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Abstract: Uncontrolled blood pressure poses significant health risks, making accurate measurement essential in healthcare. Conventional blood
pressure measurement methods, typically using inflatable cuffs, can cause patient discomfort, tissue damage, and are unsuitable for long-term
monitoring. Consequently, researchers are exploring noninvasive, cuffless methods that provide continuous and accurate blood pressure
assessment. This article presents a comprehensive review of sensors and estimation models used in cuffless blood pressure monitors, with a
focus on enhancing accuracy and minimizing calibration requirements. A literature search was conducted using Google Scholar and
reputable journals, including IEEE, Frontiers, and MDPI, resulting in the selection of 35 relevant studies. The review examines innovative
techniques based on electrical, mechanical, and optical sensors. Particular attention is given to photoplethysmography (PPG),
electrocardiography (ECG), and bioimpedance (Bio-Z), which, when combined with advanced signal analysis and deep learning models,
show promising results. PPG enables blood volume measurement at accessible sites like the fingertip or wrist, leveraging parameters such as
pulse transit time. ECG, which directly reflects heart activity, is also widely used for blood pressure estimation. Recent advancements in
machine learning have improved accuracy, with models such as HGCTNet (a hybrid CNN-Transformer architecture) achieving an error
margin of 0.9 ± 6.5 mmHg for diastolic and 0.7 ± 8.3 mmHg for systolic blood pressures. Despite the potential, challenges remain,
including the need for continuous calibration of PPG-based systems. Ongoing research aims to address these limitations by improving signal
quality and developing robust algorithms. The demonstrated accuracy and reduced calibration requirements suggest that cuffless blood
pressure monitoring technologies may soon become viable for widespread clinical and home use.
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1. Introduction

High blood pressure is one of the factors that can lead to stroke
and heart disease [1]. Therefore, measuring this vital parameter is of
great importance, as high blood pressure is one of the primary causes
of heart disease and stroke. Controlling it can reduce the risk of these
conditions by 10% to 20% [2] and ultimately can help prevent an
increase in mortality rates [3]. Thus, it is essential to continuously
and regularly monitor individuals’ blood pressure. In general,
three types of parameters are reported in blood pressure
measurement: systolic blood pressure (SBP), diastolic blood
pressure (DBP), and mean arterial pressure (MAP). From
Equation (1), the arterial pressure is calculated [4].

MAP ¼ SBP þ 2DBP
3

(1)

In recent years, with advancements in technology for measuring
blood pressure, more diverse and sensitive methods have been
introduced. In the 1800s, blood pressure measurement was
performed using invasive arterial cannulation [5]. Although this
invasive method was uncomfortable for patients, it is still used in
the intensive care unit (ICU) for continuous blood pressure
monitoring [6]. Today, noninvasive blood pressure measurement
techniques are common in healthcare standard practices in clinics.
These methods are based on a plastic inflatable cuff that, when
pressure is applied to the brachial artery, occludes blood flow in
that artery; then, by releasing the pressure in the cuff and
monitoring the radial pulse through palpation or by listening to
Korotkoff sounds using a stethoscope, blood pressure is measured
in both systolic and diastolic phases. Measuring blood pressure
with a mercury sphygmomanometer and based on the auscultation
of Korotkoff sounds has become the gold standard due to its high
accuracy; however, due to the prohibition of using mercury
sphygmomanometers, the use of this technique has significantly
decreased [7]. In the use of an inflatable cuff, the pressure applied
to the patients’ arms can cause discomfort, and in continuous and
prolonged measurements, it may lead to tissue damage. Today,
there are various methods for estimating blood pressure. One
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common method for estimating blood pressure is the pulse transit
time (PTT). The PTT refers to the time it takes for the pulse wave
generated by the heartbeat to travel from the heart to the sensor of
the measuring device. PTT can be obtained using various
methods, such as utilizing photoplethysmography (PPG) signals,
electrocardiography (ECG) signals, or bioimpedance (Bio-Z) [8,
9]. In the PPG technique, an optical sensor is used to generate the
PPG signal. This signal contains very useful information,
including blood oxygen levels, heart rate, blood volume changes,
etc., which can help estimate blood pressure based on the
information obtained from this signal. Generally, the optical
sensor consists of an infrared light-emitting diode (LED) for
emitting light and a photodetector. The infrared light can generate
the PPG signal either by reflecting off the epidermis or by passing
through it [10]. After receiving the PPG signal, blood pressure
must be estimated based on the characteristics of the signal and
using various methods. Another signal related to blood pressure is
the ECG signal. In general, three factors affect changes in blood
pressure: heart contraction, blood volume, and peripheral
resistance. Among these factors, heart contraction can be
examined using ECG signals [11]. Therefore, some studies utilize
a combination of data from both ECG and PPG signals to
estimate blood pressure [12]. To employ this method, two PPG
sensors or one PPG sensor and one ECG sensor must be used,
which represents a hardware requirement and is considered a
drawback of this method [13]. Additionally, since physiological
parameters vary among individuals, the use of the PPT method
requires calibration for each patient, thus it makes personalization
necessary, which is another limitation of this approach [14]. Bio-
impedance (Bio-Z) refers to the impedance of tissues against the
current applied to them, which can be used to measure body fluid
volumes, such as blood volume in vessels [15]. Nowadays,
researchers are seeking methods to estimate blood pressure that do
not require specific calibration for each patient. Recent studies
have employed methods such as machine learning (ML)
algorithms and, in particular, deep learning (DL) algorithms for
blood pressure estimation.

2. Literature Review

In recent years, cuff-less blood pressure estimation methods
using biosignals such as PPG and ECG have received increasing
attention. This section highlights several key studies from 2010 to
2021 that employed ML and DL techniques for estimating blood
pressure without the use of a cuff. Yoon et al. [16] in 2009
utilized ECG and PPG signals to extract pulse arrival time (PAT)
and applied a linear regression model for blood pressure
estimation. Their method achieved a correlation coefficient of r =
−0.76 and a relative error ranging from 4% to 11% in estimating
both systolic and diastolic blood pressures. Kurylyak et al. [17] in
2013 employed a feedforward artificial neural network (ANN)
trained with 21 features extracted solely from the PPG signal. The
model achieved a mean absolute error (MAE) of 3.80 ± 3.46
mmHg for systolic and 2.21 ± 2.09 mmHg for diastolic blood
pressures. Sun et al. [18] in 2016 proposed a multivariate linear
regression model using 18 features including PAT. Their dataset
was recorded during exercise using ECG and PPG. The model
yielded a mean error of 0.43 mmHg and a standard deviation of
13.52 mmHg with a correlation of r= 0.86r for systolic blood
pressure estimation. Tanveer and Hasan [19] introduced a hybrid
DL model based on ANN and LSTM architectures using ECG
and PPG. The model demonstrated excellent performance with
MAE= 1.10 mmHg and RMSE= 1.56 mmHg for systolic blood

pressure, meeting both AAMI and British Hypertension Society
(BHS) standards. Leitner et al. [20] in 2022 proposed a blood
pressure estimation model using only PPG signals, integrating DL
architectures composed of convolutional neural networks (CNN)
and recurrent neural networks (RNN). A key feature of their
method is the application of transfer learning to enable personalized
blood pressure estimation. In this approach, a general model is first
trained on a large dataset from multiple individuals and then fine-
tuned using a small amount of personal data (approximately 50
samples per subject). The personalized model achieved an MAE of
3.52 mmHg for systolic blood pressure and 2.20 mmHg for
diastolic pressure, meeting the standards of both AAMI and BHS.
By relying solely on PPG signals, this method enhances practicality
for real-world applications, particularly in wearable devices. This
study demonstrates that personalization through transfer learning
can significantly improve accuracy, even with limited subject-
specific data. It highlights the potential of DL models to generalize
well across individuals while allowing lightweight personalization
for more precise cuff-less blood pressure monitoring.

This article examines the latest advancements in sensor types in
cuffless blood pressure monitors and blood pressure estimation
models. The findings of this article can significantly contribute to
future studies in this field.

3. Materials and Methods

This paper reviews the latest methods and developments in the
design and construction of cuffless blood pressure monitors.
Selected articles utilizing new technologies, a combination of
suitable sensors, and the application of novel methods for blood
pressure estimation, such as DL, have achieved promising
results. Most of these articles have been selected from those
published since 2020 to the present. Additionally, the search was
conducted using phrases such as “cuffless sphygmomanometer,”
“PPG sensor in cuffless blood pressure measurement,” “ECG
sensor in cuffless sphygmomanometer,” “bioimpedance sensor in
cuffless sphygmomanometer,” and “deep learning in blood
pressure estimation” on the Google Scholar platform and from
reputable journals such as IEEE, Frontiers, MDPI, PubMed, and
Nature. Figure 1 shows the flowchart of the article selection
process.

3.1. Study the principles of essential sensors to
measure of blood pressure

The various sensors have been proposed for measuring blood
pressure without the use of a cuff. In this section, these sensors
are categorized based on the physical nature that relates a
parameter directly or indirectly to blood pressure. The mechanical
sensors directly sense blood pressure, electrical sensors detect
certain electrical signals associated with blood pressure received
from the body, and optical sensors focus on the PPG sensor
among these sensors.

Pressure-based mechanical sensors are used in blood pressure
measurement based on inflatable cuffs, which respond directly to
pressure due to their structure and generate electrical signals.
Generally, there are four types of flexible mechanical sensors:
piezo-capacitive, piezo-resistive, piezoelectric, and triboelectric
sensors. In capacitive piezoelectric sensors, the pressure caused by
blood flow leads to a change in the capacitance of the pressure
sensor, and this change in capacitance is converted into an
electrical signal. Resistive piezo sensors experience a change in
resistance due to the applied pressure, resulting in the generation
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of an electrical signal. Piezoelectric sensors operate based on the
piezoelectric effect, such that under stress or strain from blood
pressure, a potential difference is created between two electrodes
due to the properties of the dielectric material. By measuring this
potential difference, blood pressure can be directly measured.
Triboelectric sensors are also based on electrostatic induction,
where external pressure on the electrodes induces charges through
an external circuit, ultimately resulting in an electrical output that
indicates pressure. However, unfortunately, the use of such
sensors is not recommended because their measurement is limited,
and they produce very weak signals; thus, it is not feasible to use
these types of sensors effectively while applying the constraints of
“non-invasive” and “without a cuff” [21]. Figure 2 presents the
structure of the aforementioned mechanical sensors [21]. Resistive
and capacitive sensors require an external power source for
measurement, while piezoelectric and triboelectric sensors can
directly convert pressure or strain into an electrical signal for self-
measurement. The piezoresistive sensors used by the piezoresistive
effect, where pressure changes a material’s resistance, altering the
output signal. Other sensors detect resistance, capacitance, or charge
changes for measurements. Resistive/capacitive sensors need
external power, while piezoelectric/triboelectric sensors are self-
powered (Figure 2(a)). The capacitive sensors detect pressure
(Figure 2(b)) via capacitance changes (C = Es/d). The applied
pressure shifts plate distance/area, enabling measurement.
Figure 2(d) shows triboelectric sensors convert pressure to
electricity via contact charging between dissimilar materials,
generating measurable current.

Table 1 compares mechanical, electrical, and optical sensors
from a technical perspective. Pressure-based sensors are
intelligently and specifically designed, as discussed in the
following mechanisms. Ion et al. [22] developed a microfluidic-
based sensor for recording blood pressure waveforms, which
includes a microfluidic channel between two polymer layers filled
with an electrolyte solution. One of the layers is covered by a
metallic transducer. When this structure is placed on a human
wrist, the pulse pressure is sensed through changes in the shape of
the microfluidic channel, and the blood pressure waveform is

recorded by the transducer. In fact, the applied pressure is
calculated by the deformation of the channel membrane and,
consequently, the changes in resistance of the microfluidic layer,
which depend on the height of the microchannel. The relationship
between the applied pressure and the sensor’s resistance can be
theoretically calculated. This method has shown high sensitivity in
measuring blood pressure in the range of 0 to 150 mmHg,
approximately 57 ohms per mmHg for this range. Figure 3
illustrates the schematic of the microfluidic sensor and its use in a
wristband placed over the radial artery for measuring blood
pressure in the constructed sample [22].

The optical sensors in cuffless blood pressure monitors have
always focused on photoplethysmography (PPG) sensors. This
sensor is based on the PPG technique, which measures the effect
of arterial blood on the intensity of transmitted light in the tissue
[23]. This technique follows Beer-Lambert’s law, whereby light
emitted from an LED, which can be in red, green, blue, or
infrared spectrum, is absorbed by blood within the tissue.
Consequently, considering the pulse effect in the artery, during
systole, the blood volume in the artery reaches its maximum,
while during diastole, the volume is lower. As a result, during
cardiac systole, the amount of light absorption is high, and
therefore, the transmitted or reflected light is at its lowest.
Conversely, during cardiac diastole, light absorption is low, and
the transmitted or reflected light from the tissues is at its highest
and presented in Figures 4 [24] and 5.

Thus, the generated PPG signal has an AC component that
reflects the pulsatile arterial blood and a DC component that
represents other tissues such as skin tissues, venous blood, and
non-pulsatile arterial blood. Therefore, by analyzing the
characteristics of the AC component of this signal, information
about the blood can be obtained [25]. Figure 6 presents the
components of a PPG signal.

The electrical sensors are another type of monitoring sensor that
are significant in measuring biological signals. These sensors are
typically electrodes that record the potential difference on the
skin’s surface relative to a ground or another electrode.
Additionally, in some cases, electrical stimulation may occur prior

Figure 1
The block diagram of the study methodology
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to recording this potential difference using another pair of electrodes.
The conventional sensors with electrical functionality are ECG
electrodes. These sensors generate ECG signals based on the
electrical activity of the heart. The integration of information
obtained from both ECG and PPG signals provides valuable data
for estimating blood pressure. Therefore, ECG sensors can be
used alone or in conjunction with PPG sensors for the indirect
measurement of blood pressure. Simjanoska et al. [26] utilized
three-lead Cooking Hacks ECG sensors to evaluate 16
individuals, three-lead 180 eMotion FAROS ECG sensors for the
assessment of 3 individuals, and the single-lead Zephyr
Bioharness module ECG biosensor for the evaluation of 25
individuals. Additionally, the heart rate of 7 individuals was
studied using the Charis Physionet database. ML was then
employed to estimate blood pressure. In the preprocessing stage,
the ECG was divided into 30-second segments, and various
features such as complexity, fractal dimensions, and entropy were
extracted. The entropy of the signal is the number of bits needed
to describe a signal [27]. The signal entropy is commonly used in
error detection in process control and in the assessment of
physiological signals for health monitoring. In most cases, a
decrease in entropy indicates the presence of a disease. If pi
represents xi consequence x, entropy is calculated as follows:

Entropy ¼
XN�1

i¼0

pi log
1
pi

� �
(2)

The fractal dimensions also refer to measuring the complexity
of a signal based on quantifying fractal dimensions. Fractal
dimensions also refer to measuring the complexity of a signal
based on quantifying the dimensions of fractals. In fact, fractals
are mathematical objects with noninteger dimensions, and the
concept of fractal dimension has been extended to the analysis of
time series. By using fractal dimension, hidden fundamental
patterns can be expressed by comparing and magnifying different
sections [28]. In the aforementioned article, algorithm has been
used to calculate the fractal dimension:

Xm
k : x mð Þ; x mþ kð Þ; x mþ 2kð Þ; :::; x mþ N �m

k

� �
k

� �
(3)

The length of the curve Xm
k , l(k) is calculated as

l kð Þ ¼
P N�m=kb c

i¼1 x mþ ikð Þ � x mþ i� 1ð Þkð Þj j N � 1ð Þ
� �

N�m
k

� 	
 �
k

(4)

Figure 2
The several mechanical pressure measurement sensors: (a) piezoresistive sensors, (b) capacitive sensors, (c) piezoelectric sensors, and
(d) triboelectric sensors convert pressure to electricity via contact charging between dissimilar materials, generating measurable

current

Table 1
Comparison of mechanical, electrical, and optical sensors

Sensor The Basis of Measurement accuracy The Main Advantage Technical Challenge Calibration
Energy
Consumption

PPG Changes in light absorption
by blood

average Portable and suitable for daily
use, for example as a ring

Errors in skin color
and movement

high low

Microchannel Deformation of a liquid filled
channel under pressure

great Very high sensitivity Sealing and
preventing liquid
leakage

very low very low

ECG Electrical activity of the heart good High accuracy in detecting
heartbeat timing

Electrical noise average average

Bio-Z Tissue resistance to electric
current

good Better deep tissue penetration Temperature effects
on resistance

low high
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and entropy are two nonlinear features commonly used in ECG
signal analysis for blood pressure estimation. Fractal dimension
captures the morphological complexity and self-similarity of ECG
signals, reflecting structural changes linked to cardiovascular
dynamics. Entropy measures the irregularity and unpredictability
of heart rate variability, offering insight into autonomic nervous sys-
tem activity. Both features have shown strong correlation with blood
pressure trends in recent studies and are often combined to improve
the model accuracy.

Furthermore, considering the established blood pressure ranges
for DBP and SBP in medicine, labeling was performed, resulting in

three classes: “normal,” “prehypertension,” and “hypertension,”
which were designated as 0, 1, and 2, respectively. Simjanoska
et al. [26] achieved an accuracy of 85.71%, with an error of 7.86
mmHg for SBP, an error of 6 mmHg for DBP, and a correlation
coefficient of 0.77. Ibrahim and Jafari [29] used a low-cost and
easy-to-manufacture array consisting of three columns of Bio-Z
sensors. In their operational model, the researchers utilized a 6×8
array of silver electrodes in the form of a wristband, with each
electrode measuring 5 mm × 5 mm and a distance of 3.2 mm
between each electrode and its adjacent one. This is a noninvasive
technique that generates a Bio-Z signal by injecting AC signals
into the body through one pair of electrodes and sensing the
potential difference on the other pair. The phase and measured
voltage signal are modulated, and based on the characteristics of

Figure 3
The microchannel sensor: (a) the schematic of microchannel
sensor including microfluidic channels filled with electrolyte

liquid and (b) the fabricated sample of the pressure gauge and
sensor placement in the wristband

Figure 4
The PPG sensor and photodetector in reflective mode

Figure 5
The light reflected or transmitted through the blood as affected
by each phase of the cardiac cycle and the volume of blood in the

artery

Figure 6
The PPG signal and its components
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the signal, the behavior of the body and living tissues can be
identified. This method’s advantage over PPG lies in its ability to
penetrate signals deep into the tissue and access the main arteries
of the wrist for recording their impedance characteristics. After
the signal is received by the electrodes, the DC component is
removed in the first stage to estimate the signal for preprocessing.
Then, the peak points for each pulse in the Bio-Z signal were
identified using peak detection algorithms. Additionally, a
simultaneous measurement was utilized to interpolate the
continuous maximum and minimum BP points, with Finapres
serving as the reference for the accuracy of the experiments. The
estimation of the arterial pulse signal was carried out by a CNN
auto-encoder algorithm. Finally, DBP and SBP were estimated
using separate regression models based on AdaBoost ensemble
learning methods, which predict outcomes by combining multiple
weak learners’ outputs through a weighted sum of various subsets
of the training dataset. Three different methods were employed for
training and evaluating the model, differing in data splitting and
the number of training samples, achieving significant accuracy
that meets the necessary standards for cuffless blood pressure
monitors. The Figure 7 shows the proposed model by Ibrahim and
Jafari [29]. The SYS (red), DIA (black), and blue point represent
the maximum and minimum points indicating systolic, diastolic,
and mean pressures, respectively. The array of wristband
electrodes and the stages of blood pressure estimation from the
obtained signals are displayed.

Griggs et al. [30] designed two models for measuring blood
pressure. In the first model, a contact ECG electrode board was
used, connected to the bicep muscle, along with a COST PPG
sensor attached to the earlobe to record the PPG signal. To pre-
amplify the signal, a passive high-pass filter was utilized, and for
signal amplification, two low-pass filters OOA333 (TI) were
employed. In the second model, a non-contact electrode board
(NCE: non contact electrode) was used to record the ECG, which,
due to its non-contact nature, is not affected by skin-related
factors such as sweat and hair. Additionally, a piezoelectric sensor
was used to record pulse pressure, and the INA116 (TI) amplifier
was used to amplify these two signals. PPT was used as the first
parameter related to blood pressure. Subsequently, to obtain blood
pressure, Equations (2)–(4) were created. The variables A and B
represent specific constants that affect other biological parameters,
such as age, arterial stiffness, and blood density, uniquely for each

individual. One of the drawbacks of using PPT is the need for
personalization and, in fact, specific calibration for each individual.

SBP ¼ A
PTT

þ B (5)

SBP ¼ A
PTT2 þ B (6)

SBP ¼ A� lnðPTTÞ þ B (7)

Considering the long-term use of pressure sensors instead of
cuff-based Holters, the design of a cuffless pressure sensor should
facilitate easy use in the form of wearable gadgets. Sel et al. [31]
utilized a semi-flexible silicone ring to create an appropriate
contact surface with the skin, as well as the ease of use in
conditions such as sleeping and exercising. They employed a pair
of electrodes to inject AC and a Bio-Z sensor to record Bio-Z
signals within this ring. Given the limited space for electrode
placement compared to the wrist and the impossibility of aligning
them in a straight line due to reduced sensitivity, Sel et al. [31]
developed a finite element method (FEM) based on the anatomy
of the human finger and the tissues of skin, fat, and blood vessels
in COMSOL software. From the received Bio-Z signal, features
were extracted from each cycle of the Bio-Z waveform, including
four categories of characteristics: amplitude values, time intervals,
area under the waveform, and gradients calculated from the
waveform’s derivative, resulting in a total of 15 features for
feature extraction. Noise reduction was then performed using a
filtering process. The systolic and diastolic blood pressures were
estimated using the AdaBoost regression model. The use of these
techniques allowed for a measurement range of systolic blood
pressure from 89 to 213 mmHg and diastolic pressure from 42 to
122 mmHg. They utilized 5 healthy individuals and 10 potentially
healthy individuals during the trial stages, achieving a mean error
of 0.11 ± 5.27 for systolic pressure and 0.11 ± 3.87 for diastolic
pressure. Figure 8 presents the finite element model and the
placement of the electrodes [31]. Part a represents the finite
element model of a human finger used in the design of the
conductive ring, while part b shows the cross section of four
Bio-Z measurement electrodes, with dashed lines indicating the
distribution of high-frequency alternating current (AC) in
the finger, and the green area representing the sensitive region for

Figure 7
The Bio-Z sensor array
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the Bio-Z sensor electrodes. Figure 9 displays a Bio-Z signal over a
cardiac cycle [31].

3.2. The estimator of blood pressure

The signals generated by ECG and PPG sensors do not provide
direct information about blood pressure; rather, blood pressure must
be estimated using signal analysis models based on the
characteristics of the relevant signals. One of the primary models
used to estimate blood pressure from PPG or ECG signals is the
PPT method. The PPT refers to the time it takes for the pressure
wave to travel between two points in the artery, where the
pressure wave can be observed as a sharp expansion of the artery.
Therefore, blood pressure is estimated from the relative timing
between the waveforms of the proximal and distal arteries, and
PPT has an inverse relationship with blood pressure. This
parameter can be obtained by analyzing PPG and ECG signals.
One of the most common methods for measuring PPT is to
determine the time interval between the R peak of the ECG signal
and a specific point in the PPG signal. Furthermore, various
relationships for blood pressure, PPT, and other blood-related

parameters have been presented, and these relationships are
selected based on the available data for each method. It is evident
that the more accurate the parameters of these relationships are,
the more precise the estimation of blood pressure will be. Griggs
et al. [30] used three different relationships to calculate systolic
blood pressure in their review of two proposed models, which
were mentioned in the previous section. Cattivell and Garudadri
[32] provided two relationships (Equations (5) and (6)) for
estimating systolic and diastolic blood pressures. In these
relationships, HR represents the heart rate, and the coefficients a1,
a2, b1, b2, c1, and c2 are obtained through calibration.

SBP ¼ a1 � PAT þ b1 � HRþ c1 (8)

DBP ¼ a2 � PAT þ b2 � HRþ c2 (9)

Recently, methods based on ML and DL algorithms for
estimating blood pressure from PPG signals have garnered the
attention of researchers. Chu et al. [33] utilized a DL model to
estimate blood pressure, using data from 1,732 patients obtained
from the MIMIC III database. For data preprocessing, flat lines
and peaks were selected as outliers and removed using appropriate
methods. Additionally, the median was calculated using the
Hample filter and replaced the outlier points. The signal was then
filtered with a bandpass filter with a frequency range of 0.5 to 8
Hz to help eliminate artifacts and high-frequency noise, and
empirical mode decomposition (EMD) was used to remove noise.
Finally, the MLM-Transformer model was employed for the final
signal processing. The evaluation parameters in this study
included the MAE and deviation (MAE±SD) and the squared
Pearson correlation coefficient (r2). The accuracy achieved in this
study was compared with the standards of AAMI and the BHS,
yielding promising results.

Sammie and Dajani [34] designed a deep neural network for
blood pressure estimation based on the morphology of the PPG
signal for calibration purposes. They utilized two datasets: the
University of Queensland dataset, which included 30 patients, and
the University of California, Irvine ML repository, which included
200 patients. In this design, 5 features were used to estimate SBP
and 6 features for estimating DBP. Ultimately, they achieved an
average error of 0.31. The results from their research indicate that
blood pressure estimation based on the morphology of the PPG
signal using DL algorithms is a suitable alternative to calibration-
dependent methods.

Liu et al. [35] introduced HGCTNet, a hybrid CNN-Transformer
model that captures local features (via CNN) and global temporal
dependencies (via self-attention). An attention module refines
features by removing redundancy, while a fusion module combines
them with handcrafted features and demographic data to boost
classification performance (Figure 10 [35]).

HGCTNet has been validated on two large datasets, achieving
an estimation error of 0.9 ± 6.5 mmHg for diastolic blood pressure
and 0.7 ± 8.3 mmHg for systolic blood pressure. These results
indicate that the use of DL techniques can significantly enhance
the accuracy of blood pressure estimation.

3.3. Results

Overall, the findings obtained from the review of articles are
presented in Tables 2 and 3, which focus on the sensor and blood
pressure estimation model sections. Additionally, some challenges
related to the integration of various types of sensors as the main
mechanism for signal acquisition have been gathered.

Figure 8
The finite element for the loop

Figure 9
The bioimpedance signal during a cardiac cycle. STT: slope
transition time, IBI: inter-beat intervals, Adia: characteristic

related to the area between the diastolic point and the slope effect
point, Aslope: area between the diastolic and systolic points, Asys:

systolic point
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Multimodal sensor fusion has emerged as a promising strategy
for cuffless blood pressuremonitoring by integrating complementary
physiological signals such as PPG, electrocardiogram (ECG), and
BioZ. However, the practical realization of this approach faces a
range of technical challenges that must be carefully addressed to
ensure clinical reliability and usability. A primary challenge lies in
the heterogeneous nature of signal acquisition across different
sensing modalities. Each modality captures distinct physiological
parameters: The PPG reflects peripheral blood volume changes,
ECG measures the heart’s electrical activity, and BioZ evaluates
tissue impedance fluctuations. These signals inherently differ in
temporal resolution, sensitivity to artifacts, and noise
characteristics. Integrating them into a unified and coherent

framework requires advanced synchronization techniques and
robust fusion algorithms capable of extracting meaningful features
from temporally and functionally dissimilar data sources. Another
significant limitation involves motion artifacts and measurement
stability, particularly in wearable and ambulatory environments.
The PPG signals are highly susceptible to motion-induced
distortions and variability due to skin pigmentation. ECG,
although less prone to optical interference, depends heavily on
consistent skin-electrode contact, which is difficult to maintain
over time in wearable designs. Similarly, BioZ measurements are
affected by electrode positioning and are prone to baseline drift.
These issues collectively reduce the reliability and consistency of
blood pressure estimates in real-world settings. Subject-specific
variability further complicates the development of generalized
models. Anatomical differences between individuals affect signal
morphology, and the physiological relationship between derived
features—such as PTT—and actual blood pressure is neither
stable nor linear across populations. This inter-subject variability
is particularly problematic in individuals with cardiovascular
abnormalities, often necessitating frequent recalibration to
maintain acceptable accuracy. On the hardware side, the
integration of multiple sensing components into compact,
wearable systems introduces constraints related to size, power
consumption, and thermal dissipation. These devices must process
high-fidelity signals in real time while preserving battery life,
which poses a significant engineering challenge. Furthermore,
maintaining signal accuracy and device performance across
varying physiological states—such as during exercise, stress, or
sleep—adds another layer of complexity. Finally, clinical
validation remains a critical barrier. Although multimodal
approaches show promise in controlled environments, their
reliability under pathological conditions and during acute
hemodynamic changes is still uncertain. Short-term variations in
cardiovascular parameters introduce additional error sources that
are not adequately accounted for in current models. Extensive,
diverse clinical trials are required to validate the robustness and
safety of these systems before they can be considered for routine
medical use. In conclusion, while multimodal sensor fusion
represents a compelling avenue for noninvasive and continuous
blood pressure monitoring, its clinical translation depends on
addressing challenges related to signal heterogeneity, motion
robustness, personalization, hardware integration, and rigorous
validation. Continued advancements in adaptive signal processing,

Figure 10
The HGCTNet hybrid model that includes CNN and

Transformer algorithms

Table 2
Summary of the methods reviewed

Author Materials and Methods Used Number of Trials Evaluation Parameters

Ion et al. [22] Microfluidic with electrolyte
liquid

4 electrodes Sensitivity: 57 ohm/mmHg

Simjanoska et al.
[26]

ECG Electrodes 51 cases Accuracy: 85.71%
Error for SBP: 7.86 mmHg
Error for DBP: 6 mmHg
Correlation coefficient: 0.77

Ibrahim and
Jafari [29]

Array of bioimpedance sensors 4 human experiments
12 trials of 90 minutes each
(6,000 beats from each person)

Mean error: 0.2

Griggs et al. [30] ECG + PPG and NCE ECG +
Piezoelectric

4 experiments with different scenarios The relationship between BP inverse PPT
or inverse square PPT

Sel et al. [31] Ring with bioimpedance sensor 5 healthy individuals and 10 possibly
healthy individuals

Mean error for
SBP: 0.11±5.27
DBP: 0.11±3.87
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intelligent calibration techniques, and low-power hardware design
will be essential to realize the full potential of this technology.

4. Conclusion

Given the importance of blood pressure measurement, researchers
in the healthcare field have increased their focus on measuring blood
pressure without the use of a cuff. In noninvasive blood pressure
measurement without a cuff, two main topics have always been of
interest: “the type of sensors used” and “how blood pressure is
estimated.” When selecting a sensor, considerations should include
costs, wearability, and the stability of accuracy and sensitivity of the
sensor in various positions. The use of PPG sensors for estimating
blood pressure has been of interest in the past; however, due to the
lack of robust models, the measurements obtained have not achieved
sufficient accuracy. Relying solely on ECG signals is not suitable, as
their sensors have limitations, including adequate contact surface.
Bio-Z sensors, when designed appropriately and positioned
alongside PPG sensors, can be a suitable option for designing a
cuffless blood pressure monitor. The use of traditional methods for
extracting features from recorded signals, calculating PTT, and
estimating blood pressure can be associated with significant errors
and, in addition, require calibration and personalization. Nowadays,
with the emergence of artificial intelligence and advancements in DL
algorithms, the analysis of recorded signals and blood pressure
estimation has reached accuracies aligned with existing standards,
and the analysis of signals based on their morphology eliminates the
need for continuous calibration. Therefore, it is expected that the use
of sensors providing information about cardiac activities and the
analysis of the resulting signals will become a suitable alternative to
cuff-based sphygmomanometers, especially in Holter monitors, and
will be utilized in devices such as smartwatches for reporting blood
pressure during daily activities.

To advance cuffless blood pressure monitoring, it is
recommended to focus on the development of lightweight, low-
power, and multimodal sensors that can be easily integrated into
wearable devices such as smartwatches. Leveraging DL
algorithms to intelligently fuse signals such as PPG, ECG, and
BioZ can significantly improve measurement accuracy while
reducing the need for frequent calibration. Moreover, large-scale
clinical validation across diverse populations with varying
physiological conditions is essential to ensure the reliability of
these systems in real-world scenarios. Finally, developing signal
analysis methods based on morphological features that minimize

the dependence on individual calibration could play a key role in
enabling the widespread and dependable adoption of this
technology in everyday healthcare applications.
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