-time imaging, while simultaneously recording
mechanomyographic signals related to muscle contraction.
The transducer typically operates at frequencies of 5–10 MHz
with axial resolution below 0.5 mm, allowing detailed
tracking of muscle thickness and joint angle changes during
dynamic motion. Such integration aids rehabilitation by
quantifying neuromuscular activation patterns and joint
biomechanics without cumbersome multi-sensor setups [78].
Example: The Mysono EchoWear system is a wearable
ultrasound platform developed for musculoskeletal assessment
during rehabilitation, enabling portable and real-time joint and
muscle monitoring [78].

4) Brain and nervous system (cranial monitoring): Noninvasive
cranial monitoring employs discreet ear, EEG, and flexible
headband electrodes to capture brainwave patterns, including
delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ) rhythms.
Modern devices use dry-contact electrodes with impedances
below 10 kΩ, enabling long-term wear without conductive gels.
Super-thin e-tattoos, fabricated using photolithographically
patterned carbon nanotube and graphene films, adhere to the
forehead or postauricular skin with van der Waals forces [79].
These sensors, less than 500 nm thick, measure electrical
potentials and eye movements (electrooculography [EOG]) with
sampling rates exceeding 500 Hz and SNR above 20 dB. Data
are transmitted wirelessly via BLE to smartphones or dedicated
processing units. On the research front, organoid-on-chip
platforms cultivate three-dimensional neural tissue mimicking
human brain microenvironments within microfluidic chambers,
enabling real-time electrophysiological recording and drug
testing. Example: The Muse 2 EEG headband offers real-time
brainwave monitoring for stress and sleep tracking, using dry
sensors and wireless transmission to smartphones [80].

3.3. Wireless and self-powered systems

Wearable devices are increasingly engineered for autonomous
operation, eliminating dependency on traditional batteries through
energy harvesting and wireless power/data transfer. These systems
integrate flexible harvesters, smart textiles, and wireless modules,
enabling seamless power generation and real-time communication
across dynamic environments.

1) Energy harvesting via mechanical, thermal, and bio sources:
Piezoelectric and electromagnetic generators utilize human
motion—such as joint bending—to generate electricity through
cantilever-based structures, producing stable low-frequency
outputs. Thermoelectric generators (TEGs) integrated into
textiles—especially Mg-based materials—achieve ∼18.4 μW/
cm² at 33°C under ∼0.8 kPa pressure. Advanced systems
extract ∼91 μW from a 5°C gradient and operate at startup
voltages as low as 62 mV. Bioenergy and sweat-evaporative
harvesters leverage hybrid microgrids combining TEGs and
biofuel cells to extract metabolic energy [81]. Notably,
MXene–wool composite hydroelectric nanogenerators can
power smartwatches via sweat evaporation [82].

2) Gel-based triboelectric nanogenerators (TENGs): Self-powered
hydrogel-based TENGs convert mechanical inputs like motion
or touch into electricity. These devices offer high flexibility
and biocompatibility, enabling applications in wearable health
monitoring and tactile interfaces, although long-term charge
retention and durability require enhancement [83].
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3) Self-healing, wireless, responsive materials: MXene-based
ionotronic hydrogels exhibit dual energy harvesting via
ultrasonic vibrations (up to 85 V) and RF stimuli (915 MHz),
while also being self-healing. These materials wirelessly
activate LEDs under ultrasound and support non-contact Radio
Frequency Identification (RFID) sensing, presenting next-gen
smart wearable capabilities [84].

4. Organ-Centric Wearable Diagnostics

Organ-centric wearable diagnostics encompass an advanced
subset of bioelectronic systems that facilitate localized, continuous
surveillance of specific organ-level physiological and
pathophysiological parameters. These devices are anatomically
optimized to conform to regions of clinical interest, such as thoracic
ECG/PPG arrays for cardiac electrophysiology and hemodynamic
profiling, periorbital graphene-based EOG interfaces for intraocular
and oculomotor assessment, abdominal strain-gauge sensors for
pulmonary kinematics, and epidermal microfluidic platforms for
excreted metabolite quantification pertinent to hepatic or renal
function. Neurological interfaces, including EEG-integrated headgear
and in-ear electrophysiological monitors, further expand the domain
to central nervous system diagnostics, enabling detection of cognitive
states, sleep patterns, and early neural degeneration. Multimodal
integration of electrophysiological (EEG, ECG, EMG),
mechanoelectrical (strain, pressure), and electrochemical (sweat
biomarker) sensing, when augmented with AI-driven signal
processing and edge analytics, enhances spatiotemporal resolution,
noise immunity, and clinical interpretability. These organ-specific
platforms are pivotal for predictive diagnostics, chronic disease
stratification, neurocardiovascular comorbidity mapping, and
telemedical intervention, marking a transformative step toward
precision digital medicine and bio-intelligent healthcare ecosystems.

4.1. Cardiovascular system

The advent of intelligent, ambulatory cardiovascular monitoring
systems has enabled continuous electrocardiographic (ECG)
surveillance via miniaturized, low-power, and biocompatible
platforms. These systems incorporate biopotential electrodes,
microcontroller-based acquisition circuits, textile-integrated sensors,
and AI-enabled signal deconvolution algorithms, allowing high-
fidelity cardiac diagnostics outside clinical environments.
Comparative benchmarking of cardiovascular wearables requires
alignment across AI models, subject demographics, hardware limits,
and validation references. Table 3 condenses device-level metrics—
spanning power budgets (<30 mW), inference latencies (<2 s), and
clinical concordance (>85%)—to provide a reproducible baseline
for translational and regulatory assessment.

4.1.1. Wireless ECG (biopotential wearables)
1) Bluetooth Low Energy (BLE) wrist-worn ECG modules: These

modules operate as single-lead ECG acquisition systems
embedded in ergonomically designed wristbands utilizing dry-
contact Ag/AgCl electrodes positioned bilaterally [85].

a. Functional architecture: The system comprises a differential
AFE, coupled with a BLE SoC (e.g., Nordic nRF52840) that
facilitates synchronized data acquisition between left and
right wrists without reference electrode anchoring on the
thorax [85].

b. Electrophysiological fidelity: Demonstrated Pearson
correlation coefficients ∼0.84 with reference-standard
Holter monitors for waveform similarity.

c. Power profile: Sustains continuous operation for ∼4.8 hours
on 120 mAh lithium-polymer cells, with average system-
level power consumption approximating 22–27 mW [85].

d. Use case: Suited for longitudinal arrhythmia screening, stress
diagnostics, and ambulatory rhythmmonitoring in non-critical
environments.

Figure 5 depicts the architecture of a BLE-enabled wrist-worn
ECG biosensing module that integrates edge computing with real-
time telemetry. The recording electrodes capture single-lead ECG
signals, which are routed through a low-noise AFE with input-
referred noise levels typically <1 μV RMS, ensuring signal fidelity
for low-amplitude P-wave and ST-segment detection. The
conditioned signals are digitized by a 12–16 bit ADC and processed
locally on an ARM Cortex-M4 microcontroller (operating up to 80–
100 MHz, ∼5–10 mA active current). Complementary sensing
modalities—SpO2, accelerometry, and microphone inputs—support
artifact rejection and multimodal health assessment. Data packets
are transmitted via a 2.4 GHz BLE radio (e.g., Nordic nRF52840,
BLE 5.0, throughput up to 2 Mbps) to external devices, enabling
raw waveform streaming or parameterized data logging. A 120
mAh Li-polymer battery sustains ∼4–5 hours of continuous ECG
acquisition (system-level consumption 22–30 mW), with duty-
cycled acquisition extending runtime to >24 hours. In validation
studies, single-lead waveforms demonstrated Pearson correlation
coefficients of 0.82–0.86 compared to Holter monitors, with HRV
indices showing <5% deviation. The bi-directional Graphical User
Interface (GUI) allows user control over recording parameters
(channels, sampling rates of 250–500 Hz, bandpass filters 0.5–40
Hz) and provides clinicians with continuous, wireless access to
electrophysiological data, supporting applications in arrhythmia
screening, stress diagnostics, and ambulatory rhythm monitoring.

The selection of BLE for wrist-worn ECG modules is predicated
on its optimal compromise between ultra-low latency, high-fidelity
signal transmission, energy efficiency, and seamless user
integration, parameters critical for continuous, clinical-grade
biopotential monitoring. BLE enables short-range communication
(≈5–10 m) with latency below 10 milliseconds, supporting
uninterrupted streaming of multi-lead ECG signals to paired
smartphones or proximal gateways while maintaining multi-day
battery autonomy. In contrast, LoRaWAN affords long-range
connectivity (up to several kilometers) but exhibits markedly
limited throughput (0.3–50 kbps) and elevated end-to-end latency
(hundreds of milliseconds), rendering it suboptimal for continuous
ECG telemetry. NB-IoT presents intermediate coverage (1–10 km)
with moderate data rates (20–250 kbps) and latencies between 100
and 500 ms. However, its comparatively higher energy expenditure
and dependency on carrier-managed cellular infrastructure constrain
its utility for compact, wearable ECG systems.

The trade-off matrix illustrated in Table 4 encapsulates
performance as descripted below:
2) E-textile chest belts and smart garments: These wearable systems

embed conductive polymer-based dry electrodes within textile
substrates, interfaced with ferroelectric memory-based
microcontrollers (e.g., TI MSP430FR series) for ultra-low
power signal acquisition [86].

a. Sensor mechanism: Textile electrodes with 3D looped
microfiber geometries enhance conformal skin-electrode
contact and minimize skin-electrode impedance (<10 kΩ)
even during dynamic or aquatic motion.

b. Signal processing: High-resolution ECG signals are digitized
via 14-bit ADCs and transmitted via BLE 5.0 to paired mobile
devices.
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c. Energy efficiency: Operates below 500 μW, ensuring
extended battery longevity with coin-cell or flexible thin-
film batteries.

3) Millimeter-wave radar–based contactless ECG: This novel
modality employs Frequency-Modulated Continuous-Wave radar
systems in the 60–77 GHz band to capture cardiogenic
micromotions of the thoracic cavity, enabling non-contact ECG
inference [87].

a. Mechanotransduction principle: Electromechanical transduction
of ballistocardiographic and seismocardiographic signatures
into ECG-equivalent waveforms using 4D radar imaging.

b. AI signal translation: Utilizes deep CNNs trained on
synchronized ECG-radar datasets to reconstruct PQRST
complexes from displacement signals.

c. Temporal resolution: Achieves sub-14 ms latency and
waveform reconstruction with ∼90% morphological fidelity
to 3-lead ECG references.

d. Applications: Ideal for pediatric, geriatric, or infectious disease
monitoring where skin-contact sensors are contraindicated.

4.1.2. MXene-based epidermal ECG platforms
Two-dimensional transition-metal carbides, notably Ti3C2Tx

MXenes, have emerged as exceptional materials for wearable
ECG monitoring due to their superior electrical conductivity

(∼104–105 S/m), hydrophilic surface terminations, and mechanical
compliance. Their incorporation into hydrogel matrices and fabric
systems has enabled skin-conformal, artifact-resistant, and high-
resolution electrophysiological signal acquisition.

1) High-performance conductive hydrogel mechanics: MXene-
infused hydrogels demonstrate enhanced mechanical integrity,
freeze resistance (below −20°C), anti-dehydration barriers, and
intrinsic self-healing over multiple damage cycles. These
materials possess a GF ≥25, fast response times (∼100 ms),
and low impedance (<10 kΩ), ensuring accurate cardiac
electrophysiological monitoring during dynamic activities [88].

2) Fabric-based lamina emergent MXene textile electrodes
(“FLEXER”): Textile-integrated inflatable structures embedded
with MXene-based electrodes provide adaptive, dry, contact
ECG interfaces [89]. Upon pneumatic actuation, the system
achieves laminar, skin conformation with low interfacial
impedance (∼5 kΩ), enabling artifact-free ECG/EMG
monitoring under locomotion. Wireless data transmission
modules allow integration with gesture recognition and remote
monitoring platforms.

4.1.3. Graphene tattoo pressure sensors for cardiovascular
monitoring

Graphene electronic tattoos (GETs) represent an ultrathin,
conformal, and adhesive-free modality for continuous, noninvasive

Table 4
Evaluation of latency, throughput, and energy efficiency in wireless technologies for ECG wearables

Wireless Technology Effective Range Latency Data Throughput Energy Profile Suitability for Continuous ECG

BLE 5–10 m <10 ms Up to 2 Mbps Ultra-low Excellent
LoRaWAN Several km 100–500 ms 0.3–50 kbps Low Poor
NB-IoT 1–10 km 100–500 ms 20–250 kbps Moderate–High Limited

Figure 5
System architecture of a BLE-enabled wrist-worn ECG monitoring module
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arterial pressure and bioimpedance tracking at the wrist [90].
Leveraging the exceptional conductivity (∼106 S/m), mechanical
flexibility, and epidermal compatibility of monolayer graphene, these
sensors are designed to seamlessly integrate with human
biomechanics for high-fidelity cardiovascular diagnostics.

1) Next-generation GETs 2.0 enhancements: The GETs 2.0
platform introduces key nanostructural innovations that
dramatically improve functionality and wearability [91].
Reinforced with multilayer graphene embedded with
nanoscrolls and engineered micro-perforations, these updated
tattoos offer enhanced electrical stability and sweat
permeability while maintaining a sub-500 nm ultralight
thickness. These modifications result in a ∼3.5× reduction in
sheet resistance and ∼2.5× decrease in skin–tattoo impedance,
facilitating uninterrupted biopotential acquisition over extended
durations. The perforated architecture achieves a sweat
permeability rate of ∼3200 g m² day, ensuring signal integrity
and user comfort. GETs 2.0 also exhibit multimodal
capabilities, simultaneously capturing ECG signals, hydration
levels, and other vital signs in addition to arterial pressure.

2) Biomechanical conformity and sensor-skin integration:
Engineered to match the skin’s low Young’s modulus (∼70–
100 kPa) and maintain a sub-100 μm mechanical profile,
graphene tattoos achieve exceptional conformal adhesion with
minimal interference to natural epidermal motion [92]. This
close lamination significantly reduces motion-induced artifacts
during wrist flexion or hand gestures, preserving stable
impedance readings even under sweat or mechanical stress.
The device’s bioinspired mechanical design facilitates near-
invisible integration, offering long-term user compliance, high
signal fidelity, and robust compatibility with daily
physiological activities.

4.2. Respiratory system

1) Lung–Sound–Monitoring–Patch (LSMP): The LSMP is a skin-
adhered, biocompatible auscultation device engineered for
continuous cardiopulmonary sound acquisition [93]. The core
sensing system integrates uni- and omnidirectional MEMS
microphones encased within a custom 3D-printed resin
housing, ensuring structural integrity and biocompatibility. Its
acoustic conduit design filters ambient environmental noise
and amplifies thoracic acoustic transduction for improved
SNR. An MCU processes real-time data on board, while power
is sustained via a LiPo (Lithium Polymer) battery, all
compactly embedded without mechanical protrusion. The
assembly is affixed to the thoracic region using medical-grade
adhesive to maintain tight skin contact during locomotion,
minimizing mechanical artifacts. LSMP’s acoustic signals
undergo real-time denoising and classification via an onboard
AI system trained on a 2D CNN architecture. The neural
engine processes audio inputs across time-frequency
spectrograms, effectively distinguishing respiratory events such
as wheezes and crackles. Clinical trials demonstrated ∼80.5%
concordance with pulmonologists’ assessments in COPD and
pediatric asthma patients.

2) Graphene oxide (GO) triboelectric respiratory sensor: The core
transduction mechanism of the GO triboelectric respiratory
sensor is built upon triboelectric nanogenerator (TENG)
principles [94]. GO—rich in oxygen-containing functional
groups and possessing a high surface area layered structure—
acts as an optimal triboelectric layer. In wearable constructs,

GO is typically embedded into hydrogel matrices (e.g.,
chitosan, GO composites) or coated onto flexible substrates
like elastomeric films or textile masks. Upon inhalation and
exhalation, the resulting mechanical deformation drives
contact-separation cycles between the GO layer and a counter-
electrode material. This dynamic interface modulates
triboelectric charge generation, resulting in measurable AC
voltage pulses corresponding to the respiratory flow and
humidity shifts. GO-based TENG respiratory sensors exhibit
rapid temporal resolution (<100 ms), enabling precise tracking
of respiratory rate and depth. Their high tribosensitivity allows
for the detection of even microscale airflow and humidity
fluctuations linked with shallow breathing or early pathological
symptoms. Mechanically, the sensor maintains ultra-
lightweight, thin-film flexibility, allowing conformal
integration onto facial masks, thoracic patches, or wearable
fabrics. The self-powered GO-TENG architecture converts
respiratory airflow into electrical signals, eliminating the need
for external batteries [95]. This enables long-term,
maintenance-free monitoring, ideal for conditions like sleep
apnea and COPD. Integration with low-power wireless
modules (e.g., Bluetooth, NFC) supports real-time, remote data
transmission without additional energy input.

Table 5 summarizes edge AI respiratory wearables that
implement CNN or CNN-LSTM models on ARM Cortex-M4/M7
or Nordic nRF52840 MCUs, achieving <2 s inference and <30
mW power draw. Training datasets span 2,500–3,500 multi-site
recordings (pediatric to elderly, balanced gender), with outputs
validated against spirometry, capnography, or pulmonologist
consensus, enabling standardized benchmarking of accuracy,
latency, and physiological fidelity.

4.3. Nervous system

1) Graphene electronic skin for EMG/EOG monitoring:
Graphene-based electronic skins (e-skins) provide an ultrathin,
breathable, and imperceptible platform for high-fidelity
recording of EMG and EOG signals. The innovations in
graphene e-skin biointerfaces are listed below:

a. Graphene EOG tattoos: Imperceptible graphene e-tattoos
(GETs), laminated around the eye without adhesives, enable
angular eye tracking (∼4° resolution) and real-time device
control, such as operating quadcopters via wireless EOG
signals [96].

b. High-performance EMG graphene skins: Laser-scribed
graphene e-skins, directly transferred onto the skin, function
as substrate-free conductors [97]. They drastically reduce
skin-electrode impedance, enhancing signal amplitude and
SNR. These e-skins remain functional under >60% strain
and 1,000+ stretch cycles, enabling stable EMG monitoring
during motion.

2) Neural-signal and biochemical sensing headbands: Recent
innovations in wearable neurotechnology have led to
multifunctional headbands that integrate neural signal
acquisition with physiological and biochemical sensing,
enabling real-time brain–computer interfacing and holistic
health monitoring. The following are the advances:

a. Cognionics Quick-20 and AI-powered EEG interpretation:
The Cognionics Quick-20 headband uses four dry
electrodes, following the 10-20 system, to record EEG
signals without the need for conductive gels [98]. When
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paired with AI models like 1D-CNN and LSTM networks, it
can identify motor imagery, such as left or right hand
movement intent, in under 2 s and reach up to 92%
accuracy. Still, there is a key limitation: long-term
validation for changes in AI model performance over time
is lacking. For example, a pilot study using edge-based
CNN/LSTM classifiers in outpatient neurorehabilitation
found that accuracy dropped from 90% at the start to about
74% after 15 months of ongoing use. This decline was
linked to changes in scalp-electrode impedance, individual
neuroplasticity, and more noise in everyday settings. These
findings highlight the need for regular recalibration and
adaptive updates, including methods like transfer learning
and federated model optimization.

b. Muse S and BrainsBit for multimodal biofeedback: Consumer
neurobands like Muse S and BrainsBit integrate 4-channel
EEG sensors with additional PPG modules for real-time
heart rate and respiration tracking [99]. Higher-end models
offer optional functional near-infrared spectroscopy (fNIRS)
to monitor cerebral oxygenation. These devices translate
mental states into audio-visual feedback for meditation,
stress reduction, and sleep optimization.

c. NeuroLife headband with metabolic integration (prototype
stage): Experimental platforms such as the NeuroLife
Biochem Band are exploring the integration of
electrochemical biosensors into EEG headsets [100]. Sweat-
analyzing modules for glucose and lactate enable dual-
mode monitoring of cognitive and metabolic stress. These
prototypes hold promise for next-generation neurochemical
diagnostics in stress physiology and cognitive workload
assessments.

3) Wearable EEG/EOG dry electrode systems: Dry-contact
electrode technologies are revolutionizing neural and ocular
biosignal acquisition by enabling long-duration, gel-free EEG
and EOG monitoring with enhanced comfort, mobility, and
clinical-grade fidelity. Below are the views on advancements:

a. Conductive polymer dry electrodes (PEDOT: PSS-based
system): Next-generation dry electrodes composed of a
PEDOT: PSS–polyurethane–D-sorbitol composite exhibit
excellent skin adherence, stretchability, and conductivity
[101]. These organic polymer-based patches deliver stable
EEG, ECG, and EMG signals across variable conditions
and outperform Ag/AgCl gel electrodes in motion-prone
scenarios—ideal for real-time arrhythmia and muscle
activity monitoring.

b. Ultrathin epidermal electrodes (<100 nm): Conformal
nanosheet electrodes (∼100 nm) designed to match skin
topography offer nearly invisible and adhesive-free
integration [102]. Their ultra-low impedance and motion
artifact resistance enable high-fidelity EEG recording with
minimal baseline drift during facial movement or exertion.

c. Active spring-loaded electrode arrays: Mechanically adaptive
spring-loaded dry electrode arrays incorporate buffer
amplifiers within each “finger-like” probe [103]. These
active sensors achieve <1.13 μV RMS noise and superior
alpha-wave capture by maintaining stable scalp contact—
even through hair—while compensating for mechanical shifts.

d. GAPses smart glasses for EEG/EOG: GAPses is an
experimental smart-glasses prototype embedding dry EEG/
EOG electrodes within the frame [104]. With edge AI
processors and ultra-low power consumption (∼16 mW), it
enables 12-hour continuous use and achieves 98–99%
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classification accuracy of cognitive and ocular states, suitable
for BCI and behavioral analytics.

4) Driver drowsiness detection eyewear: Wearable smart glasses
and headgear are emerging as efficient solutions for real-time
drowsiness monitoring, leveraging dry electrodes, ocular
tracking, and AI-driven signal processing to detect fatigue-
related neural and visual biomarkers with minimal user
intrusion. Below are the views on advancements:

a. Camera-embedded smart glasses with EOG analytics: A
prototype optical-path smart eyewear system incorporates a
miniaturized temple-mounted camera and hot-mirror optics
to noninvasively capture eye movements [105]. A
lightweight CNN processes visual cues such as blink rate
and PERCLOS (Percentage of Eyelid Closure) with
accuracy rivaling clinical EyeLink platforms, enabling
precise fatigue detection in mobile settings.

b. In-ear EEG for neural fatigue monitoring: Dry electrode EEG
earbuds, embedded within the auditory canal, detect changes
in alpha and theta brainwave activity indicative of early-onset
drowsiness [106]. These compact, gel-free biosensors support
continuous, discreet monitoring during driving and have
potential for integration into advanced driver-assistance
systems.

Table 6 presents neural and ocular wearables with end-to-end
AI pipelines, including CNN, LSTM, and hybrid architectures.
Training cohorts range from 10 to 110 healthy participants,
covering cognitive, motor, and ocular tasks. Edge deployment is
achieved on low-power MCUs (16 mW–5 W) and embedded
processors, ensuring sub-2 s inference latency. Validation is
performed against clinical EEG/EOG systems or behavioral
benchmarks, allowing comparative assessment of signal fidelity,
classification accuracy, and real-time feasibility.

The validation cohorts employed in contemporary neural and
ocular wearable studies, as delineated in Table 6, are
predominantly restricted to ostensibly healthy, demographically
homogeneous populations, including university affiliates, office-
based professionals, and short-term trial participants. While such
cohorts facilitate controlled benchmarking of device algorithms
against gold-standard EEG and electrooculographic (EOG)
recordings, they inadequately encapsulate the phenotypic and
physiological heterogeneity inherent in real-world populations.
This limitation may obscure critical inter-individual variability in
neurophysiological dynamics, ocular function, cognitive load, and
device usability across diverse demographic and occupational strata.

1) Socioeconomic status (SES) and device engagement: SES
significantly influences both health outcomes and technology
engagement. For instance, higher SES is generally associated
with better ocular health and greater adherence to device
protocols, whereas lower SES populations may face barriers to
accessibility and sustained use. A cohort study involving
10,414 children revealed that Black children and those from
lower SES households were less likely to enroll and wear
devices for significantly less time compared to their White and
higher SES counterparts. This disparity highlights the need for
inclusive recruitment strategies that consider SES to ensure
equitable data collection.

2) Educational background and health literacy: Educational
attainment affects health literacy, which can shape an
individual’s ability to interpret wearable outputs. Participants
from lower educational backgrounds often demonstrate shorter

engagement and reduced compliance, indicating that validation
studies should account for educational diversity to improve
usability and adherence.

3) Occupational exposure and physiological variations:
Occupational factors can uniquely influence neural and ocular
physiology. For instance, individuals in mining environments
may experience particulate and noise exposure, while those in
IT sectors may face prolonged screen exposure. These
occupational exposures can affect device performance, such as
signal fidelity and classification accuracy. However, such
occupational cohorts remain largely absent from existing
studies, suggesting a gap in current validation practices.

4) Age and ocular biometrics: Age-related physiological changes
can impact the performance of ocular biometrics. A study
evaluating ocular biometrics across different age groups found
equivalent performance in user verification and gender
classification among young, middle-aged, and older adults.
However, performance differences were noted at lower false
match rates for older adults and at age classification for
younger adults, suggesting that age diversity is crucial in
validation studies to ensure fairness and accuracy.

5) Racial and ethnic diversity in wearable studies: Racial and
ethnic diversity is essential for the generalizability of wearable
technologies. Studies have shown that Black and Hispanic
children are less likely to participate in wearable device studies
and exhibit shorter device wear times compared to their White
counterparts. This underrepresentation can lead to biases in
data collection and device performance, underscoring the need
for diverse validation cohorts.

5. Multimodal and Hybrid Wearable Platforms

Multimodal and hybrid wearable platforms embody the
convergence of electrophysiological, biochemical, and mechanical
sensing within ultrathin, stretchable electronics, enabling continuous,
noninvasive health monitoring with clinical-grade precision.
Developed through foundational work by Prof. John A. Rogers
(epidermal electronics), Prof. Zhenan Bao (conductive polymers and
nanocomposites), and Prof. Takao Someya (organic electronics),
these devices integrate sensor arrays—including electrocardiographic
(ECG, 250–500 Hz, SNR ∼30–40 dB), photoplethysmographic
(PPG), amperometric glucose sensors (LoD ∼1–5 μM), ion-selective
potentiometric sweat sensors (selectivity coefficients down to 10–3),
thermistors (resolution ±0.01°C), and inertial MEMS
(accelerometers, gyroscopes)—onto biocompatible substrates such as
polyimide (PI), polydimethylsiloxane (PDMS), or Ecoflex with
stretchability >30% and conformability <10 kPa modulus [107].
Hybrid integration strategies use serpentine interconnects, island-
bridge configurations, and 3D multilayer stacking to optimize spatial
density and mechanical resilience. AI modules developed by Prof.
Dina Katabi (MIT) and signal-fusion frameworks by Dr. Ali Javey
(UC Berkeley) enable real-time classification and predictive analytics
via CNNs and CNN pattern recognition with latency <100 ms [108].
Wireless transmission is achieved through BLE 5.0 (range: ∼10–30
m), NFC, or LoRa, supported by energy-harvesting units, including
flexible photovoltaics (power density of up to 20 μW/cm² under
ambient light) and biofuel cells. Clinically validated devices have
demonstrated efficacy in neonatal care (e.g., wireless ECG patches
reducing electrode-induced skin trauma), heart failure detection (e.g.,
thoracic impedance trends pre-empting decompensation), and
diabetes monitoring (e.g., sweat lactate correlating with blood
glucose, R² ∼0.91).
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5.1. Soft microfluidic and electrochemical hybrid
patches

Soft microfluidic–electrochemical hybrid platforms integrate
elastomer-based microchannel networks with potentiometric and
amperometric biosensors for noninvasive, real-time sweat
diagnostics. These epidermal devices utilize capillary-driven
microfluidics with hydrophilic–hydrophobic patterning to route
sweat to screen-printed electrodes (e.g., Ag/AgCl, carbon,
Prussian blue [PB]) on substrates such as PDMS or Ecoflex [109].
Biomarker panels—including sodium (Na+), potassium (K+),
lactate, uric acid, pH, and cortisol—are quantitatively analyzed via
ion-selective electrodes and enzymatic reaction-based
electrochemical transduction. Embedded low-power electronics
and BLE modules facilitate wireless telemetry and integration
with mobile interfaces. Compared to uniparametric consumer-
grade wearables, these multiplexed systems enable molecular-level
surveillance relevant to conditions such as hypertension, gout,
electrolyte imbalance, and diabetes. Critical limitations include
analyte dilution, inter-/intra-individual variability in sweat
composition, calibration instability, and low SNR at micromolar
detection thresholds. Advancements in nanostructured electrode
materials, self-powered electronics (e.g., TEGs, Organic
Photovoltaic (OPVs)), and AI-based signal deconvolution are
accelerating their evolution toward robust, predictive, and scalable
chronic disease monitoring platforms. Emerging wearable
innovations in sweat-based biochemical and cardiovascular
monitoring are explained below:

1) Microfluidic-integrated glucose-ECG patch (thin and
flexible): In July 2023, a multidisciplinary research team
reported the development of a fully integrated, epidermal
biosensing platform that enables simultaneous real-time
monitoring of sweat glucose concentration and
electrocardiographic (ECG) activity within a single soft,
stretchable microfluidic patch [110]. The device comprises a
microfluidic-enabled PDMS substrate incorporating capillary
microchannels that direct eccrine sweat toward a reduced
graphene oxide (rGO)-based enzymatic glucose sensor. The
sensor operates via glucose oxidase (GOx)-mediated catalysis
and PB electrocatalysts, achieving a sensitivity of approximately
19.97 μA· mM¹ · cm² and a linear detection range from 10 μM
to 0.4 mM. The microfluidic design significantly enhances
analyte delivery efficiency and minimizes cross-contamination,
enabling stable, low-noise current responses under dynamic
physiological conditions. In parallel, biopotential monitoring is
facilitated by laser-patterned MXene–poly(vinylidene fluoride)
carbon nanofiber electrodes functioning as dry ECG interfaces,
exhibiting low skin–electrode impedance (∼40.5 kΩ·cm²) and a
high SNR (23–33 dB), comparable to Ag/AgCl gel-based
electrodes [110]. Integrated temperature and pH sensors provide
dynamic compensation to correct enzymatic and electrochemical
response drift associated with sweat composition and
environmental changes. A flexible printed circuit board (FPCB)
embedded within the patch hosts AFE circuitry, ADCs, memory
units, voltage regulators, and a BLE transceiver to enable
continuous, wireless telemetry. Real-time signal acquisition and
synchronization are achieved through onboard data processing
algorithms and multiplexed sensor interfaces. The platform
underwent on-body validation involving five human subjects
exposed to thermally induced perspiration (sauna environment)
and moderate physical exercise, confirming operational stability
under biomechanical strain and variable sweat generation rates.

The patch maintained consistent glucose readings and high-
fidelity ECG signal acquisition over multiple trials, highlighting
its robustness and translational potential. This system represents
the first reported example of a stretchable, soft-material-based
epidermal patch integrating enzymatic glucose sensing and high-
fidelity ECG recording into a single autonomous platform. Its
modular, miniaturized architecture and high analytical precision
underscore its potential as a next-generation diagnostic tool for
noninvasive, multimodal, real-time monitoring in metabolic and
cardiovascular disease management.

2) Sweat rate and ion panel patch: This epidermal wearable
biosensing system integrates a flexible spiral microfluidic
channel with multiplexed ion-selective electrochemical sensors
and impedance-based sweat rate sensing, forming a
comprehensive, skin-interfaced hydration monitoring platform.
The microchannel, laser-micropatterned into PET/PDMS layers
(∼100 μm height, 1 mm width, ≈350 mm total length),
facilitates capillary-driven, directional sweat transport while
minimizing dead volume, air entrapment, and evaporative
losses [111]. Embedded interdigitated gold electrodes within
the microchannel act as impedance transducers, detecting
volumetric sweat accumulation in real time. Adjacent to this
region, ion-selective electrodes functionalized with membrane
chemistries enable potentiometric quantification of key
analytes—sodium (Na+), potassium (K+), chloride (Cl−), and
hydrogen ions (pH)—as the sweat traverses the channel. The
integrated FPCB performs on-patch signal conditioning via
ADCs, microcontroller-based drift correction algorithms, and
wireless telemetry (e.g., via Bluetooth). Validated in both
controlled laboratory settings and field trials, the platform
demonstrates sweat flow rate accuracy within ±10% compared
to commercial sensors and stable ionic detection across varied
perspiration conditions (0.2–4 μL/min flow range). Its
microfluidic design prevents sweat mixing or stagnation,
ensuring continuous, time-resolved biomarker profiles. This
multimodal device holds clinical and field utility for
dehydration assessment, electrolyte imbalance monitoring,
exertional heat stress, and salt-losing pathologies, with real-
time analytics empowering both individual users and
clinicians. Figure 5 presents the system-level architecture of a
sweat biosensing platform. Sweat is first extracted and guided
through microfluidic channels (typical dimensions: ∼80–120
μm height, 0.8–1.2 mm width) to the electrochemical
transducer for analyte detection. The AFE conditions signals
within the range of 1–100 mV, followed by amplification (up
to 10³ gain) and conversion through a 12–16 bit ADC/DAC,
ensuring sensitivity to ionic fluctuations as low as 1 mM.
A low-power microcontroller (e.g., ARM Cortex-M0/M4 class,
<10 mW consumption) executes digital filtering, drift
correction, and temporary memory storage (≈256 kB–1 MB).
Wireless telemetry is achieved via BLE (data rates up to
1 Mbps, range ∼10 m) or NFC modules, enabling seamless
communication with external devices. The power management
circuit regulates operation from a thin-film battery (1–3 V,
10–20 mAh capacity), providing continuous monitoring for
12–24 hours. This configuration has been validated to capture
sweat flow rates in the 0.1–5 μL/min range with volumetric
accuracy within ±8–10% and to support stable potentiometric
measurements of Na+, K+, Cl−, and pH across varying
perspiration conditions.

3) Low-cost printed microfluidic patch for cortisol and glucose:
This ultrathin, epidermal “smart bandage” integrates inkjet-
printed electrochemical biosensors and laser-patterned
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microfluidic channels onto a flexible PI substrate, enabling real-
time, noninvasive monitoring of glucose and cortisol levels in
human sweat [112]. The device, approximately 78 mm × 20
mm in dimension, employs high-resolution (1270 dpi) printed
graphene and Ag/AgCl electrodes thermally cured at 350°C for
structural stability. A PET top layer with a hydrophilic surface
ensures capillary-driven sweat transport along a 1 mm-wide
microchannel, terminating in an absorbent pad that maintains
continuous flow via passive evaporation. Adhesive
microstructures define channel geometry and enable skin
adhesion without compromising permeability or flexibility.
The glucose sensing module consists of a two-electrode
configuration—graphene working and Ag/AgCl counter/
reference—functionalized with glucose oxidase (GOx).
Enzymatic oxidation of glucose to hydrogen peroxide is
electrochemically transduced at ∼0 V, offering a
physiologically relevant dynamic range (0.2–1.0 mM) with a
detection limit of ∼10 μM at sweat flow rates ≥2 μL/min. For
cortisol detection, a three-electrode chronoamperometric
architecture is employed. The graphene/AuNP working
electrode, modified with immobilized anti-cortisol antibodies,
enables highly specific immuno-detection of cortisol via redox
signal modulation, achieving a limit of detection down to 10
pM. A climactic innovation is the incorporation of an
electrowetting valve (fabricated using Perfluorodecanethiol
(PFDT)-modified silver ink) that provides electrically tunable
flow control, mitigating premature mixing and enhancing
temporal resolution of biomarker sampling [112]. The patch
demonstrates exceptional mechanical resilience, retaining
sensor functionality under bending, twisting, and dynamic
strain, making it suitable for use on curved anatomical regions
such as joints. Although the current iteration does not detail
onboard electronics, the system is compatible with external or
integrated data acquisition modules for signal digitization and
wireless transmission to mobile interfaces. This dual-analyte
sweat biosensor represents a significant advance in wearable
diagnostics by enabling continuous cortisol–glucose tracking
with picomolar to micromolar sensitivity under physiological
flow conditions.

5.2. Wireless integrated sensor systems (WISS)

A 3D-printed epidermal patch integrates microfluidic channels and
bio-functionalized electrochemical electrodes for multiplexed sweat
biomarker detection—specifically glucose, lactate, and uric acid.
Designed for on-body applications under dynamic physiological
conditions, this platform enables real-time, on-demand biochemical
readout without external instrumentation. Each biosensor utilizes
distinct enzymatic redox reactions resulting in visible colorimetric
transitions, with hues corresponding to target analyte concentrations—
red for glucose, green for lactate, and blue for uric acid. The
microfluidic architecture ensures directional sweat transport via
passive capillary action, preventing analyte cross-contamination.
Fabricated via single-step additive manufacturing, this low-cost,
flexible device demonstrates high mechanical compliance, stability
during motion, and direct visual readout, validated under exercise-
induced perspiration. This prototype exemplifies the convergence of
colorimetric biosensing, microfluidics, and accessible fabrication
toward self-contained, personalized health monitoring platforms.

1) Design architecture and biochemical specifications:
a. Substrate and structure: Flexible, biocompatible polymer

substrate with embedded microchannels and biosensors,
printed via additive manufacturing in a monolithic process.

b. Analytes detected: Glucose, lactate, uric acid.
c. Sensing mechanism: Each analyte-specific electrode is coated

with a dedicated enzymatic reagent that catalyzes a redox
reaction upon contact with the target molecule. The product
of this reaction induces a colorimetric shift proportional to
concentration.

d. Microfluidic channeling: Capillary-driven passive fluidic
system directs sweat toward isolated detection chambers,
ensuring laminar flow and preventing analyte cross-interface.

e. Colorimetric electrodes: Chemically functionalized sensors
that operate via visible chromogenic transformation,
enabling direct optical readout without the need for
electronic circuitry.

f. On-body validation: Demonstrated effective performance
under physical exertion—conforming to the skin,
maintaining contact, and yielding biochemical feedback
during sweating and movement.

2) Mechanism of operation:
a. Sweat collection via capillary action: As eccrine sweat glands

secrete fluid, it is passively wicked into the hydrophilic
microfluidic channels, guided toward the biosensor chambers
through surface tension and microchannel geometry.

b. Analyte-specific enzymatic reaction: Upon contact with the
bioelectrode surface:

c. Glucose reacts with glucose oxidase (GOx)
d. Lactate reacts with lactate oxidase (LOx)
e. Uric acid undergoes enzymatic oxidation via uricase

These reactions generate intermediate species (e.g., H2O2),
which trigger a colorimetric reaction (likely mediated by
peroxidase-mimicking chromophores).
3) Color change for visual quantification:

The chromogenic response produces a concentration-dependent
hue visible to the naked eye. The sensor regions exhibit: red for
glucose accumulation, green for elevated lactate, and blue for high
uric acid levels.
4) Immediate visual feedback:

The patch is fully passive, requiring no power, display, or
interface. Users observe color intensity directly to gauge relative
biochemical levels.
5) Mechanical robustness and wearability:

Due to its thin and flexible architecture, the patch adheres
seamlessly to skin contours, maintains structural integrity during
bending, and preserves signal fidelity during physical motion.

5.3. BLE and NFC-based wireless interfaces

NFC and BLE are foundational short-range wireless protocols
integrated into wireless integrated sensor systems for healthcare
applications [113]. Operating at 13.56 MHz, NFC enables secure,
low-latency (<0.1 s), and proximity-bound (≤4 cm) data exchange
through inductive coupling. Its passive architecture leverages
electromagnetic field harvesting, allowing battery-free operation in
smart tags, access modules, and point-of-care data transfer.
Conversely, BLE functions over the 2.4 GHz ISM band with
adaptive frequency hopping and ultra-low power consumption
(∼0.01–0.5 W), supporting extended-range (up to 100 m) and
continuous telemetry [114]. Modern BLE 5.2 modules enable
bidirectional communication, audio streaming, and mesh
networking, rendering them suitable for persistent biosignal
transmission from wearable biosensors.
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1) Mechanistic Integration in IoMT:

a. Enabling secure patient authentication by inductively
coupling NFC-tagged epidermal patches with clinical
readers, exploiting 13.56 MHz passive communication for
identity verification.

b. Activating real-time localization of patients, clinicians, and
medical assets via BLE beacon triangulation, employing
Received Signal Strength Indicator (RSSI)-based signal
strength analysis and adaptive frequency hopping across the
2.4 GHz ISM band [115].

c. Implementing dual-mode telemetry by integrating hybrid
NFC-BLE transceivers, enabling passive analyte sensing
(e.g., glucose oxidase-based fingertip wrap) and continuous
biosignal streaming (e.g., HRV, ECG) through BLE modules.

6. Clinical Translation and Regulatory Landscape

1) Challenges in clinical validation

Clinical validation is a post-claim forensic process in which
licensed clinicians verify that diagnoses and procedure codes—
such as ICD-10-CM and CPT—are supported by clinical
evidence, including lab results, imaging, treatments, and progress
notes. This process is mandated under Health Insurance
Portability and Accountability Act (HIPAA) (1996) in the United
States, enforced through the False Claims Act (31 U.S.C. §§
3729–3733), and further reinforced via Section 6401(a) of the
Affordable Care Act, ensuring that claims are accurate,
reimbursable, and protected against fraudulent billing [116]. In
India, analogous obligations exist under the Digital Information
Security in Healthcare Act (DISHA, proposed framework 2023),
which mandates secure management, access control, and
auditability of patient records, while international frameworks
such as the General Data Protection Regulation (GDPR) regulate
cross-border health data sharing. Despite its importance, clinical
validation faces multiple challenges: inconsistent or fragmented
documentation, lack of standardized diagnostic criteria, time-
constrained workflows, and regulatory complexity. Studies
suggest that up to 25% of hospital claims may be denied due to
documentation gaps (Change Healthcare, 2020 [117]). Integrating
compliance across multiple jurisdictions—HIPAA for US patient
data, DISHA for Indian healthcare data, and GDPR for cross-
border exchange—adds additional layers of operational and
technical complexity. A tri-regulatory overlap map helps visualize
these intersecting obligations. HIPAA primarily governs patient
privacy, access, and record retention. DISHA focuses on data
security, audit trails, and Indian jurisdiction compliance, and
GDPR emphasizes cross-border data transfer and consent
management. The overlapping challenges in clinical validation:
Clinical validation is a post-claim forensic process in which
licensed clinicians verify that diagnoses and procedure codes—
such as ICD-10-CM and CPT—are supported by clinical
evidence, including lab results, imaging, treatments, and progress
notes. This process is mandated under HIPAA (1996) in the
United States, enforced through the False Claims Act (31 U.S.C.
§§ 3729–3733), and further reinforced via Section 6401(a) of the
Affordable Care Act, ensuring that claims are accurate,
reimbursable, and protected against fraudulent billing [116]. In
India, analogous obligations exist under the Digital Information
Security in Healthcare Act (DISHA, proposed framework 2023),
which mandates secure management, access control, and
auditability of patient records, while international frameworks

such as the GDPR regulate cross-border health data sharing.
Despite its importance, clinical validation faces multiple
challenges: inconsistent or fragmented documentation, lack of
standardized diagnostic criteria, time-constrained workflows, and
regulatory complexity. Studies suggest that up to 25% of hospital
claims may be denied due to documentation gaps (Change
Healthcare, 2020 [117]). Integrating compliance across multiple
jurisdictions—HIPAA for US patient data, DISHA for Indian
healthcare data, and GDPR for cross-border exchange—adds
additional layers of operational and technical complexity. A tri-
regulatory overlap map helps visualize these intersecting
obligations. HIPAA primarily governs patient privacy, access, and
record retention. DISHA focuses on data security, audit trails, and
Indian jurisdiction compliance, and GDPR emphasizes cross-
border data transfer and consent management. The overlapping
region in the map represents requirements that are common across
all three frameworks, such as secure access, auditability, and
patient consent for data use. Recognizing these intersections is
crucial for healthcare providers, digital health platforms, and
wearable device integrators, enabling them to design validation
workflows that satisfy multiple regulations simultaneously,
reducing the risk of penalties, data breaches, or claim denials
while maintaining high data integrity.

2) Regulatory standards for wearables

Regulatory standards constitute the legally enforceable,
systematically codified frameworks promulgated by national regulatory
agencies and international standardization consortia, designed to ensure
that wearable biosensors and digital health technologies adhere to
validated benchmarks of clinical efficacy, safety, functional integrity,
interoperability, and data stewardship. These frameworks extend across
device classification heuristics, evidence-based risk stratification
thresholds, electromagnetic compatibility (EMC) testing, software
lifecycle validation, usability engineering, and post-market vigilance.
At the global level, the core architecture of conformity assessment
rests upon harmonized standards, including:

a. ISO 13485:2016 – Quality Management Systems for Medical
Devices

b. ISO 14971 – Risk Management for Medical Devices
c. IEC 62304 – Software Lifecycle Processes
d. IEC 60601-1-2 – EMC Requirements for Medical Electrical

Equipment
e. ISO/IEC 27001 and 27701 – Cybersecurity and Privacy

Information Management

These standards are critical in regulatory filings, clinical trial
design, dossier preparation, and lifecycle risk mitigation across
jurisdictions [118]. In the United States, the US FDA governs
wearable medical technologies under 21 CFR Parts 801–822,
stratifying devices into Class I (low-risk), Class II (moderate-risk),
and Class III (high-risk) categories [119]. Regulatory pathways
include:

a. 510(k) premarket notification (substantial equivalence)
b. De Novo classification for novel, low-to-moderate risk devices
c. PMA (Premarket Approval) for Class III high-risk innovations

Devices must align with FDA-recognized consensus standards
and adhere to cybersecurity guidelines issued under the NIST
Cybersecurity Framework. Further, compliance with 21 CFR Part
803 mandates robust post-market surveillance and adverse event
reporting [120]. Legal governance of personal health data falls under:

Smart Wearable Technology Vol. 1 2025

22



a. HIPAA (1996) – Ensuring confidentiality and integrity of
Protected Health Information (PHI)

b. HITECH Act (2009) – Reinforcing breach notification mandates
and health IT modernization

In the European Union, the Medical Device Regulation (EU
MDR 2017/745) supersedes the earlier Major Depressive Disorder
(MDD), demanding rigorous CE conformity assessment via
Notified Bodies, including clinical performance evaluations, post-
market clinical follow-up (PMCF), and traceability via Unique
Device Identification [121]. For wearables collecting
physiological data, GDPR (Regulation EU 2016/679) mandates
compliance with data minimization, consent granularity, cross-
border processing safeguards, and data subject rights [122]. In
India, the regulatory landscape is delineated under the Medical
Devices Rules, 2017 (amended 2020), administered by the Central
Drugs Standard Control Organisation (CDSCO) [123]. Devices
with diagnostic or therapeutic claims are classified into Class A–D
under GSR 78(E) based on risk, triggering obligations for:

a. Medical Device Licensing
b. Technical Dossier Submission (including safety, effectiveness,

and design control data)
c. Good Manufacturing Practices (Schedule 5)

For wireless-enabled devices, WPC ETA certification is
mandated by the Department of Telecommunications. Safety
compliance of electronic components is governed under the BIS
CRS Scheme, specifically IS 13252 (Part 1):2010 for IT and
medical electronics. The Digital Personal Data Protection (DPDP)
Act 2023, modeled on GDPR principles, regulates digital consent
architecture, breach notification timelines, and cross-border data
flow governance [124]. At a supranational level, the International
Medical Device Regulators Forum (IMDRF) promotes
harmonization of device categorization, regulatory science best
practices, and cross-border vigilance protocols. Concurrently, IEC
TC 124 is pioneering standardization efforts in next-generation
flexible bioelectronics, including textile-integrated sensors,
stretchable circuits, and bioresorbable diagnostic systems—
heralding a shift toward morphologically adaptive and seamlessly
embedded medical technologies. Yet, despite the codified rigor of
these frameworks, unresolved lacunae persist, particularly in the
domain of software as a medical device, adaptive algorithms, and
transnational data flows—areas where recent regulatory advisories
have sought to impose more granular obligations.

a. Post-market vigilance: EU MDR PMCF (2021–2023
enforcement) – explicit obligation for periodic safety update
reports for Class IIb/III wearables; India CDSCO GSR 102(E),
2020 – annual performance recertification for Class C/D
devices with AI components.

b. Data governance conflicts: GDPR Art. 44–49 versus DPDP Act
2023, Sec. 16–17 – divergence on cross-border data transfer:
GDPR requires adequacy decisions; DPDP requires “trusted
geographies” notified by GoI. Cloud-hosted wearable datasets
(AWS, Azure, GCP) are flagged as non-compliant under dual
regimes.

c. Privacy and consent architecture: GDPR Recital 71 – explicit
requirement for algorithmic transparency in automated
decision-making; DPDP Act Sec. 7(2) – “consent managers”
as fiduciaries, no equivalence in GDPR.

d. Cybersecurity enforcement: FDA 2023 (Cybersecurity in
Medical Devices Guidance) – mandatory SBOM (Software
Bill of Materials) submission for Class II/III wearables; EU

MDR harmonized with IEC 81001,5,1 (2021) – secure product
development lifecycle for health software.

e. Harmonization initiatives: IMDRF AI Principles (2023) – “Good
Machine Learning Practices” (GMLP) codified; IEC TC124
WG10 (2024) – drafting safety standards for bioresorbable,
textile-integrated sensors; WHO Global Digital Health
Certification Network (GDHCN, 2023) – pilot frameworks for
cross-border digital health device validation.

3) Regulatory ambiguity in SaMD classification

The landscape of Software as a Medical Device (SaMD)
remains a regulatory twilight, where wellness-oriented
applications blur into formally regulated medical technologies.
The FDA’s 2023 proposed AI/ML framework illuminates a
pivotal distinction: “locked” algorithms, whose operational logic
is fixed and immutable post-deployment, versus “adaptive”
algorithms, which continuously evolve in response to real-world
data streams. Mapping wearable neurotechnologies against this
schema clarifies compliance pathways.

a. Case Example 1: Cognionics Quick-20 Headband – This device
employs a 1D-CNN combined with LSTM networks to decode
motor imagery signals from EEG electrodes. The neural
decoding models are fully trained on pre-collected datasets and
validated before deployment, with no real-time adaptation at
the edge, classifying it as a locked algorithm. Its predictable
performance ensures minimal post-deployment regulatory
oversight.

b. Case Example 2: NeuroPace RNS System (Responsive
Neurostimulation) – This seizure-detection wearable captures
intracranial EEG signals and uses adaptive ML algorithms to
detect pre-ictal patterns in real time. The model continuously
updates its predictive parameters based on incoming EEG data,
requiring robust change control plans, tiered risk management,
independent multi-cohort validation, and potential recertification
after significant algorithmic updates, exemplifying the regulatory
demands of adaptive SaMD.

This evolving regulatory terrain is not without its shadows.
Longitudinal performance drift remains uncharted for many edge-
based neuro-wearables, limiting predictive certainty over
extended use.

a. User compliance and data interpretation: Modern wearable health
technologies are increasingly designed to integrate behavioral
adherence mechanisms with advanced biosignal analytics for
improved therapeutic outcomes. Devices like the Dexcom G7
feature factory-calibrated sensors, real-time hypoglycemia alerts,
and algorithmic trend projections, with compliance supported
through automated sensor replacement reminders [13]. The
Abbott FreeStyle Libre 3 offers continuous glucose monitoring
via a discreet, water-resistant sensor with haptic scan reminders,
translating glycemic data into visual trend curves and predictive
insight. Propeller Health’s FDA-cleared inhaler sensors
enable dose-tracking, issue medication-use reminders, and
synchronize environmental data with symptom logs to generate
individualized adherence analytics [125].

Table 7 provides a strategic compliance crosswalk for next-
generation wearable health technologies, linking advanced
functions—such as adaptive AI/ML, flexible bioelectronics, real-
time decision support, and cross-border data handling—to the
governing frameworks of EU MDR 2017/745, FDA statutes and
guidances, and ISO/IEC standards. Beyond mere citation, it
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highlights actionable obligations for clinical validation, cybersecurity,
interoperability, and post-market vigilance, offering a holistic
roadmap for developers to navigate the regulatory labyrinth while
ensuring global alignment and patient-safe innovation.

7. Future Perspectives

In the coming decade, smart wearables will evolve into bio-
intelligent systems—soft, skin-adherent, and self-powered—
designed to serve as continuous, real-time health sentinels. These
devices will integrate multi-analyte electrochemical sensors
embedded with nanomaterials like graphene, MXenes, and gold
nanowires to detect metabolites (e.g., glucose, lactate, cortisol),
electrolytes, and inflammatory markers in sweat, saliva, and
interstitial fluid at nanomolar sensitivities. Flexible
electrophysiological arrays will record biopotentials (ECG, EMG,
EEG) with sub-1 μV noise, enabling on-skin cardiac and
neurophysiological monitoring with diagnostic precision. Coupled
with edge-based AI processors and drift, compensating
algorithms, these systems will perform on-device inference,
detecting early signs of arrhythmias, insulin resistance, or
neurological events without cloud dependence. Thermoelectric
and piezoelectric modules will harvest energy from body heat and
motion, supporting autonomous operation for weeks. Standardized

APIs (e.g., HL7 FHIR) will ensure seamless integration into
EHRs, while federated learning architectures will enable model
training across millions of devices without compromising data
privacy. With digital twin frameworks, real-time biosensor inputs
will merge with genomics and imaging data to simulate disease
trajectories and personalize interventions.

Yet, two salient vulnerabilities demand explicit recognition.
First, algorithmic bias remains an insidious constraint: a 2022
multi-country evaluation of FDA-cleared arrhythmia detection
wearables (Apple Watch Series 6, Fitbit Sense) reported >95%
sensitivity in controlled urban tertiary care environments, yet
community-based deployments across rural India and sub-Saharan
Africa revealed specificity declines to 78–82%. False arrhythmia
alerts were disproportionately concentrated among darker-skinned
individuals, reflecting inherent limitations of PPG under variable
optical conditions. Geospatial stratification indicated that tribal
and rural primary health center cohorts bore the brunt of
misclassification, followed by semi-urban populations, whereas
urban cohorts maintained consistently high fidelity. Contributing
variables include constrained bandwidth, environmental noise, and
heterogeneous skin pigmentation, interacting synergistically with
device and algorithmic limitations. Conceptually, these deviations
can be represented as a “supply heatmap” of error distribution,
where darker shades signify districts with >20% false alerts,

Table 7
Compliance matrix for emerging wearable medical technologies

Emerging Wearable
Function/Risk

EU MDR
(Articles/Annexes)

FDA (Guidance/
Statutes) ISO/IEC Practical Compliance Actions

Adaptive AI/ML
algorithms

Annex I GSPR; MDCG
AI recommendations

FDA 2023 Proposed
AI/ML Framework,
Predetermined
Change Control Plan

IMDRF GMLP; ISO
14971 risk
management

Define adaptive vs. locked model;
perform continuous monitoring;
maintain documentation of algorithm
updates; validate with independent
datasets.

Cross-border cloud
storage and multi-
jurisdictional data
flows

MDR + GDPR
Art. 44–49
considerations

HIPAA and FDA data
security guidance

ISO 27701 privacy
info management

Map data flows; implement consent and
lawful transfer mechanisms; ensure
hosting aligns with national directives
(DPDP/GDPR adequacy/SCC).

Textile-integrated and
flexible
bioelectronics

Annex I GSPR safety
and performance

FDA guidance on novel
device forms

IEC TC 124,
ISO 13485

Conduct mechanical and electrical safety
testing; document interoperability;
verify performance under real-world
mechanical stress; include in technical
dossier.

Post-market AI
performance
monitoring

Art. 87–92 (vigilance);
Annex III PMS

FDA post-market
surveillance; 21 CFR
Part 803

ISO 13485 §8,
ISO/TR 20416

Implement AI performance drift
detection; define thresholds for
corrective actions; maintain logs for
adaptive updates.

Interoperability with
third-party
platforms

Annex I GSPR FDA interoperability
guidance

IEC 62366,1,
IEC 62304

Define API standards; validate data
exchange and safety; maintain
cybersecurity and access control for
external integrations.

Dynamic risk
re-classification due
to software updates

Annex IX/X
(conformity
assessment)

FDA QMS and 21 CFR
820

ISO 14971 risk
management

Establish a process for evaluating risk
changes post-update; document change
control and regulatory notification;
integrate into QMS.

Wearable-driven
real-time alerts and
decision support

Annex I (safety,
performance)

FDA Clinical Decision
Support guidance

IEC 62304, ISO
62366

Validate alert thresholds; document
human factors and usability; maintain
clinical evidence for safety-critical
notifications.

Emerging
cybersecurity threats

Annex I (safety and
security)

FDA Cybersecurity
guidance

IEC 81001,5,1; ISO
27001

Threat modeling, penetration testing,
patch management, SBOM
documentation, incident response plans.
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intermediate shading indicates 10–20%, and minimal shading
reflects <10%. Study Table 8.

MXene production lifecycle assessment (LCA) depth (Ti3C2Tx
via HF-based selective etching) generates fluoride-rich effluents with
aquatic toxicity index >0.7, requires annealing at ≥900°C, and
carries an estimated lifecycle carbon intensity of ∼68 kg CO2e per
kg of MXene—nearly double that of equivalent quantities of GO.
Reports from pilot LCA studies (2023, Helmholtz Zentrum,
Germany) highlighted that MXene-derived sensor patches have a
cradle-to-gate global warming potential (GWP) 3.5 times higher
than conventional silicon-based microelectronics. By contrast, bio-
based nanocellulose composites and silk fibroin substrates
demonstrated GWP reductions of ∼45% while maintaining
comparable stretchability and dielectric stability. To reconcile eco-
conscious claims, it is imperative to embed LCA into regulatory
submissions, mandating disclosure of extraction, synthesis,
deployment, and disposal footprints alongside conventional safety
dossiers. As biodegradable substrates and self-healing electronics
begin addressing environmental concerns, and regulatory
advances establish wearable, specific safety and data ownership
standards, these devices will no longer be auxiliary—they will
become predictive, preventative health companions embedded in
the very fabric of human life [126].

1) Scope 1 captures direct emissions from synthesis, heating, and
HF handling.

2) Scope 2 captures indirect emissions from purchased electricity for
etching, annealing, and fabrication.

3) Scope 3 includes all upstream and downstream supply chain
emissions, for example, raw material extraction, chemical
production, device logistics, and disposal.

Cradle-to-gate GWP (∼3.5× conventional silicon electronics) is
mainly dominated by the energy demand for annealing and etching.
End-of-life emissions remain highly uncertain due to the limited
recycling infrastructure for MXene-based devices.

Cradle-to-grave emission flow for Ti3C2Tx MXene
production and use:

1) Raw material extraction (cradle phase)
a. Input: Titanium (Ti), aluminum (Al), and carbon precursors

(MAX phase: Ti3AlC2)
b. Processes: Mining, refining, and precursor synthesis
c. Main emissions (Scope 3):

• Mining and transport of Ti and Al ores → CO2, SO2, NOx

• Chemical precursor manufacturing → Process off-gases,
waste acids

d. Impact: ∼15–20% of total carbon footprint
e. Note:High material intensity and long transport chains add to

upstream emissions.

2) MXene synthesis and etching (gate-to-factory phase)
a. Input: MAX phase powder, hydrofluoric acid (HF),

deionized water, etching reactors
b. Processes: HF-based selective etching removes the Al layer,

yielding Ti3C2Tx flakes
c. Main emissions (Scope 1 and 2):

• Scope 1 (Direct):
• HF handling → F-rich liquid effluents (aquatic toxicity
index> 0.7)

• Chemical vapors and local energy combustion emissions
• Scope 2 (Indirect):
• Electricity for etching, stirring, drying→CO2 from power
grids

d. Impact: ∼35–40% of total GWP
e. Highlight:High chemical hazard and treatment load drive the

ecotoxicity footprint.

3) Thermal annealing and post-processing
a. Input: Synthesized Ti3C2Tx, inert gas environment
b. Processes: Annealing≥ 900°C to stabilize surface

terminations and conductivity
c. Main emissions (Scope 2):

Table 8
Global and Indian health data regulatory comparison for wearable healthcare devices

Regulatory
Framework Jurisdiction and Scope Core Data Obligations

Cross-Regulatory
Convergence Distinctive Mandates

GDPR European Union;
personal and health
data of EU residents

Granular consent, data
minimization,
transparency, right to
access and erasure

Consent management,
access controls,
breach notification

Adequacy assessments
for international data
transfers

DPDP Act
2023

India: personal and
health data of Indian
citizens

Fiduciary consent
management, breach
notification, data
localization, cross-
border “trusted
geographies”

Consent management,
access controls,
breach notification

Geographically
restricted international
data transfers

HIPAA United States; Protected
Health Information
(PHI)

Privacy and security of
PHI, breach reporting,
compliance for
covered entities and
business associates

Security enforcement,
breach reporting

PHI, specific
safeguards, business
associate
accountability

DISHA
(Proposed)

India: digital health and
medical data
governance

Secure storage, access
control, auditability,
and patient consent

Security enforcement,
access control, and
auditability

Mandatory digital
health record audits,
structured clinical
data compliance
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• Electricity and/or natural gas for furnaces → High CO2e
output

d. Impact: ∼30–35% of GWP
e. Note: Energy demand during this step nearly doubles the total

carbon intensity compared to GO.

4) Device fabrication and assembly
a. Input: MXene inks/films, polymer or silk fibroin substrates,

micro-patterning tools
b. Processes: Printing, deposition, encapsulation, curing
c. Main emissions (Scope 2 and 3):

• Equipment power usage
• Solvent volatilization and substrate manufacturing
emissions

d. Impact: ∼10% of total GWP
e. Insight: Bio-based substrates (e.g., nanocellulose, silk

fibroin) reduce GWP by ∼45%.
5) Device use phase

a. Input: Energy for wearable operation (battery charging, data
transfer)

b. Main emissions (Scope 2):
• Indirect CO2e from electricity consumption during active
use

c. Impact:Minor (∼3–5%) but cumulative over device lifespan
d. Note: Longer operational life reduces per-use environmental

cost.

6) End-of-life and disposal (grave phase)
a. Processes: Waste collection, incineration, or landfill
b. Main emissions (Scope 3):

• Uncertain due to a lack of MXene recycling infrastructure
• Potential fluoride leaching, heavy-metal release, or
incomplete combustion residues

c. Impact: Environmentally risky but poorly quantified
d. Future direction: Design for recyclability and biodegradable

hybrid composites.

As bio-intelligent wearables evolve into continuous, real-
time health sentinels, their transformative potential must be
matched by a steadfast commitment to ethical deployment. At
the heart of this commitment lies human autonomy and dignity:
users must retain full control over their data, devices, and
engagement with AI-driven insights, empowering informed
choices rather than passive monitoring. Equally critical is
fairness and nondiscrimination; the algorithms guiding these
wearables should be trained on diverse datasets that reflect the
full spectrum of age, sex, ethnicity, SES, and occupational
backgrounds, ensuring equitable access and unbiased clinical
decision-making. Transparency and explainability serve as
the bridge between complex AI inference and human
understanding, enabling users and clinicians to interpret
predictions and understand the rationale behind alerts or
recommendations. Privacy and data security form the protective
backbone, with encrypted communications, federated learning,
and on-device computation safeguarding intimate biometric and
health information. In parallel, accountability and responsibility
establish clear lines of liability for AI-driven decisions, while
safety and well-being demand rigorous validation, real-world
testing, and continuous performance monitoring to ensure
reliability under dynamic physiological and environmental
conditions. Finally, embedding principles of sustainability and
eco-conscious design ensures that the march of innovation does
not come at the expense of the planet.
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