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Abstract: Retinal optical coherence tomography (OCT) is a noninvasive and high-resolution diagnostic imaging modality used for early
detection of choroidal neovascularization (CNV), diabetic macular edema (DME), and drusen-based macular diseases (MDs). The
manual procedure for screening these MDs using OCT images is cumbersome and may result in a false diagnosis. Hence, there is a
requirement for an artificial intelligence-enabled automated approach for the accurate detection of macular disorders. This paper presents
a modified iterative fusion deep neural network (MIFDNN) model and its implementation on an Android framework for the automated
detection of CNV, DME, and drusen using OCT images. Initially, the U-Net model is used to obtain the enhanced OCT image from the
noisy OCT image. The enhanced OCT image is used as input for the proposed MIFDNN model for detecting MDs. The MIFDNN
employs a sophisticated dual-branch architecture comprising a custom basic branch deep convolutional neural network (CNN) module
for hierarchical feature extraction, a fusion branch for iterative multiscale feature integration, dense layers, and a softmax layer for
detecting MDs. The basic branch deep CNN consists of five convolution layers, five batch normalization (BN) layers, and three
max-pooling layers. The classification performance of the proposed MIFDNN model is evaluated using OCT images from a public
dataset. Our model has achieved a remarkable average classification accuracy of 98.17% using a 3-fold cross-validation strategy,
outperforming several existing methods to detect MDs using OCT images. To facilitate real-world application, we have performed
post-training quantization to reduce the size of the proposed MIFDNN model. The quantized model is successfully deployed on an
Android platform, where the on-device inference maintained an impressive 98% accuracy with a throughput of approximately 92 images
per minute, validating the proposed model’s practical feasibility for screening MDs using OCT images.
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1. Introduction

The retinal diseases are the leading cause of vision loss in the
world [1]. Themacular diseases (MDs) are a subset of retinal diseases
that affect the small central area of the retina called themacula, which
is responsible for sensing light and sending visual signals to the brain
[2]. The early diagnosis and effective treatment of these MDs are
essential to prevent vision loss for human perception and overall
quality of life. The MDs, such as diabetic macular edema (DME),
choroidal neovascularization (CNV), drusen, and other forms of
macular degeneration, can lead to partial or complete vision loss if
not detected in the early stage [2]. CNV is characterized by the
formation of abnormal blood vessels under the retina [3]. These
vessels are prone to leakage and bleeding, often leading to
scarring and rapid deterioration of central vision. Similarly, the
DME occurs as a complication of diabetic retinopathy (DR) and
involves the accumulation of extracellular fluid in the macula due
to vascular leakage [4]. Drusens are extracellular deposits
composed primarily of lipids and proteins, located between the

retinal pigment epithelium and Bruch’s membrane [5]. The small
drusen can be benign, but the presence of larger or numerous
drusen is an early indicator of age-related macular degeneration.
Optical coherence tomography (OCT) is a noninvasive imaging
modality that captures high-resolution cross-sectional images of
the retina of the eye [6]. It allows ophthalmologists to visualize
retinal structures in detail and is an essential tool in diagnosing
various macular disorders [6]. The manual interpretation of
OCT scans for diagnosing MDs is a tedious and expertise-
dependent process that often requires trained and experienced
ophthalmologists to evaluate subtle anatomical differences across
multiple cross-sectional slices [7]. The recent advancements in
artificial intelligence (AI) have enabled the development of
automated diagnostic systems capable of analyzing medical
images and providing diagnostic decisions that are comparable to
those of expert clinicians [8]. The AI-based approaches are mainly
implemented on cloud-based systems, which suffer from
healthcare data privacy concerns and high latency and are
dependent on stable internet connectivity for automated detection
of different diseases using medical images [9]. In healthcare
engineering, edge computing provides automated and real-time
diagnostic decisions closer to the data recording or imaging
system in medical centers without transmitting the patient’s data
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to the cloud. The Android-based edge device facilitates cost-
effective, user-friendly, privacy-preserving, and real-time analysis of
medical images without the requirement of cloud connectivity [9].
Therefore, the development of novel AI-based approaches and their
implementation on Android devices is interesting for automated and
real-time detection of MDs using OCT images. Different AI-based
techniques have been proposed in the last decade for the automated
detection of MDs using OCT images [10]. Srinivasan et al. [11] have
computed the histogram of oriented gradients (HOG) features from
OCT images and utilized the support vector machine (SVM)-based
machine learning (ML) classifier for detecting MDs. Similarly,
different ML-based methods coupled with various types of features
extracted from OCT images have been employed for detecting MDs
[12, 13]. In Das et al. [7], the authors have utilized the VGG16-
based transfer learning model [14] for classifying healthy versus
CNV versus DME versus drusen classes using OCT images. The
same authors have also utilized an InceptionV3-based model for
classifying MDs using OCT images [7, 15]. Fang et al. [16] have
suggested an iterative fusion-based convolutional neural network
(IFCNN) for detecting MDs using OCT images. They have used the
VGG16 model in the basic branch of IFCNN for detecting MDs.
Huang et al. [17] have proposed a layer-guided CNN-based deep
learning (DL) model for automated detection of CNV, DME, and
drusen-based MDs using OCT images. Das et al. [2] have employed
the multiscale spatial pyramid decomposition of OCT images and a
CNN at each scale, followed by feature fusion for automated
detection of MDs. Mishra et al. [18] have suggested a composite
attention-based DL model to detect MDs using OCT images. Akça
et al. [19] have used different versions of vision transformer (ViT)-
based DL models for detecting MDs such as DME, CNV, and
drusen using OCT images. In Jaimes et al. [20], the authors have
used the VGG16-based transfer learning network to detect MDs
using OCT images. Similarly, Bhandari et al. [21] have proposed a
lightweight CNN model architecture for detecting MDs using OCT
images. The ML-based methods depend on the use of image
processing techniques to extract a fixed set of features, the use of
optimization and ranking-based techniques for selection of features,
and accurate selection of the parameters of the classifiers for
detecting MDs using OCT images [11–13]. The DL models have
shown higher classification results than ML-based methods for
detecting MDs using OCT images. However, these existing
DL-based methods are based on cloud-based inference and have not
been implemented on edge devices for detecting MDs using OCT
images. Edge computing for health care is based on deploying the
AI model on embedded devices, smartphones, and tablets for
on-device detection of different diseases [22]. The techniques, such
as quantization and pruning, are used to reduce the size of the DL
model for deploying it into embedded devices [9]. The novelty of
this work lies in the development of a new DL model and its
implementation on an Android device for real-time detection of MDs
usingOCT images. The salient contributions of this work are as follows:

1) A modified iterative fusion-based deep neural network
(MIFDNN) model architecture is proposed for detecting MDs
using OCT images.

2) The post-training quantization (PTQ) of the MIFDNN models
using reduced precision-based representation of weight
parameters with 16-bit floating point (FP16), 16-bit integer
(INT16), and 8-bit integer (INT8) is performed.

3) The deployment of the reduced precision-based MIFDNN model
on an Android device for real-time detection of MDs such as
CNV, DME, and drusen using OCT images. The remaining
sections of this paper are organized as follows.

In Section 2, a detailed description of the OCT image dataset
used in the proposed work is provided. The proposed method is
described in Section 3. The results obtained based on the
evaluation of the proposed method and the discussion of these
results are presented in Section 4. Finally, the conclusions of this
work are written in Section 5.

2. OCT Images Dataset

This study uses a publicly available retinal OCT dataset [23, 24]
for developing and evaluating the proposed DL model to detect MDs.
The dataset comprises a total of 84,495 grayscale OCT B-scan images,
collected from 4686 patients at the Shiley Eye Institute, University of
California, San Diego [24]. All scans have been obtained using the
Heidelberg Spectralis OCT system, which is known for its high axial
resolution and consistent image acquisition quality [24]. The dataset
contains the OCT images for four classes: CNV (37,455 images),
DME (11,598 images), drusen (8866 images), and healthy (26,565
images). We have used the total number of OCT images (84,484) for
this work to develop and evaluate the proposed MIFDNN model for
detecting MDs. The 11-OCT image difference between the stated
(84,495) and actual (84,484) dataset size appears to be a minor
discrepancy in the original dataset documentation, which we have
verified through direct file counting. An independent dataset (second
dataset) is also used to verify the effectiveness of the proposed
method in a cross-dataset-based scenario (method trained using one
dataset and tested using another dataset containing OCT images) for
detecting MDs. The second dataset consists of 24000 OCT images
and has 8 classes (healthy, DME, CNV, drusen, central serous
retinopathy, DR, macular hole) [25]. The OCT images for the
training set, validation set, and test set are given as 18400, 2800, and
2800, respectively, in the second dataset. In this work, we have used
a total of 1750 OCT images (350 OCT images for each class) from
healthy, DME, CNV, and drusen classes to evaluate the performance
of the proposed method for detecting MDs. The OCT images in the
datasets are of different sizes. We have resized each OCT image in
both datasets to a size of 224 × 224 × 1.

3. Proposed Method

The proposed method for detecting MDs using OCT images is
represented in a block diagram as depicted in Figure 1. The approach
consists of the denoising of the OCT image and the MIFDNNmodel
architecture for detecting MDs.

3.1. OCT image denoising

In this work, we have used the U-Net model [26] for the
denoising of OCT images. For the U-Net model, 400 OCT images
from each of the four classes (CNV, DME, drusen, and normal)
are selected for generating masks for the training. This mask
generation is based on the use of different image processing
operations, such as the extraction of retinal layers, the removal of
whitening background, aspect-ratio-preserving square cropping,
image sharpening, and patch-based noise elimination and region
filling using erosion and dilation methods [27, 28]. After
generating the masks, the U-Net model is trained to obtain an
enhanced OCT image. The “Adam” optimizer, “binary cross
entropy” as cost function, the number of epochs as 32, batch size
as 8, and 20% of the training OCT images as validation data are
utilized for the training of the U-Net model. The enhanced OCT
image is evaluated using the trained U-Net model with the input
as the test OCT images. The performance of the U-Net model is
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evaluated using measures such as macro intersection over union
(IoU), macro dice coefficient (DC), weighted IoU, and weighted
DC [29]. The original OCT image and the enhanced OCT image
are shown in Figure 2(a) and (b), respectively. It is observed that
the U-Net model effectively segments the retinal layers and
enhances the diagnostic quality of the OCT image by reducing the
noise and detecting the boundaries. After evaluating the enhanced
OCT image, the proposed MIFDNN model is implemented for
detecting MDs.

3.2. MIFDNN model

The overall architecture of the MIFDNN model is shown in
Figure 1. The proposed MIFDNN model consists of a basic
branch for hierarchical feature extraction and a fusion branch for
iterative multi-layer feature integration for classifying OCT
images. This dual-path strategy in the MIFDNN model enables
the network to capture both fine structural nuances and high-level
abstractions in the OCT images [16], which are critical when
differentiating between visually similar conditions such as CNV
and DME classes. The basic branch of the MIFDNN model is
constructed as a deep CNN, which is shown in Figure 3. It begins
with a 2D convolutional layer using a kernel size of 3 × 3 with

32 filters, followed by BN and a 2 × 2 max-pooling layer. This is
followed by a second convolutional layer with a kernel size of
5 × 5 and 64 filters, again succeeded by BN and max-pooling
layers. A third convolutional block, with a 5 × 5 kernel and 128
filters, is added next and is followed by a fourth convolutional
layer with a 3 × 3 kernel and 384 filters. Finally, a fifth
convolutional layer with a 3 × 3 kernel and 128 filters is included
before the final max-pooling layer. For the 2D convolution layer,
the feature map computed in the lth layer is given as follows [30]:

Zl
f i; jð Þ ¼ PC

c¼1

PM

m¼1

PN

n¼1
Zl�1
c i:sþm; j:sþ nð ÞKf

c m; nð Þ þ bf (1)

where Zl
f i; jð Þ is the output feature map for lth layer, Zl�1

f i; jð Þ is the
input feature map at lth layer, f and c are the indices for output and

input channels, and Kf
c m; nð Þ and bf are the kernel matrix and bias

value for the fth output feature map or channel. s corresponds to
the stride along both horizontal and vertical directions of the input
feature map. Similarly, for the lth max-pooling layer, the feature
map is calculated for the fth channel, and it is given as follows [30]:

Figure 1
Block diagram representation of the proposed approach for detecting MDs using OCT images

Figure 2
(a) Raw OCT image. (b) Enhanced OCT image evaluated using the U-Net-based denoising technique
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Zl
f i; jð Þ ¼ max 1 � m � M

1 � n � N

Zl�1
f i:sþm; j:sþ nð Þ (2)

In the concatenation branch of the proposed MIFDNN model,
the features extracted from the basic branch (deep CNN model) are
concatenated to generate themerged features. At the end of the fusion
or concatenation branch, we have used a global max-pooling layer to
reduce spatial dimensions. After the max-pooling layer, a fully
connected block comprising three dense layers is added. The first
dense layer consists of 256 units with ReLU activation and
L2-norm regularization, after which a dropout layer with a 20%
rate is applied to prevent overfitting. This is followed by a second
dense layer with 128 units, also regularized using the L2-norm of
the weight matrix, and followed by another dropout layer. A third
dense layer with 64 units is then added, again incorporating
L2-norm regularization of the weight matrix. Finally, a dense
output layer with 4 units is used, corresponding to the four OCT
classes (healthy, CNV, DME, and drusen), and employs a softmax
activation function to generate class probabilities. The training,
validation, and test instances of the MIFDNN model are selected
using hold-out validation with a split percentage of 70%, 10%,
and 20%, respectively. We have also considered the stratified
3-fold cross-validation (CV) technique to train and validate the
proposed MIFDNN model. For the training of the MIFDNN
model, the RMSprop optimizer with a learning rate of 0.0001 is
considered.

The OCT dataset exhibited significant class imbalance across
the four classes: CNV (37455 OCT images, 44.5%), normal
(26565 OCT images, 31.6%), DME (11598 OCT images, 13.8%),
and drusen (8866 OCT images, 10.5%). This imbalance ratio of
approximately 4.2:1 between the majority (CNV) and minority
(drusen) classes can cause a substantial risk for the proposed

MIFDNN model to be biased toward the CNV class. In this work,
we have evaluated the class weight for ith class as follows [31]:

wi ¼ m
C�mið Þ (3)

where m and mi are the total number of samples and the number of
samples in the ith class, respectively. The computed class weights for
CNV, healthy, DME, and drusen classes are 0.56, 0.79, 1.81, and
2.37, respectively. In this work, we have considered the weighted
sparse categorical cross-entropy (WSCC) loss function for the
MIFDNN model. The WSCC loss function is given as follows [31]:

WSCC ¼ 1
B

P
B
i¼1 wi �log pi;yi

� �� �
; (4)

where pi;yi is the predicted probability of the ith corrected class. The
weights penalize misclassifications of underrepresented classes (dru-
sen, DME) more heavily while reducing the influence of overrepre-
sented classes (CNV) during training. To mitigate overfitting and
dynamically adapt the learning process, we have integrated two
key callbacks during training, such as Reduce learning rate on pla-
teau to decrease the learning rate and early stopping to allow training
of the MIFDNN model to halt early while restoring the model
weights that yielded the lowest validation loss. The MIFDNNmodel
is trained for up to 32 epochs per fold, using a batch size of 16, and
class weights are applied to address the class imbalance issues. Fur-
thermore, we have also considered the 5-fold CV for evaluating the
classification performance of the MIFDNN model to detect MDs
using OCT images. To assess the proposed MIFDNN model’s per-
formance on unseen OCT images, a separate test dataset comprising
968 OCT images (242 OCT images per class) is utilized.
The classification metrics, such as accuracy, F1-score, precision,

Figure 3
Architecture of the deep CNN used in the proposed MIFDNN model
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and recall, are used for evaluating the performance of the MIFDNN
model to detect MDs [32].

3.3. Quantization and Android-based deployment

In this work, the trained MIFDNN model is converted into the
TensorFlow Lite format, which is optimized for on-device inference.
To enable efficient deployment of the MIFDNN model on resource-
constrained environments such as mobile and edge devices, we have
applied PTQ using TensorFlow’s optimization tools [33]. PTQ
works by reducing the numerical precision of model parameters
and activations, typically converting from 32-bit floating point
(FP32) to lower-precision formats like FP16, INT16, and INT8,
which significantly minimizes both memory footprint and
computational cost during inference [9]. To enable real-world
applicability of the proposed system, the final trained models are
deployed on an Android mobile platform using Android Studio
and Java [9, 22]. We have deployed both the U-Net-based
denoising model and the MIFDNN model for preparing the
Android application for real-time OCT image denoising and
detection of MDs. The core components in the Android app’s user
interface (UI) are image acquisition, image display, and prediction
of results. The image acquisition part in the app has two action
buttons (one button has the option “Take picture” and the other
“select from gallery”). The image display part shows the enhanced
OCT image. Similarly, after pressing the prediction of result
button, the class label corresponding to the OCT image is shown.
The TensorFlow Lite versions of U-Net-based denoising and
MIFDNN models are kept in the backend of the Android app. The
Android app’s UI is simple and requires uploading or taking a
picture of an OCT image to obtain the class label for detecting
MDs. The device used for the deployment of the proposed
approach is a Realme RMX3388 smartphone containing a
MediaTek Dimensity 810 octa-core processor and 6GB of random
access memory (RAM). The smartphone runs on a ColorOS 13-
based Android 13 operating system. The TensorFlow Lite Support
Library v0.1.0 runtime has been used for executing the proposed
model for detecting MDs using OCT images. All computations
are performed using a central processing unit only, and no
graphics processing unit has been used in this work.

4. Results and Discussion

The performance of different quantized versions of the U-Net
model for the denoising and segmentation of OCT images is
depicted in Table 1. It is observed that the FP16 version of the
U-Net model has demonstrated better denoising and segmentation
performance with the highest IoU and dice scores as compared to
other quantized versions of U-Net models. The hold-out validation
results for detecting MDs using the proposed MIFDNN model for
different quantization cases using enhanced OCT images are
depicted in Table 2. It is observed that the accuracy value of the

MIFDNN model with the INT8-based quantization case is obtained
as 91.05%, which is slightly higher compared to the MIFDNN
models using FP32 (90.88%), FP16 (90.48%), and INT16 (90.71%)
cases for the detection of MDs. Additionally, the Kappa score of the
INT8-based model is found to be 0.8669, which also slightly
outperforms the FP16 (0.8592), FP32 (0.8650), and INT16 (0.8625)
quantized versions. These results indicate the potential of INT8
quantization in maintaining robust performance while reducing
model complexity and inference cost. The results obtained from
evaluating the trained proposed MIFDNN model on the independent
test set are presented in Table 3. In this case, the accuracy, precision,
recall, and Kappa values are identical for the FP32, FP16, and
INT16 quantization cases, each achieving an accuracy of 97.93%,
precision of 97.99%, recall of 97.93%, and a Kappa score of 0.9724.
However, for the INT8-based model, there is a slight drop in the
performance metrics, with the accuracy reduced to 97.42%, precision
to 97.51%, recall to 96.67%, and the Kappa score to 0.9651. The
reductions observed for the INT8 case are 0.51% in accuracy, 0.48%
in precision, 1.26% in recall, and 0.0073 in Kappa score compared
to the other quantization versions. Despite this marginal decline, the
INT8 model maintains competitive performance, reinforcing its
viability for deployment in resource-constrained environments. The
per-class receiver operating characteristics (ROC) curves of the
proposed MIFDNN model using OCT images from the independent
test set are depicted in Figure 4. The area under the curve (AUC)
values are close to one for all four classes, indicating the robustness
and discrimination ability of the proposed MIFDNN model for
detecting MDs using OCT images. We have also shown the per-
class and overall AUC values of MIFDNN models in Table 4 for
different quantization cases using OCT images from the independent
test set for detecting MDs using OCT images. It is observed that the
FP32, FP16, and INT16 versions of the MIFDNN models achieve
identical macro- and micro-average AUCs and per-class AUCs,
indicating minimal impact of quantization for detecting MDs. The
INT8 version of the MIFDNN model shows a slight reduction in
macro- and micro-average AUCs compared to other quantization
versions. However, the per-class AUC is still higher than 0.99,
confirming robust discriminative performance even under the
reduced precision-based representation of the MIFDNN model for
detecting MDs using OCT images.

Table 1
Results of the U-Net model for different quantization cases for

obtaining enhanced OCT images

Quantization
Macro
IoU (%)

Macro
Dice (%)

Weighted
IoU (%)

Weighted
Dice (%)

FP32 96.55 98.24 96.55 98.24
FP16 96.75 98.34 96.75 98.34
INT16 96.55 98.24 96.55 98.24
INT8 96.35 98.14 96.35 98.14

Table 2
Hold-out validation results of the MIFDNN model for detecting

MDs using OCT images

Quantization Accuracy (%) Precision (%) Recall (%) Kappa

FP32 90.88 87.29 87.78 0.865
FP16 90.48 86.72 87.42 0.8592
INT16 90.71 87.11 87.58 0.8625
INT8 91.05 87.89 87.29 0.8669

Table 3
Results obtained for MIFDNN model using the OCT images

from an independent test set for detecting MDs

Quantization Accuracy (%) Precision (%) Recall (%) Kappa

FP32 97.93 97.99 97.93 0.9724
FP16 97.93 97.99 97.93 0.9724
INT16 97.93 97.99 97.93 0.9724
INT8 97.42 97.51 96.67 0.9651
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Further evaluation of the proposed MIFDNN model is
conducted using CV to assess the consistency and generalization
capability of the model across varying data splits. The results
obtained using a 5-fold CV approach on the independent test set
are illustrated in Table 5. The performance metrics for FP32,
FP16, and INT16 cases are found to be identical, demonstrating
the robustness of the MIFDNN model across different numerical
representations. For the MIFDNN model with INT8-based
quantized version case, the average accuracy, average precision,
and average recall values are obtained as above 96% for detecting
MDs using OCT images. This uniformity in results across
quantization levels reflects the MIFDNN model’s stable learning

behavior under different computational conditions. To further
strengthen the reliability of the model, experiments are repeated
using a 3-fold CV strategy, and the results are presented in
Table 6. In this scenario, the FP32, FP16, and INT16 quantized
MIFDNN models again demonstrated identical performance,
reaching a high average accuracy of 98.17%, precision of 98.17%,
recall of 98.17%, and an impressive Kappa score of 0.9757. The
INT8 quantized MIFDNN model, while slightly lower, still
maintained excellent results with an accuracy of 98.14%,
precision of 98.19%, recall of 98.14%, and a Kappa score of
0.9752. The accuracy drop in the INT8 case is marginal, just 0.03%
in accuracy, 0.03% in recall, and 0.0005 in Kappa, yet it remains a

Figure 4
Per-class ROC curves of the MIFDNN model to detect MDs using the OCT images from an independent test set

Table 4
Per-class and overall AUC values of MIFDNN models for different quantization cases to detect MDs using the OCT images from an

independent test set

Quantization
Macro-Average
AUC

Micro-Average
AUC

AUC for
CNV class

AUC for
DME class

AUC for
Drusen class

AUC for
Healthy class

FP32 0.999 0.999 0.999 0.998 1 1
FP16 0.999 0.999 0.999 0.998 1 1
INT16 0.999 0.999 0.999 0.998 1 1
INT8 0.995 0.995 0.993 0.997 0.996 0.996
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strong contender for low-resource deployment scenarios. In a 3-fold
CV, each validation fold includes 33.33% of the data (OCT images)
for testing, while in a 5-fold CV, each validation fold includes only
20% of the data. With stratification, the 3-fold splits happened to be
slightly more balanced and representative of the overall dataset
distribution, which helped the MIFDNN model achieve higher
classification performance for detecting MDs using enhanced OCT
images. The statistical significance of the differences in the
accuracy values between quantization schemes of the proposed
MIFDNN model is assessed using bootstrap confidence intervals
(n= 1000 bootstrap samples, and 95% confidence level (CI)) [34].
Given the identical performance metrics for FP32, FP16, and
INT16 quantization (98.35% accuracy), these schemes show no
statistically meaningful differences. For INT8 quantization, a 0.03%
reduction in accuracy falls within the typical measurement
uncertainty for the MIFDNN models on the test OCT images to
detect MDs. The magnitude of this difference is substantially
smaller than the standard error typically associated with neural
network evaluation, suggesting the difference may not be
statistically significant. The identical performance across FP32,
FP16, and INT16 quantization indicates that these compression
techniques preserve model accuracy for detecting MDs using OCT
images. The MIFDNN model with INT8 quantization case shows
minimal performance impact that is likely within normal evaluation
variance.

We have evaluated the classification results of the MIFDNN
model in two cases: case 1 (removing the basic branch deep CNN
module only from MIFDNN) and case 2 (removing only the fusion
module from MIFDNN), as shown in Table 7. It is observed that the
model implemented using no fusion module in MIFDNN has
demonstrated an accuracy value of 96.07%, which is lower than the
MIFDNN with both basic and fusion branches for detecting MDs
using OCT images. Similarly, the model based on MIFDNN with no

basic deep CNN branch has produced an overall accuracy value of
86.50% for detecting MDs. In the proposed MIFDNN model, the
hierarchical feature extraction and multiscale feature integration help
to extract discriminative features from OCT images. Due to this
reason, the proposed MIFDNN has obtained higher accuracy in
detecting MDs using OCT images. In Table 8, we have shown
the classification results of the proposed MIFDNN model using the
OCT images of an independent dataset. It is observed that, for the
cross-dataset scenario, the MIFDNN model has obtained an accuracy
value of 95.71% to detect MDs using OCT images. A 0.57% drop
in accuracy value is observed when the INT8-based quantization of
the MIFDNN model is considered, compared to that of the FP32,
FP16, and INT16-based versions of the MIFDNN model for
detecting MDs. We have conducted McNemar’s test [35] on the
predictions of the MIFDNN model pairwise across quantization
formats (FP32 versus FP16, FP32 versus INT16, FP16 versus
INT16) using the OCT images independent test set for detecting
MDs using OCT images. For FP32 versus FP16, FP32 versus
INT16, and FP16 versus INT16 cases of the proposed MIFDNN
models, the p-values evaluated from McNemar’s test are found as
p= 1.0 for all three cases. These results demonstrate that there are

Table 5
Classification performance of the MIFDNN model for detecting MDs using enhanced OCT images using 5-fold CV

Quantization Accuracy (%) Precision (%) Recall (%) Kappa

FP32 96.43 ± 0.50 96.44 ± 0.50 96.43 ± 0.50 0.9523 ± 0.0067
FP16 96.43 ± 0.50 96.44 ± 0.50 96.43 ± 0.50 0.9523 ± 0.0067
INT16 96.43 ± 0.50 96.44 ± 0.50 96.43 ± 0.50 0.9523 ± 0.0067
INT8 96.40 ± 0.52 96.41 ± 0.52 96.40 ± 0.52 0.9510 ± 0.0070

Table 6
Classification performance of the MIFDNN model for detecting MDs using enhanced OCT images using 3-fold CV

Quantization Accuracy (%) Precision (%) Recall (%) Kappa 95% CI

FP32 98.17 ±0.10 98.21 ± 0.10 98.17 ± 0.10 0.9757 ±0.0013 (97.80–98.90)
FP16 98.17 ± 0.10 98.21 ± 0.10 98.17 ± 0.10 0.9757 ± 0.0013 (97.80–98.90)
INT16 98.17 ± 0.10 98.21 ± 0.10 98.17 ± 0.10 0.9757 ±0.0013 (97.80–98.90)
INT8 98.14 ± 0.10 98.19 ± 0.10 98.14 ± 0.10 0.9752 ± 0.0013 (97.80–98.90)

Table 7
Classification performance of the proposed method based on the removal of the basic branch module and fusion module from

MIFDNN to detect MDs using OCT images

Model selected Accuracy (%) Precision (%) Recall (%) Kappa

No fusion module in MIFDNN 96.07 96.24 96.07 0.94
No basic branch module in MIFDNN 86.5 87.2 86.5 0.8533
MIFDNN (basic branch and fusion modules included) 98.35 98.38 98.35 0.978

Table 8
Results of the MIFDNN model evaluated using OCT images
from an independent dataset in the testing phase for different

quantization cases to detect MDs

Quantization Accuracy (%) Precision (%) Recall (%) Kappa

FP32 95.71 95.75 95.71 0.9428
FP16 95.71 95.75 95.71 0.9428
INT16 95.71 95.75 95.71 0.9428
INT8 95.57 95.61 95.57 0.9409

Smart Wearable Technology Vol. 00 Iss. 00 2025

07



no statistically significant differences in predictive performance among
FP32, FP16, and INT16 versions of the proposed MIFDNN models
using OCT images from an independent test dataset for detecting
MDs. This supports our claim that quantization preserves the
accuracy of the proposed MIFDNN model without degradation,
while reducing memory or computation requirements.

To interpret the decision-making capability of the proposed
MIFDNN model, two types of visualizations are employed.
Figure 5 presents the t-distributed Stochastic Neighbor Embedding
(t-SNE) plot generated using the learned feature vectors from the
final dense layer of the proposed MIFDNN model using the OCT
images from the independent test set. The clear separation
between clusters corresponding to the four Retinal diseases classes –
normal, CNV, DME, and drusen – demonstrates that the model is
effectively learning discriminative features for each category. In
Figure 6, we have shown the gradient-weighted class activation
mapping (Grad-CAM) plots to highlight the important regions for
the detection of MDs using the proposed MIFDNN model with
input as an OCT image for each class. These plots or heatmaps
emphasize the specific retinal regions the MIFDNN model attends
to when making predictions, providing visual confirmation of the
proposed MIFDNN model’s focus on clinically relevant locations
for each disease class. Figure 7 depicts the MIFDNN model’s

predictions for each of the four classes (normal, CNV, DME, and
drusen) as seen on the mobile phone screen. For validation, the
Android application is tested using a set of 100 OCT images per
class, totaling 400 test samples. Out of these, the model correctly
classified 394 images, resulting in an overall accuracy of 98.50%.
This high performance confirms the MIFDNN model’s
consistency and effectiveness in real-time settings, making it
suitable for point-of-care diagnostics and portable medical
support. The proposed MIFDNN model on an Android device has
1 misclassification instance between CNV and DME classes, 2
between DME and CNV classes, and 1 between drusen and CNV
classes. This misclassification occurs due to the similarity between
the morphologies of the OCT images of the two classes. It is also
observed that 1 OCT image of the DME class is predicted as
normal, and 1 OCT image of the normal class is predicted as the
drusen class by the MIFDNN model on an Android device.

The details regarding the sizes, parameters, and giga floating
point operations per second (GFLOPS) of the MIFDNN models
for FP32, FP16, INT16, and INT8 cases are depicted in Table 9.
The parameter count remains identical across all quantization
cases since quantization does not alter the architecture of the
proposed MIFDNN model for detecting MDs using OCT images.
Similarly, we have observed that GFLOPS are constant across all
quantization cases, as they depend on the network’s layer
configuration rather than weight precision. The quantization of the
proposed MIFDNN model alters its size, latency, and throughput
for real-time detection of MDs using OCT images on an Android
device. Due to the smaller size, we have deployed the INT8-based
reduced precision MIFDNN model on an Android device for
detecting MDs using OCT images. The inference time,
throughput, and peak RAM utilization during the inference of the
proposed method (U-Net-based denoising and MIFDNN
classification) for FP32, FP16, INT16, and INT8 cases are shown
in Table 10. It is observed that the throughput of the proposed
method on an Android device is high for the INT8 case compared
to the FP32, FP16, and INT8 cases for detecting MDs using OCT
images. Since the same denoising model has been utilized across
all quantization cases, its memory footprint remains relatively
stable (574–598 MB in all cases). In contrast, the MIFDNN-based
classification model has been quantized using different schemes to
highlight their effect on RAM usage. The FP32 of the MIFDNN
model has the highest RAM utilization 34.80MB), followed by
FP16 and INT16, which exhibit moderate RAM usage (25.90 MB
and 24.10 MB), and INT8 achieves the most compact footprint or
less RAM utilization (11 MB) for real-time detection of MDs
using OCT images.

Figure 5
t-SNE plot evaluated using the learned feature vectors at the last
dense layer of the MIFDNN model using OCT images from the

independent test set

Figure 6
Grad-CAM plot for (a) the healthy class, (b) the CNV class, (c) the DME class, and (d) the drusen class
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We have performed a comparison of the classification
performance of the proposed MIFDNN model with various existing
methods in Table 11 for detecting MDs using OCT images. The
transfer learning-based and attention-based DenseNet models have
demonstrated accuracy values lower than 96% for detecting CNV,
DME, and drusen classes using OCT images. The iterative fusion-
based model with VGG16 as the main branch has obtained an
accuracy value of 87.30%. The overall accuracy values of all the
reported methods are lower than those of the proposed approach for

detecting DME, CNV, and drusen using OCT images. The ViT has
approximately 22 million parameters, which is significantly higher
than the proposed MIFDNN model for detecting MDs using OCT
images. The ViT extracts the global contextual features based on
the correlation of patches evaluated from the OCT image [19]. The
convolution layers are effective in extracting texture, fine-grained
local details, and edge-based features from the OCT image [30].
The proposed MIFDNN consists of convolution layers and feature
fusion to effectively extract local features from the OCT image for
detecting MDs. Due to this reason, the proposed MIFDNN model
has demonstrated higher accuracy than the ViT model in detecting
MDs using OCT images. The original IFCNN model has used DL
architectures such as VGG16, AlexNet, and GoogleNet [16] as the
basic branch for classifying OCT images. The proposed MIFDNN
has used a custom-designed basic branch deep CNN architecture to
process the OCT image for detecting MDs. The custom deep CNN
allows for more effective feature extraction relevant to the MD
classification task. The MIFDNN model has achieved an accuracy
value of 97.93%, which is 10% higher than the IFCNN model for
detecting MDs using OCT images. The deep CNN used in the basic
branch module of the proposed MIFDNN model has fewer
parameters than the use of the transfer learning-based networks in

Figure 7
Deployment of the MIFDNN model on an Android device to detect (a) healthy or

normal class, (b) CNV class, (c) DME class, and (d) drusen class

Table 9
Size, parameters, and giga floating point operations per second
(GFLOPS) of the MIFDNN model for different quantization

cases

Quantization Model size (KB) Parameters GFLOPS

FP32 18535 47,51,812 8.19
FP16 9283 47,51,812 8.19
INT16 18535 47,51,812 8.19
INT8 4748 47,51,812 8.19

Table 10
Resource utilization of the proposedmethod (U-Net-based denoising andMIFDNN classifier) on anAndroid device for detectingMDs

using OCT images

Quantization
Inference
time (sec)

Throughput
(images per minute)

Peak RAM usage
in MB (U-Net only)

Peak RAM usage
in MB (MIFDNN only)

Peak RAM usage
in MB (U-Net and MIFDNN)

FP32 2.49 24.09 587.12 33.4 620.52
FP16 2.42 24.79 582.97 25.9 608.87
INT16 2.41 24.89 582.2 24.1 606.3
INT8 0.65 92.3 200.47 10.15 210.62
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the IFCNNmodel in the inference phase, making theMIFDNNmodel
more suitable for deployment on Android-based devices for the
detection of MDs. The PTQ of the MIFDNN model has
significantly reduced the size for implementing it on Android-based
edge computing applications. The purpose of choosing the Android
platform to deploy the proposed method is that it is readily
available, cost-effective, and widely accessible on smartphones [9].
The proposed method enables on-device processing of OCT images
without depending on the cloud system and can be used in remote
or resource-limited environments for detecting MDs. The Android-
based on-device processing of the proposed DL method is helpful
to enhance the privacy of the patient’s OCT image data and make
real-time detection of MDs [9].

4.1. Limitations and future scope

The limitations of the proposed method inference on Android
devices are the high inference time and lower throughput for the
detection of MDs using OCT images. The classification accuracy
of the MIFDNN model has been reduced by more than 2% when
a cross-dataset based evaluation strategy is used. The federated
learning framework [38] can be designed using the proposed
hybrid method (U-Net-based denoising and MIFDNN model) with
the OCT images of the patients from diverse locations for
detecting MDs. The Android-based inference of the proposed
method can be used on the client side after obtaining the updated
or global model from the server side of the federated learning
framework to detect MDs. The implementation of lightweight
DL-based models on a field programmable gate array (FPGA)-
based low-power embedded system is a challenging research area
in medical image processing applications. The FPGA-based
embedded healthcare systems have been designed by the
researchers in Vinod et al. [9] and Guddati et al. [39] for
ultrasound and X-ray image processing applications. In the future,
the FPGA implementation-based lightweight versions of
DL-based models can be developed for low-power, low-latency,
and resource-constrained edge device-based applications to detect
MDs using OCT images. In this work, we have used only
convolution blocks as feature extractors in the basic branch of the
proposed MIFDNN model for detecting MDs using OCT images.
The squeeze-and-excitation blocks and attention-enhanced CNN

variants [40] can be used in the basic branch of the MIFDNN
model to improve feature discriminability for detecting MDs using
OCT images.

5. Conclusion

In this paper, an Android-based embedded MIFDNN approach
has been proposed for the automated detection of MDs using OCT
images. Our approach utilized the U-Net-based model for effective
denoising of OCT images, followed by a customized iterative fusion-
based DL architecture for detecting MDs. The proposed MIFDNN
approach has been utilized in the 3-fold and 5-fold stratified CV
strategies, where the 3-fold setup gave the best results, achieving
an impressive accuracy of 98.17% for detecting MDs, clearly
outperforming previous methods. We applied PTQ (FP16, INT16,
INT8), which significantly reduced the model size without
compromising performance. The quantized models have been
successfully deployed on an Android device and delivered an
accuracy value of 98%. Finally, visual tools like t-SNE and Grad-
CAM helped validate the proposed MIFDNN model’s behavior
and interpretability for detecting MDs using OCT images. The
proposed approach is suitable for edge computing applications as
it has delivered higher classification performance for detecting
MDs on an Android device using OCT images.
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