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Abstract: Marine mussels contribute to blue carbon through biogenic calcification and filtration that enhance carbon burial in coastal sediments.
Their ecological role is important yet under-quantified in many regions. Here, we present a practical framework that links mussel ecology with smart
wearable sensing to enable continuous in situ observation of environmental drivers and organism responses relevant to carbon sequestration. We
specify sensor modalities such as ion-sensitive field effect transistor pH, optical dissolved oxygen, temperature, salinity, turbidity, and inertial shell
gape sensing. We detail device form factors for mussel-attached tags and habitat-mounted modules on buoys and autonomous platforms. Mussel-
inspired adhesives and hydrogels are used as functional coatings for underwater attachment, encapsulation, and biofouling resistance. We describe
renewable energy harvesting, energy storage, and power management for long deployments, together with an Internet of Things data pipeline, edge
preprocessing, and cloud-based time series modeling and anomaly detection. We set measurable accuracy and resolution targets and a validation
plan against standard instruments. The approach supports environmental, social, and governance reporting, aquaculture management, and citizen
science. We discuss anti-biofouling strategies, ethics of bio-tagging, comparison with conventional monitoring, and future directions for robust blue
carbon observatories.
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1. Introduction

Blue carbon ecosystems such as mangroves, seagrasses, bivalve
beds, and associated sediments are central to climate mitigation in
coastal zones [1-6]. Marine mussels including Mytilus edulis and
Perna viridis sequester carbon through calcium carbonate shell
formation and through filtration that transfers particulate organic
carbon to the benthos, where it can be buried [7-10]. Mussel beds
also stabilize sediments and improve water clarity, which
indirectly supports other carbon-storing biota and increases the
likelihood that organic matter is preserved in place [11, 12].
Despite this importance, continuous field quantification of mussel-
mediated carbon processes is still limited due to the temporal and
spatial heterogeneity of coastal systems and the challenges of
long-term in situ observation [13—15].

Recent advances in wearable sensing and flexible materials,
originally developed for health and agriculture, can now be
adapted for marine ecological monitoring (Capineri, 2014) [16—
19]. We integrate ecology, sensor engineering, and biomimetics to
propose a practical mussel-centered monitoring framework that
enables real-time observation of conditions and responses tied to
carbon sequestration. The objectives are to define sensor types
and form factors, show how mussel-inspired materials can harden
devices for underwater use, describe power and data architectures
for reliable long-term operation, set measurable performance
targets and validation, and position the approach within
environmental, social, and governance (ESG) applications and
conventional ocean observing.

We clarify that “wearable” in this study refers to nonhuman
deployments. We use two device classes: shell-mounted bio-tags
and habitat-embedded modules [20]. The bio-tags are small,
smooth packages that adhere to the exterior shell with a mussel-
inspired primer and proven tag adhesives, a practice shown to
allow secure retention with low short-term impacts when applied
correctly [21, 22]. Their dimensions and mass are kept well below
accepted limits for attached tags, with hydrodynamically low-
profile geometry guided by tag-design principles that minimize
drag and disturbance [23, 24]. Habitat-embedded modules strap to
aquaculture ropes, pilings, or small buoys within the reef so they

sample the same conditions the mussels experience. Human-worn
kits are used only for deployment, validation, or opportunistic
sampling. This framing makes clear that our smart wearables
function as animal-borne and habitat-integrated sensors to capture
the mussel microenvironment continuously [25, 26].

We can instrument mussels and their immediate habitat with
complementary biosensors that resolve proxies of carbon
sequestration in real time: shell-mounted inertial units and Hall-
effect valvometry track valve gaping as a proxy for filtration,
while infrared photoplethysmography measures cardiac activity as
an indicator of metabolic state; these biometric streams are paired
with co-located environmental channels for pH, dissolved oxygen
(DO), temperature, salinity, turbidity, and local flow to
contextualize organismal responses and to drive mass-balance
models of filtration, respiration, and calcification (Clery et al.,
2025). Practically, low-profile tags and nearby modules sample
continuously in situ and relay data to a gateway, a configuration
already demonstrated in multi-mussel deployments that use paired
accelerometer—magnetometer units for valve kinematics and solar-
powered backhaul; these proof-of-concept systems show that
distributed “Fitbit-for-mussels” networks can stream behavioral
and physiological data from dozens of animals simultaneously for
environmental early warning and ecosystem monitoring [10, 27].

2. Roles of Marine Mussels in Carbon
Sequestration

Figure 1 shows the flowchart illustrating the sequential
framework for wearable biosensor deployment in mussel-based
environmental monitoring. Mussels sequester carbon by fixing
dissolved inorganic carbon into shells and by promoting organic
carbon burial through filtration and biodeposition. First, shell
calcification immobilizes carbon as calcium carbonate that can
persist in sediments over long time scales [8]. Second, filtration
removes suspended particles and enhances the flux of particulate
organic carbon to the seabed, where it can be stabilized within
cohesive sediments and biogenic structures [10]. Mussel beds also
baffle currents and reduce resuspension, indirectly supporting
seagrass and other primary producers that add to blue carbon
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stocks [11, 12]. Environmental stressors such as warming,
eutrophication, acidification, and pollutants can impair these
functions by altering feeding, byssal attachment, and shell growth
(Gudimov, 2008) [28, 29]. Continuous observation at the
organism and habitat scales is therefore needed to resolve drivers
and responses and to inform management.

Figure 1 illustrates the sequential framework for wearable
biosensor deployment in mussel-based environmental monitoring.
The process begins with sensor design and fabrication, progresses
through laboratory calibration and field deployment, and advances
to data acquisition from environmental variables such as water
quality and mussel health. The collected data undergo
preprocessing and validation, followed by analysis using statistical
and modeling tools, which support environmental assessment and
decision-making for carbon sequestration management. The
structured flow highlights the integration of engineering,
fieldwork, and data analytics in creating a scalable, real-time
environmental monitoring system.

2.1. Environmental stressors and device robustness

We recognize that pollutants can directly weaken mussel
attachment and thereby affect both animal welfare and data quality,
so we incorporated this risk into design and operations. Laboratory
exposures show that perfluorooctanoic acid and nano-titanium
dioxide reduce byssal thread number and length, narrow thread
diameters, shrink adhesive plaque area, and lower breaking force,
with additional impairment observed when nTiO, co-occurs with
warming or dietary exposure [17]. Microplastics also reduce
attachment strength and thread production in blue mussels,
consistent with broader evidence that degraded conditions
undermine byssus performance and condition [30, 31]. These
findings motivate robust attachment that does not rely on the
animal’s own byssus: our tags use fully synthetic, mussel-inspired
chemistries such as polydopamine primers and related coatings that
adhere underwater and are manufactured independent of natural
byssal supply, although surface contamination can still reduce
adhesion and must be mitigated with protective, self-cleaning layers
and site-specific maintenance [22, 31]. In short, we treat byssal
degradation as both a monitoring target and an engineering
constraint, using synthetic adhesives and antifouling interfaces to
maintain secure attachment, while the sensors themselves provide
early waming of stress through abnormal valve behavior or
detachment signatures [17, 31].

3. Smart Environmental Sensing with Wearable
Technologies

3.1. Sensor modalities and operational principles

Figure 2 shows the fishbone diagram illustrating key factors in
optimizing marine environmental sensing through wearable and
smart material technologies. The monitoring system uses
multiparameter sensing at two levels. Environmental sensors
measure temperature, salinity, pH, DO, and turbidity near or
within mussel beds. Organism-level sensors measure shell gape
dynamics, movement, and other proxies of filtration and growth.

For pH, we consider ion-sensitive field effect transistor probes
that offer fine resolution suitable for field deployments when
combined with temperature compensation and careful calibration.
For DO, we consider optical optodes based on luminescence
quenching that provide stable measurements with low drift.
Electrical conductivity sensors inform salinity. Low noise
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thermistors  provide temperature. Optical backscatter or
nephelometry provides turbidity. A compact inertial unit or a
magnetic Hall-effect pair mounted across the valves resolves shell
opening and closing frequency and amplitude as a proxy of
filtration activity. All sensors are available in miniature formats
and can be combined within a single node.

Figure 2 illustrates key factors in optimizing marine
environmental sensing through wearable and smart material
technologies. The diagram maps three main factor groups:
technological advancements, including flexible wearables and
smart materials; environmental conditions, such as salinity and
water temperature; and data integration, encompassing Internet of
Things (IoT) networks and real-time data transmission. These
elements converge within multiple application domains—notably
agriculture, wildlife monitoring, and marine ecosystem
assessment, thus demonstrating how integrated sensor networks
can enhance environmental data collection and inform sustainable
management practices.

3.2. Physical form factors and integration

We clarify the focus of wearable use. Devices are designed for
mussel-attached and habitat-mounted deployment, not for human
clothing. Three form factors are considered.

1) Mussel-attached tag. A sealed capsule, a few centimeters in
length, that adheres to the outer shell. It carries one or more
sensors such as gape and temperature and a short-range
transmitter. Mussel-inspired adhesive and hydrogel layers
provide strong underwater attachment and a fouling-resistant
interface.

2) Buoy-mounted module. A rugged node fixed on a small surface
or subsurface buoy located within a mussel bed. It carries a full
suite of environmental sensors, energy harvesters, storage, and
communications. This provides continuous context data with
high uptime.

3) AUV attachment. A small pod mounted on an autonomous
underwater vehicle (AUV) for periodic transects across mussel
habitats to map spatial gradients and to intercompare with
fixed nodes.

Electronics use conformal coatings and an encapsulating shell.
Mussel-inspired hydrogels serve as soft encapsulants over sensor
heads, preserving access to the medium while reducing fouling
and mechanical shock.
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3.3. Textile and optical elements for marine use

Side-emitting polymer optical fibers (POFs) can be integrated
into straps or bands to sense bending and strain by monitoring
distributed light leakage as the fiber curvature changes, which is
useful for flexible mounts and for structural monitoring of
aquaculture ropes [19]. Conductive textile elements provide
piezoresistive sensing of stretch and pressure when coated or
woven with conductive fibers. For marine use, all textile and
optical elements are enclosed within waterproof, biofouling-
resistant jackets and are used on buoys or structures rather than on
humans to avoid ambiguity.

3.4. Sensors attached to mussels

We can use very small, streamlined tags to record individual
behavior and physiology at high resolution. Shell-mounted
devices include passive identifiers such as PIT or RFID tags and
active packages with miniature accelerometers or Hall-effect gape
sensors. Tags are bonded to the exterior shell with nontoxic
adhesives or fitted with custom clamps, so there is no drilling or
tissue contact. Prior studies show that such attachments can be
retained reliably with low short-term mortality when applied with
appropriate adhesives and geometries and that small tag sizes do
not measurably impair survival, growth, or movement [32, 33].

3.5. Sensors in the surrounding environment

To minimize intrusion, most measurements come from compact
modules placed within the mussel bed on ropes, pilings, or small
buoys and from AUV pods when transects are needed. These
nodes measure the same water the mussels experience and provide
the environmental context for the bio-tags. In sensitive settings or
with protected species, we rely entirely on habitat modules and
omit on-animal tags.

3.6. Mitigating potential influences

Attachment methods and materials are tested for each species to
ensure that shells can open fully and that burrowing and byssus
production are not impeded. Device mass stays well below
conservative thresholds, and packages have smooth, low-profile
shapes. Individuals are monitored after tagging; any sign of stress
triggers immediate removal or redesign. All work follows site-
specific ethical review and retrieval plans that ensure every device
is recovered at the end of deployment [33, 34].

4. Mussel-Inspired Materials and Functional Roles
in the Device

Figure 3 shows the interlinked properties and applications of
mussel-derived biomaterials. Mussel-inspired design is used as a
functional engineering element. Adhesive coatings based on
catechol chemistry provide strong wet adhesion to shells and
substrates while retaining elasticity to endure waves and small
shell movements [35, 36]. A thin adhesive layer serves as the
interface for attachment. Above this layer, a pH-responsive
hydrogel coating mimics mussel mucus and creates a hydrated
barrier that reduces the settlement of fouling organisms while
protecting optical and electrochemical surfaces. The hydrogel can
self-heal minor abrasions and acts as a soft encapsulant for sensor
heads and seams. These materials together improve mechanical
stability, water sealing, and biofouling resistance in turbulent
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Figure 3 shows interlinked properties and applications of
mussel-derived biomaterials. The diagram illustrates six key
aspects of mussel-based materials: Environmental sensitivity,
which highlights susceptibility to pollutants and biotic influences;
marine collagen, a potential source for industrial and textile
applications; sustainability, which reduces reliance on petroleum-
based polymers; adhesive properties, reflecting the strong wet-
condition bonding capacity of mussel proteins; biomedical
applications, such as use in hydrogels for tissue engineering and
drug delivery; and technological integration, where mussel-based
materials enable underwater biosensors for aquatic monitoring.
The interlinked design emphasizes the multifunctional and
interconnected nature of these properties in advancing marine
biotechnology and sustainable material science.

4.1. Wearable sensor design

We can design a family of modular, marine-ready wearable
sensors that pair robust water-chemistry transducers with form
factors tailored to mussel habitats: miniaturized ISFET pH sensors
and optical DO optodes provide stable, accurate in situ
measurements (ISFET resolution ~+0.02 pH units) and ~+0.1 mg
L' O, precision, respectively [37]. Nodes are packaged either as
compact shell-mounted tags or as pods integrated on AUVs and
buoy frames to extend spatial coverage; shell tags are flexible,
rounded patches that incorporate Hall-effect gaping sensors and,
where flow permits, micro-ISFET pH, while habitat modules
mount on pilings or buoys with replaceable optical windows and
sealed cable glands. Core physicochemical channels include
ISFET pH, luminescent optode DO, four-electrode conductivity
for salinity, precision thermistors for temperature, and optical
backscatter for turbidity. Each node uses a mussel-inspired
hydrogel with catechol functionality as a thin, elastic encapsulant
that waterproofs electronics, presents an antifouling surface, and
provides a self-adhesive interface to wet substrates; a
complementary mussel-protein-inspired adhesive layer supplies
high shear strength while resisting barnacle and algal settlement,
keeping devices secure and functional over long deployments in
dynamic  conditions. Integration employs polychlorinated
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biphenyls conformal coating, polydopamine-primed encapsulation,
and connector strain relief to protect sensors and optics in
seawater and under handling [38, 39].

4.2. Biomaterials integration

We can integrate mussel-inspired materials at two levels to
improve underwater reliability and longevity: a thin catechol-rich
adhesive primer on the housing that forms strong, compliant
bonds to wet shells or substrates and a protective hydrogel
overcoat that is pH-responsive, zwitterionic, and antifouling. The
primer, modeled on mussel byssus chemistry, maintains adhesion
under cyclic loading and shell flexure, while the hydrogel swells
to create a hydration barrier that discourages settlement, sheds
early biofilms through its slippery, dynamic surface, and self-heals
minor damage to preserve sealing and signal quality. In practice,
we pair a polydopamine primer with either a silicone or a
zwitterionic foul-release top layer depending on optical and
mechanical needs, and we add sacrificial pads for shell tags where
appropriate. Together, these layers secure the device in turbulent
conditions, limit corrosion and fouling-induced drift, and extend
maintenance intervals while maintaining data fidelity [40, 41].

5. System Architecture and Data Pipeline

Figure 4 shows the cycle diagram illustrating the operational
workflow of wearable sensor integration for monitoring mussel
health and carbon sequestration.

Figure 4 shows the operational workflow of wearable sensor
integration for monitoring mussel health and carbon sequestration.

Figure 4 presents a closed data-lifecycle for mussel-habitat
monitoring arranged radially around a central gear that symbolizes
the system engine. At the lower left, sensors gather data on
environmental conditions such as temperature, salinity, pH, DO,
turbidity, and flow. At the far left, those sensors are shown as
being physically placed in mussel habitats, indicating in situ
deployment on reefs, pilings, or nearby infrastructure. At the top
left, data is sent to a centralized cloud platform, which implies
that a gateway or buoy aggregates packets from multiple nodes
and forwards them to cloud storage and processing. At the top
right, data is presented in a user-friendly format, suggesting
dashboards and visualizations that turn raw streams into maps,
timelines, and alerts. To the right, stakeholders are informed about
mussel health and carbon storage, making the communication of
indicators to managers, farmers, regulators, and the public an
explicit objective. At the lower right, data is used in
environmental models for predictions, connecting the live feed to
forecasting tools that estimate near-term risk or long-term trends
in habitat condition and carbon flux. At the bottom center, data is
analyzed to understand mussel health, which closes the loop by
translating measurements into biological status such as stress,
growth, or filtration activity. The circular layout emphasizes that
sensing, transmission, analysis, modeling, visualization, and
decision support operate as a continuous cycle: deployments
generate measurements, the platform standardizes and analyzes
them, results inform people and models, and those insights guide
subsequent monitoring and management.

5.1. Power harvesting, storage, and management

Power is the limiting factor for remote long-duration
monitoring. We combine ambient energy harvesting, ample

Figure 4
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storage, and strict power budgets. Piezoelectric harvesters on buoy
tethers and mounts convert wave-induced motion to electricity. In
shallow sites with adequate light, underwater-tolerant photovoltaic
cells contribute to daytime charging. Harvested energy is stored in
a rechargeable lithium-polymer (Li-Po) cell in the range of two to
three ampere hours, buffered by a supercapacitor to handle short
bursts for transmission or a mechanical wiper. Firmware uses duty
cycling. The microcontroller and radio remain in deep sleep
between sampling epochs. Sensors are powered only for short
acquisition windows. Transmission windows are scheduled and
brief. This design reduces average current draw so that harvested
energy can sustain operation.

5.2. Edge preprocessing and cloud analytics

Raw signals are conditioned on the device. Temperature
compensation is applied to pH and DO. Salinity corrections are
applied to DO. Digital filters suppress high-frequency noise. The
device computes short-interval averages and quality flags, then
transmits compact packets to a nearby gateway. Basic edge anomaly
flags are raised when a variable crosses set limits to allow immediate alerts.

A shore or buoy gateway forwards data to the cloud. Time
series models then capture trends and anomalies. We will use long
short-term memory (LSTM) neural networks to forecast expected
values given recent histories and to detect deviations in pH and
DO that matter for calcification and respiration. Unsupervised
clustering such as k-means or density-based methods group
multivariate states to identify unusual environmental regimes. A
dashboard visualizes live conditions and the derived indicators
that relate to carbon sequestration such as shell activity indices
and turbidity changes during filtration peaks.

5.3. Network synchronization and communication

The underwater network balances synchronization and energy
through scheduled operation. Nodes sample and transmit in
coordinated time slots set by a gateway timing beacon. Time
Division Multiple Access reduces collisions while minimizing
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radio on time. Mussel tags send short packets to a local gateway
using low-power radio at very short range within farms or
acoustic pings when radio is impractical. The gateway, which has
larger energy harvesters, handles backhaul to shore.

We run the network on strict duty cycling with synchronized wake
windows so each node senses and transmits only in brief, scheduled
intervals and then returns to sleep. A master clock at a surface buoy
with GPS or a designated leader node coordinates time and assigns
transmission slots using time division multiple access, so collisions
are rare and idle listening is minimized. The synchronization
protocol is delay tolerant and low message by design for acoustic
channels with long propagation, drawing on methods that account
for drift prediction and factor graph estimation to keep clocks
aligned with very few exchanges [42, 43]. To reduce radio or
acoustic use, each tag logs high-rate data locally and transmits
summaries or event snippets, while a nearby gateway concentrates
traffic and forwards batches to shore. Edge devices handle simple
filtering, compression, and thresholding, and the cloud performs
heavier analysis and model updates, so the nodes spend most of
their time in deep sleep, following proven edge-computing patterns
for energy-constrained systems [44].

Long life comes from combining efficient electronics with
ambient energy harvesters. In shallow sites, we add underwater
photovoltaics, and across sites, we mount piezoelectric or
compliant wave harvesters and buffer their output with a
supercapacitor ahead of a rechargeable cell, approaches shown to
deliver useful power from waves and to extend mission duration
without frequent battery swaps [45, 46]. The system tolerates
temporary loss of sync or links because every record is
timestamped and can be realigned at ingest. Together, the
scheduled access, low-message synchronization, local logging
with gateway aggregation, and hybrid harvesting keep energy use
low while preserving time alignment and reliable data return in
underwater conditions [42—45].

5.4. IoT data pipeline

We can run a staged pipeline that balances on-device
responsiveness with cloud-scale analysis: at the edge, the ISFET pH
voltage is digitized, de-noised with a short digital filter, and
corrected in real time for temperature; optical oxygen readings are
likewise corrected for temperature and salinity with standard
oceanographic formulas, and short-interval averaging compresses the
stream before transmission. Preprocessed packets travel over low-
power Radio frequency (RF) to a nearby buoy or shore gateway in
shallow water, or over acoustic telemetry in deeper sites, then on to
a base station or cloud server for aggregation. Lightweight edge
analytics raise immediate alerts using thresholds, one-class Support
Vector Machine, or density-based local outlier detection such as
Local Outlier Factor to flag unusual conditions [5, 47]. Cloud services
handle the heavier work: an Long Short Term Memory (LSTM)
model learns diurnal and tidal patterns to forecast expected values and
detect subtle deviations in multivariate time series, while unsupervised
clustering such as k-means or Density Based Spatial Clustering of
Applications with Noise (DBSCAN) groups environmental states and
isolates outliers; models are retrained centrally and updated to devices
as rules or parameters, keeping edge computation and energy use low
while preserving real-time responsiveness [44].

6. Performance Targets and Validation Plan

We define measurable targets so that monitoring quality is
transparent.

06

1) Accuracy and precision. pH accuracy within plus or minus 0.02
units after temperature compensation. DO accuracy within plus or
minus 0.1 milligram per liter. Temperature accuracy within plus
or minus 0.1 °C. Turbidity repeatability within a few
nephelometric turbidity units in the low range.

2) Temporal resolution. Five- to ten-minute sampling for
environmental sensors. Shell gape at one hertz with on-device
summarization to minute-level features.

3) Spatial resolution. One node per ten to twenty square meters
across beds to resolve microhabitat gradients.

4) Validation. Laboratory calibration against buffers, Winkler
titrations, and reference thermometers. Field cross-checks with
a calibrated Conductivity—Temperature—Depth (CTD) profiler
package at multiple depths and times. Periodic grab samples
for  dissolved  inorganic  carbon, total alkalinity,
spectrophotometric pH, and dissolved oxygen (DO) for bias
tracking. Biological validation by measuring shell growth and
collecting short sediment cores below beds to relate sensor-
indicated conditions to biogenic calcification and organic
carbon burial. Discrepancies will be used to update calibration
and conversion functions.

6.1. Performance targets and validation

We can set explicit performance targets and a clear validation
plan. Each pH node is specified to achieve about +0.02 pH units,
DO to +0.1 mg L~! across 020 mg L~!, and temperature to +0.1
°C, with sampling every five to ten minutes and a deployment
density of roughly one sensor per ten to twenty square meters to
resolve microhabitat variability across mussel beds. Before field
work, all sensors are bench calibrated against certified references,
and at the site, we run side-by-side comparisons with a calibrated
CTD and collect discrete samples for spectrophotometric pH,
Winkler DO, dissolved inorganic carbon, and total alkalinity to
quantify any drift or bias. We then ground truth carbon flux
inferences against independent measurements, such as shell
growth and sediment core carbon, and finally check that
aggregated flux estimates are consistent with established models
for bivalve systems. This combination of best-practice calibration,
CTD cross-casts, and discrete reference analyses follows
community guidance for ocean CO, system measurements and
DO determination and provides a transparent accuracy check for
the wearable network [48-50].

7. Antifouling and Durability

Biofouling is a primary failure mode. We use three
complementary strategies. First, a mussel-inspired hydrogel
topcoat reduces settlement on sensor faces by forming a hydrated,
low-energy surface. Second, a small UV-C light-emitting diode
(LED) near the sensing window activates on a schedule for brief
exposure to suppress early biofilm formation without toxic
release. Third, a compact mechanical wiper sweeps across optical
windows once or twice daily to remove early deposits. The wiper
uses a soft blade so it does not scratch optics and is geared for
low-energy use. All exposed metals use corrosion-resistant alloys,
and all seams are double sealed. These measures extend service
intervals and preserve data quality.

8. Comparison with Conventional Monitoring

Conventional systems such as CTD profilers and fixed stations
deliver precise, calibrated measurements and, when moored, can
operate for many months with robust antifouling and large energy
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reserves. They excel at vertical profiling and establishing trusted
baselines, but they sample sparsely in space and time relative to
the fine-scale heterogeneity inside a mussel bed, so short events
or meter-scale gradients can be missed by infrequent casts or a
single fixed site. Our wearable network inverts that geometry:
many small nodes sit on shells and nearby structures, streaming
measurements continuously and exactly where the organisms live,
so microhabitat variability and rapid dynamics are captured in real
time. The trade-offs are real. Miniaturized sensors are more
susceptible to drift and fouling and have tighter energy budgets,
so they demand -careful calibration, antifouling, and power
management, and their distributed streams require cloud analytics
to fuse and quality-control the data. For these reasons, we treat
wearables as complementary rather than replacement tools:
wearables provide dense, organism-proximal time series for event
detection and process studies, while CTDs, gliders, and fixed
stations supply the broader, highly accurate context for cross-
checks and calibration [51] (Delauney et al., 2010).

8.1. Biofouling mitigation

We can use a layered strategy that combines passive and active
measures proven in ocean instrumentation. Sensor housings receive a
polydopamine primer and either a silicone foul-release or a
zwitterionic topcoat to lower surface energy and hydration-layer
adhesion, which suppresses early microbial and algal settlement
[52]. Critical optical and electrochemical interfaces are further
protected with copper guards, sliding shutters, and scheduled self-
cleaning. For active control, each unit carries a deep-UV emitter
positioned by the sensing face; it pulses UV-C near 254 nm for
short intervals every few hours to disrupt microbial DNA and
prevent biofilm maturation with minimal energy cost from the
harvested power budget (Delauney et al., 2010) [52]. A compact
wiper sweeps lenses and electrodes once or twice daily to remove
any incipient growth or silt without scratching, a method shown to
prolong optical sensor performance in long deployments [53, 54].
Together, the nonstick coatings, UV-C bursts, shutters, copper
guards, and low-duty wipers keep sensing surfaces clean over
multi-month deployments and limit fouling-induced drift while
avoiding toxic biocides [52].

9. Ethics and Environmental Considerations

Our deployments follow a minimally invasive, animal-welfare-
first approach: sensors are bonded to the external shell with a mussel-
inspired, biocompatible adhesive, so no drilling or tissue contact is
required, and attachment methods draw on established, low-impact
practices for mollusks (Hartmann et al., 2016; Young & Isely, 2008).
Packages are small, smooth, and hydrodynamically low profile; we
keep tag mass well below common thresholds (~5% body mass) and
use geometry that minimizes drag to avoid altering behavior or
energetics (Syed & Heidemann, 2006; Akyildiz et al., 2005).
Devices contain no trailing lines, and all materials in contact with
seawater are inert; units are retrieved at the end of each
deployment for reuse or proper e-waste handling. We add
operational safeguards—tagging thresholds, minimal handling,
and seasonal restrictions during sensitive periods—and default to
habitat-embedded modules instead of animal tags where
appropriate. If acoustic telemetry is used, transmissions are brief,
low power, and scheduled at ultrasonic frequencies to reduce
exposure, while network design emphasizes delay-tolerant, low-
message synchronization and adaptive duty cycling to limit
acoustic traffic and energy use [42, 55]. Continuous observation
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of valve behavior and activity provides an additional check; any
indication of stress triggers tag removal or redesign, ensuring the
system remains safe for mussels and benign for the broader
ecosystem.

10. Environmental, Social, and Governance,
Policy, and Citizen Science

Figure 5 shows the fishbone diagram illustrating the integration
of environmental, social, technological, and governance dimensions
in advancing ESG leadership for marine governance; it also shows
that the continuous, spatially explicit measurements enable
credible ESG indicators for aquaculture and coastal management.
Traceable, time-stamped data allow verification of ecosystem
service claims such as nitrogen removal and carbon burial by
mussel farming and restoration [11, 56]. Regulators can use alerts
to respond to hypoxia or pollution events. Citizen science
programs can integrate low-cost nodes and mobile applications
that display local water quality and mussel activity, which builds
awareness and supports stewardship [3, 57].

Figure 5 shows a fishbone diagram illustrating the integration of
environmental, social, technological, and governance dimensions in
advancing ESG leadership for marine governance. The diagram
highlights interconnected factors contributing to the sustainable
and accountable management of marine resources. Environmental
benefits include carbon sequestration and nutrient mitigation,
while social dimensions emphasize community empowerment,
citizen science, and social engagement. Technological integration
focuses on mobile platforms and IoT-enabled sensors, enabling
real-time data sharing and adaptive management. Governance
accountability ensures transparency and informed decision-
making, collectively driving the goal of advancing ESG leadership
in marine governance.

11. Energy Sustainability

We can enable long-term autonomous operation by harvesting
ambient marine energy and pairing it with disciplined power
management: each node integrates a piezoelectric harvester in the
mooring or attachment to convert wave and current vibrations into
electricity, with recent tests showing milliwatt-scale output on the
order of 7.8 mJ s~! at 0.4 Hz that can run low-draw sensors or
recharge a battery [58]; in shallow water, the package also uses
underwater photovoltaics to capture filtered sunlight, while
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steady-flow sites can host micro-turbines for supplemental
generation, and all harvested energy is buffered in a rechargeable
3.7 V Li-Po pack of a few thousand mAh with a parallel
ultracapacitor, for example, a 2400 mAh cell with a 1 F
supercapacitor, to handle bursts [45, 58]. Firmware enforces an
energy-aware schedule with deep sleep currents at the microamp
level, duty-cycled sensing and transmissions such as brief
measurements and uplinks every ten minutes, synchronized
sampling across the network, and event-triggered bursts for
anomalies, following low-power and edge-computing guidance
that minimizes active time for the microcontroller and radio while
meeting data requirements [44, 45].

12. Challenges and Future Directions

Figure 6 shows the tree diagram illustrating the key challenges in
deploying wearable sensor technologies for marine mussel carbon
sequestration monitoring. Technical, ecological, and social
challenges remain. Power budgets are tight, so more efficient
harvesters and lower standby currents will be valuable. Biofouling
in warm, nutrient-rich waters requires continued material innovation
and practical cleaning schedules. Data models need to convert high-
frequency sensor streams and shell activity into quantitative
estimates of carbon fixation and burial with uncertainties. Future
work should include long-duration demonstrations in farms and
natural beds across seasons, protocol standardization for calibration
and data exchange, and integration with coastal carbon accounting
frameworks. Interdisciplinary teams of ecologists, engineers, data
scientists, and policy actors will be essential. The long-term goal is
a distributed blue carbon observatory where mussels and their
habitats are instrumented gently and continuously to quantify their
contribution to climate mitigation.

Figure 6 shows a tree diagram illustrating the key challenges in
deploying wearable sensor technologies for marine mussel carbon
sequestration monitoring. The central trunk represents the overall
challenge, while the branching nodes depict six main categories of
contributing factors: sensor durability (damage from harsh marine
environments reducing data accuracy), energy sustainability
(battery capacity limits constraining long-term operations), data
complexity (difficulties in processing high-volume environmental
datasets), ethical considerations (concerns over bio-tagging and
potential behavioral impacts on mussels), interdisciplinary
collaboration (lack of coordinated effort among marine scientists,
engineers, and data specialists), and policy frameworks (failure to
integrate new technologies into marine governance and
conservation strategies). This hierarchical layout visually
organizes the root causes and sub-factors that need to be
addressed for effective, sustainable deployment of marine
wearable sensing systems.

To support long-term, remote deployments, the wearable sensor
platform is designed with sustainable power harvesting and
management. Each unit scavenges ambient energy in the marine
environment to recharge its power supply. For instance, a
piezoelectric energy harvester is integrated into the device’s
mooring or attachment; it converts mechanical vibrations from
waves and currents into electrical energy. Recent tests have shown
that even a small piezoelectric or electromagnetic generator can
produce on the order of milliwatts of power from ocean wave
motion (e.g., ~7.8 mJ/s at 0.4 Hz wave frequency)—enough to
continuously run several low-draw sensors or slowly recharge a
battery [58]. In addition, for shallow deployments, underwater
photovoltaic cells on the device can capture solar irradiance
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filtered through the water. The harvested energy is stored in a
rechargeable Li-Po battery (typically a 3.7 V pack of a few
thousand mAh capacity), buffered by a supercapacitor. For
example, our prototype uses a 3.7 V, 2400 mAh Li-Po cell in
parallel with a 1 F ultracapacitor to store and deliver energy
bursts [58].

12.1. Side-emitting polymer optical fibers (POFs)

These are flexible plastic waveguides—typically a PMMA core
with a low-index fluorinated cladding—engineered to leak a
controlled fraction of guided light along their length via
embedded scatterers, micro-etching, or micro-bending, so
illumination is distributed rather than point-like [59]. In a
wearable node, an LED couples light into the POF and
photodetectors sample either the emitted field along the fiber or
the residual end-face intensity; changes in bend, strain, turbidity
near the fiber, or biofouling at the surface modulate the
measurable light, enabling simple optoelectronic sensing without
any electrical contact in seawater. Practical design focuses on
coupling efficiency at the LED—fiber interface, permissible bend
radius, side-leak uniformity, and attenuation, which together
bound sensing length and resolution; environmental sealing uses
optical-grade epoxies and over-molding to exclude seawater at
connectors while keeping the emitting surface accessible. Because
the transduction is optical, POF sensors are intrinsically immune
to electromagnetic interference, corrosion-safe at the measurement
point, and fast enough to track wave- or tide-scale dynamics; the
trade-offs are calibration of the LED—detector chain and managing
longitudinal loss so that the final meters remain within detector
dynamic range [59, 60].

12.2. Conductive textile sensors

These embed conductive pathways—metallic or carbon-based
yarns, printed inks, or coated fibers—into knitted or woven
structures that change resistance with stretch, pressure, or contact,
yielding soft, conformal piezoresistive transducers that can wrap
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ropes, straps, or housings in the mussel bed [61, 62]. Sensitivity and
linearity depend on yarn choice, stitch geometry, and pre-strain;
encapsulation with thin elastomer films limits water ingress while
preserving compliance, and seam architecture provides strain relief
at electrical terminations. In practice, these textiles detect strains
from about one to a few tens of percent with repeatable cycles
when engineered to minimize hysteresis, and can be patterned into
arrays for distributed sensing; they do, however, require
temperature and humidity compensation, periodic recalibration to
control drift, and careful waterproofing to prevent saltwater
shorting or corrosion at interconnects [63, 64].

13. Conclusion

Marine mussels offer a natural pathway for carbon
sequestration in coastal waters. Smart wearable sensing tailored
for organisms and habitats now makes it feasible to observe the
conditions and behaviors that drive these processes continuously
and at relevant scales. By specifying sensor types and form
factors, integrating mussel-inspired materials for adhesion and
fouling control, solving power and data constraints, and defining
targets and validation, this framework provides a concrete path
to operational blue carbon monitoring. The approach supports
ESG reporting, adaptive aquaculture, and participatory coastal
stewardship.
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