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Abstract: Numerous industries consider their needs ultra-high accuracy with regard to an artificial intelligence (Al)-detected object and pose a
challenge with real-world variations. This study specifically focuses on industrial manufacturing lines, where quality control is critical. The
methods we discuss here should be transferable to other industry domains with similar constraints, such as logistics or packaging. The primary
objective is to achieve greater than 99.9% accuracy with object detection in real-time industrial environments, without significantly impacting
the latency. For that, we worked on an SSD_MobileNet model that was refined to the utmost precision and implemented alongside a dual-
model system that used a generalist surrogate trained on blurred synthetic images. To achieve blur efficacy, the second model had to be blur
trained, blending contextual depth and resilience. Both models’ outputs are fused through a low-computational-cost, high-confidence
detection using Intersection over Union metrics selection (>=0.8) to strike a balance between efficiency and detection reliability. Model
fusion has better results compared to model stacking or score-based thresholds because it decides on the best detection by considering
the spatial overlap of detections and the agreement of class IDs. On the Nvidia Jetson Orin NX platform, deploying this ensemble
achieved 99.8% accuracy and further boosted the system to 99.97% without expanding inference passes. Smart dual-model
implementation helps increase precision and fault-tolerant parameters while maintaining streamlined recalibrated embedded systems
thresholds, proving non-breach. This work supports the shift toward Al-powered advanced industrial surveillance, and research focuses

on multidisciplinary approaches toward precise, reliable object detection.
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1. Introduction

In a number of fields, the requirement for ultra-high precision
within an artificial intelligence (Al)-powered object detection
system goes well beyond mere needs; it often involves the
productivity and safety of entire production lines. In manufacturing,
for instance, achieving 99.9% accuracy is not merely a goal, but
rather a requirement; even tiny errors pose a risk to safety and
automation. Detection failures in high-speed manufacturing, for
instance, can lead to defects in the product, destruction of valuable
resources, and costly downtimes. In surgical applications such as
aerospace surgery or medical diagnostics, every fraction of a
percent of inaccuracy can be a disaster. This increases the need for
Al systems that both function in real time and perform seamlessly
in unpredictable environments. Therefore, not achieving 99.9%
accuracy means the Al system is missing a crucial operational
requirement. For example, ISO 9001-compliant manufacturing
systems often demand defect rates below 0.1%, meaning the Al-
driven quality inspection system must be capable of at least 99.9%
accuracy to be acceptable for production use. Accuracy therefore
transcends technical goals; it’s a basic necessity for maintaining
customer contentment, operational reliability, and financial stability.

Traditional methods adopted by manufacturers include in-line
sensors that detect when an object moves past. The shortfall of
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this method is that it fails when objects touch. To address this,
manufacturers have to install a separate, faster conveyor, called a
break conveyor, which speeds up the line, having the effect of
adding gaps between objects. This is hardware intensive and
requires regular maintenance. Alternatively, manufacturers deploy
staff to monitor the line visually and detect anomalies. This
human-centric approach works only if the objects are passing
slowly and if the operator is able to provide their full attention 24/7,
which is not the case. The trademark characteristic rejection profile
of this method is seeing short periods of high rejection (e.g., when
the operator is looking) and then long periods of no rejection at
all (e.g., when the operators step away).

The challenge of adding an Al-based inspection or quality
control feature stems from the fact that almost all embedded
systems need to be constrained to use lightweight models such as
SSD_MobileNet, which is known to perform well in terms of
inference reasoning, especially in time-critical environments [1]. It
has been noted that while these models guarantee real-time
performance, achieving speeds of up to and including 100 FPS on
a Jetson Orin NX, their accuracy plateaus around the 95-98%
threshold, which renders them less useful in the most critical
environments [2, 3]. To address this critical accuracy challenge
while still adhering to the constraints of embedded systems,
ensemble methods have been proposed. They are difficult to
implement because they often surpass memory capacity and
increase processing time by double, which may not be feasible in
production environments [4]; however, in this study, we use a
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sufficiently large GPU processor, namely, the Jetson Orin NX, to
overcome these practical limitations. Time is a precious resource
in production environments — products often travel past sensors at
a rate of 1-5 units per second and, in some cases, up to 100 units
per second, so doubling the time taken can sometimes not be
feasible from a time constraint perspective. Detecting objects at 1
object per second is relatively straight forward, but tracking
objects at 1 object per second requires a 1015 FPS frame rate to
prevent mis-tracking and ghosting, so the time window per frame
is usually 60—70 ms maximum.

To address these accuracy challenges, we draw inspiration from
established dual-stream vision architectures [5] and advance the state
of object detection in embedded systems by proposing a dual-model
design: One model serving as a “specialist” focused on preserving
sharpness-dependent precision, and the other as a blurred-data
“generalist” intended to capture structural cues that might
otherwise be lost in detail. Research in this area indicates that
such a dual approach may significantly enhance detection
capabilities, thus making it relevant to the ongoing advancements
in Internet of Things systems and cybersecurity [6, 7].

What makes this paper distinctive is the purposeful
deterioration of the entire dataset to support the “specialist”
model, along with Intersection over Union (IoU)-based selection
or accuracy-based confidence fusion in real inspection scenarios.
This approach deliberately meets the challenges posed by
embedded object detection, making it an ideal fit for the most
demanding industrial tasks that require a specific level of
operational complexity and efficiency.

2. Background and Related Work

Cross-domain ensembles have become increasingly relevant in
high-impact areas like medical imaging [8], aerial surveillance [9],
and robotic systems with critical safety constraints [10], where
redundancy and accuracy are pivotal for improving the overall
result. These complex systems usually utilize several models that
have been trained independently to help cover blind spots that
lead to overfitting. Related work is discussed below, split into
three groups: (a) suppression and fusion methods, (b) adaptive
blur techniques, and (c) specialist—generalist paradigms.

2.1. Suppression and fusion techniques

In the field of study, predication merging has received some
attention, and non-maximum suppression (NMS) remains the first
and widely used method. Although NMS has the advantage of
reducing computational workload, it tends to erroneously omit
valid detections in crowded scenes or when objects are closely
packed together. To counter NMS challenges, weighted box
fusion (WBF) has been proposed as a more robust alternative. It
aggregates overlapping boxes by regions of interest based on their
weighted confidence scores to yield improved results [9].
Frameworks relying on these fusion mechanisms have been
tailored and optimized with additional features to form more
effective systems. For example, Nijkamp et al. [4] implemented
nonlinear weighted integration, which outperforms WBF by
adaptively changing the weights based on IoU relations as well as
the spatial variation of partitions, thereby increasing the accuracy
of complex scenarios. Katkoria et al. [11] and Hong et al. [12]
further refined the robustness of fusion by using semantic
agreement to enhance loU filters, skillfully merging aspects of
WBEF with confidence recalibration techniques.
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2.2. Adaptive fusion and blur-based models

Another crucial line of research focuses on training
complementary models for ensemble use. Duong et al. [13]
demonstrated an innovative approach by training one model on
fisheye-distorted images and another on undistorted views,
showcasing significant improvements in coverage across edge-
deformed imagery. This idea of training models under different
distortion regimes aligns seamlessly with our blurred-model
strategy.

While image blur has been extensively studied as an
augmentation technique designed to increase model generalization
[14], it is typically used within a single model’s training process.
Vasiljevic et al. [15] fine-tuned Convolutional Neural Networks
on blurred images, improving performance through blur-invariant
features. Lébl et al. [16] found that augmenting with varied blur
types and intensities improves classification, and Zhou et al. [17]
demonstrated that fine-tuning with noisy and blurred inputs
significantly boosts model robustness. These related works were
part of the inspiration for our study.

Notably, very few systems explicitly train a dedicated blur-
specialist model to operate within an inference-time ensemble,
creating a niche for further exploration. The blur methodology is
rarely seen in industrial applications and is usually only used in
medical applications to augment training data with the aim to
generalize the trained AI models. In manufacturing, most
equipment is IP67 rated, meaning it can be sprayed down with
water (hose pipe) during scheduled cleaning. Even if the
equipment survives the spray down, camera lenses often retain
water drops that can result in occlusions on the lens, which
convert to blurry images. The value of blurring datasets in
training Al models for industrial applications should be given
higher importance for these real-world reasons.

2.3. Specialist—generalist paradigms

In generalist-—specialist paradigms, two or more models are
trained to specialize in different domains or resolutions of the
same task, broadening their applicability. For example, Jia et al.
[18] proposed ensembles where specialists handle rare classes and
generalists manage background-rich contexts, enabling a more
nuanced approach to object detection. These paradigms are now
gaining traction in resource-constrained settings, where diversity
across models can effectively compensate for inherent
architectural limitations. What is important to note is that most
related fusion methods achieve improved accuracy at the expense
of increased latency or by introducing complex pipelines. By
comparison, our approach offers similar accuracy gains using
serial inference and a lightweight fusion step with just 3 ms overhead.

2.4. Our architecture

Our architecture applies this principle using intentionally
blurred images in the generalist path, further enhancing
performance. We chose blurring as a preferred distortion type
because it simulates real-world occlusions, such as water drops on
the lens or motion blur due to frame vibration. This design not
only bolsters robustness to lighting variation, occlusion, and
background clutter but also addresses scenarios where the
specialist model often fails to deliver accurate results. The fusion
process merges detections using an IoU threshold of 0.8, and for
overlapping predictions, confidence-based filtering is employed to
determine the dominant result.
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This hybrid strategy effectively combines the precision of NMS
with the averaging power of WBF, and is aligned with the best
practices outlined in Hong et al. [12] and Pasupuleti et al. [19].
Moreover, as highlighted in related research, the integration of
such advanced strategies is crucial in achieving higher accuracy
and specificity in detection systems, ultimately addressing the
growing challenges present in dynamic environments [20, 21].

In the next section, we discuss the methodology used in this
research.

3. Methodology

3.1. System overview

In this section, we detail the system as a whole. We present the
hardware design, both models used (Model A and Model B), and the
training and testing processes used. In addition, we detail the fusion
logic implemented to achieve the results we obtained.

Atahigh level (see Figure 1), the system comprises two Al Object
Detection models, namely, Model A (the Specialist) and Model B (the
Generalist). Both models run in parallel on an Nvidia Jetson Orin NX
optimized for real-time embedded inference at 20 FPS. Model A is
fine-tuned on high-resolution datasets, while Model B is trained on
the blurred version of the same high-resolution image dataset
(see Figure 2). We use a fusion approach to combine the detection

outputs from each model, using an IoU threshold and confidence-
and class-based approach to conflict resolution.

Both models run in parallel on an Nvidia Jetson Orin NX
optimized for real-time embedded inference at 20 FPS. Model A
is fine-tuned on high-resolution datasets, while Model B is trained
on the blurred version of the same high-resolution image dataset.
We use a fusion approach to combine the detection outputs from
each model, using an IoU threshold and confidence- and class-
based approach to conflict resolution.

The code for this research was written in Python 3.10, using
TensorFlow 2.x, and deployed on an Ubuntu 20.04 LTS
environment with CUDA optimized for real-time embedded
inference. The full source code and models are not included due
to commercial constraints, so instead we provide a detailed
architectural description of the entire system.

Because the codebase and dataset for this study were proprietary,
we are limited to sharing the workflow (Figure 1), augmentation
techniques (Figure 2), training methodology (Figure 3), and
pseudocode (Section 4.5).

3.2. Hardware design

For this application, we use a high-speed industrial HD camera
(MER2-503-23GC-P, IMX264, 2448 x 2048, 23fps, 2/3", Global
shutter, CMOS, Color). The industrial HD camera featured a

Figure 1
High-level overview of the fusion workflow
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Figure 2
Dataset augmentation for Model A and Model B
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Figure 3
Two stages of training: base training and transfer learning
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60° field of view with a 12 mm fixed focal length. The resolution was
chosen so that we have the option to zoom into areas of interest, even
though the AI model input resolution is smaller. We only require 23
FPS because our processing is limited to 20 FPS. The specific brand
of camera was chosen because of its short and consistent internal
latency. An exposure time of 1 ms was chosen to prevent motion
blur. The global shutter was chosen to prevent image distortion
from moving objects.

The deployment of our system is executed on an Nvidia Jetson
Orin NX, which boasts 16 GB of RAM and up to 100 TOPS of
performance [22]. The Jetson Orin NX operated at 15-25 W
under active inference. In addition to computation specifications,
the ForeCR.io Jetson Orin NX is industrial grade — meaning that
it is entirely made of solid-state parts with no moving parts. For
cooling, it uses a large finned heat sink, allowing passing air to
keep it cool. In addition, it has been thoroughly tested in rugged
vibrating environments, which is important in an industrial
environment where vibrations are common and persistent. The
major shortfall is that the device is itself not IP67 rated and, as a
result, requires an additional IP67 control box to be built for it
when installed on premises.

This hardware setup plays a critical role in the efficiency and
functionality of our model, as it must adhere to stringent latency
requirements that impact performance outcomes. Due to these
latency constraints, only two model passes are allowed per
inference cycle, thereby limiting the depth of processing that can
be achieved within a single iteration [7, 23]. The careful selection
of this hardware is necessary for handling the computational load
associated with our targeted applications. While the Nvidia Jetson
Orin NX is recognized for its robust processing power, the
imposed limitations serve as a reminder of the trade-offs
that often accompany deployments in resource-constrained
environments. Exploring alternative configurations or optimization
techniques could offer pathways to improve throughput without
compromising accuracy. As researchers continue to seek high-
performing solutions, understanding the intersection of hardware
capabilities and operational constraints remains essential for
advancing Al implementations in real-world scenarios.

3.3. Architecture of Model A and Model B

In this research, Model A and Model B both use the high-speed
SSD_MobileNet_v2 Object Detection model implemented in
TensorFlow v2. This model has an input size of 300 x 300 pixels
and a total of 6 detection layers. Each detection layer outputs (a)
class scores, (b) confidence scores, and (c) bounding box
coordinates. Bounding box predictions are made across multiple
anchors with different aspect ratios per spatial location, and final
detections are filtered using the built-in NMS function provided
by TensorFlow. This structure was selected for its balance of
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speed and accuracy on edge devices, particularly in embedded
industrial environments with strict real-time constraints.

We trained the model on a maximum of 1,000 epochs, with
early stopping enabled. In practice, the training stopped early at
543 epochs, when the mAP score was the highest and the Loss
was the lowest. The learning rate was set to a value of 0.004, and
we used cosine decay scheduling. The batch size was dynamically
optimized for the dataset size and set to 24. As is typical during
transfer learning, the core layers of the pretrained COCO base
model were frozen, and only the 6 detection head layers were
exposed to transfer learning for the duration of the training process.

3.4. Model A: Specialist

In this section, we review Model A, also referred to as the
“Specialist.” Here, an SSD_MobileNet model is specifically trained
on high-resolution annotated images. This allows the model to be
optimized for the detection of features related to the object being
detected (e.g., crates, bottles) and defects (e.g., foreign objects) — an
essential capability in various applications such as quality control in
manufacturing and automated sorting systems.

This model undergoes a two-phase training process (see Figure 3):
We start with a base model that was pretrained on the Comprehensive
Objects in Context (COCO) dataset. This provides a broad base of
object detection capabilities. The SSD_MobileNet model effectively
combines the broad resources of the COCO dataset and the narrow
focus of proprietary datasets. This integration enhances the model’s
performance in real-world scenarios, where distinguishing subtle
variations in defects may greatly affect operational efficiency and
product quality. Therefore, the systematic technique where pretrained
models are integrated with custom datasets highlights the
significance of adaptive learning when engineering machine learning
solutions in complicated situations.

The second stage is where we fine-tune the model on
proprietary datasets that are tailored to the specific requirements
and idiosyncrasies of the target application, which is common
practice in these kinds of applications [24]. This fine-tuning
process allows the model to adapt and excel in recognizing and
categorizing the unique features present in the proprietary images,
which is particularly crucial in domains where precision is
paramount [25]. Fine-tuning was executed on a dataset of
~10,000 images across a wide range of environmental and object
variations, to ensure a very robust Object Detection model. The
dataset was manually annotated (initial 1,000 images) and then
auto-annotated and reviewed for the remaining 9,000 images. The
dataset was split into 90% training and 10% testing. Auto-
annotation of 9,000 images used the trained Model A and was
manually reviewed for quality assurance. Augmentation during
training was limited to orientation rotation, flips, addition of noise
(speckles and lines), and various image variations (e.g., hue,
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contrast, and brightness). No blur augmentation was applied to the
Model A. Training images (2448 x 2048) were resized to 300 X
300 pixels and normalized to a 0—1 float range.

The challenge with this approach alone is that model accuracy
in real-world scenarios plateaus at around 95-98% accuracy, which
is not sufficient to replace trained staff at industrial sites.

3.5. Model B: Blurred generalist

In this section, we review Model B, which we will refer to as the
“Generalist” in this paper.

This model enhances images by applying a 9 X 9 Gaussian kernel
blur with 6 = 2.5 after resizing training images from 2448 x 2048 to
300 x 300 pixels. This type of blur is useful for adjusting images and
helps to see outlines, supporting the understanding of shapes, position,
rough outline, and other indicators without paying attention to texture.
This blurring approach helps to improve the effectiveness of model
interpretation regarding images in sophisticated imaging tasks, such
as in environmental monitoring, autonomous robotics, and remote
sensing [26, 27], where obfuscation of details is present. In addition
to blurring, dataset augmentations also included orientation rotation,
flips, addition of noise (speckles and lines), and various image
variations (e.g., hue, contrast, and brightness).

The generalist model is tailored with a set of data four (4) times
larger than that of the specialist set. We collected 40,000 images for
training this model, compared to 10,000 for Model A. These include
the 10,000 images from Model A, as well as 30,000 new images.
This allows for more robust learning and is critical to the model
acquiring a great diversity of patterns, details, and intricacies, thus
enhancing the model’s capability to represent the complexities of
blurred images. Model B can therefore recognize objects in conditions
of insufficient illumination, obstructions, or motion blur, making it
suitable for a range of real-world industrial settings, such as
automated sorting systems and quality control in high product
throughput environments where high detail is lost. This increased
dataset size facilitates a more robust learning process, enabling the
model to capture a broader range of patterns and intricacies essential
for accurately representing the complexities of the blurred images,
thereby promoting a comprehensive understanding of the underlying
texture dynamics in a blurred generalist context [28]. The integration
of such a model in image-related tasks not only streamlines the
process of feature extraction but also enhances applications ranging
from environmental monitoring to advanced analytics in digital
imagery, corroborating its relevance in contemporary technological
advancements [29].

In the previous section, we discussed the training of the
“Specialist” model. In this section, we discuss the training of the
“Generalist” model. In the following section, we discuss the
proposed fusion logic.

3.6. Fusion logic

In the operational framework under consideration, both models
run in parallel, which allows for a comprehensive evaluation of
predictions in a sophisticated manner. Running the models in
parallel results in a possible duplication of detections, which will
need to be filtered. To filter these results, bounding boxes that
achieve an IoU threshold of>0.8 are subjected to rigorous
assessment for class agreement. This meticulous evaluation is
critical as it ensures that only the most reliable classifications are
considered valid. When an IoU overlap is confirmed, the
prediction with the higher confidence score is retained, thus
enhancing the overall accuracy of either model’s output

independently. If both detections have different class IDs, then the
class ID will be chosen from the detection with the highest
confidence. If both detections have low confidence below a
certain threshold (e.g., 0.4), then the low confidence will mean
that the detection will be excluded as a false positive.

When there are multiple predictions with a confidence score
nearing the same value, a deep prioritization bias is set, which leans
toward the winner model. This emphasis is deeply shaped by
context; for instance, if the context related to an image shows a
high likelihood of blockage or distortion, then the prediction made
by a generalist gets dominance. Such tactics are essential since they
strategically mitigate false negatives in cases where images may be
blurred or blocked to some degree, reinforcing the reliability of
object detection systems within intricate vision environments [29].
This is in line with the recent progress in condition monitoring and
information theory, where the amalgamation of disparate data
streams fosters enhanced evaluation frameworks [30]. These two
models bring together their strengths and empower the system with
the capability to deal with the complexities that arise in the real-
world scenario, therefore improving the results.

The fusion module was implemented in Python 3.10, operating
on the Jetson Orin’s CPU. In terms of workflow, the fusion function
ran after Model A and Model B inference were completed. The
fusion method processes detection outputs from both models in
real time (20 FPS) and integrates seamlessly with the TensorFlow
pipeline using a custom callback method. The pseudocode for the
fusion logic is as follows:

For each input frame:
Run Model A — Detections A
Run Model B — Detections B
For each detection pair (4, B):
IfIoU(A, B) > 0.8:
If Class(A) == Class(B):
Keep detection with higher confidence

Else:
Choose class from higher confidence detection

If Confidence(4) < 0.4 and Confidence(B) < 0.4:

Discard both
Return final detections

This study could be extended to include a formal complexity
analysis (e.g., a detailed analysis of multi-overlap cases), but we
chose to include this as future work as this goes over and above
the objectives of this study.

4. Results

In this section, we discuss the results.

4.1. Evaluation metrics

In this study, we refer specifically to an accuracy measure. We
do not use standard object detection metrics such as recall, precision,
F1 score, or mean average precision (mAP). Instead, accuracy was
calculated using a custom-built unit test, comprising 10% of the
training dataset for Model A. This approach was designed to
reflect real-world expectations for system performance in edge-
case scenarios.
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In addition to accuracy, we calculated mAP (0.5-0.95),
precision, and recall on the test set for each model. Our custom
accuracy metric defines success as correct class + >0.8 IoU with
ground truth, to reflect strict industrial standards.

4.2. Test dataset

The test dataset was carefully labeled and focused specifically
on challenging corner cases (such as poor lighting, frame
occlusion, water marks on the lens, and foreign objects not seen
during training) to evaluate robustness under difficult
conditions. The total number of images in the test set for Model
A was 1,000 (10% of the 10,000-image training dataset). The
same unit test set was used for Model B, ensuring a consistent
and fair comparison across both models.

The test set included five object classes (crates, green bottles,
brown bottles, caps, and foreign objects), with an average of 12
bottles per crate and 2—5 crates per image. There was a range of
lighting conditions when capturing the images, from dark (no
overhead lighting) to bright overhead lighting. Challenging cases
were selected from actual production images and included
foreign objects (gloves, plastic bags, tree leaves), as well as a
selection of bottle types including dirty bottles, cracked bottles,
and upside-down bottles.

4.3. Baseline results

To evaluate the effectiveness of our model, we benchmark other
approaches from other related work. In this research, we tested six
models (see Table 1).

4.4. Quantitative results

The results from testing are shown below in Table 2 and shown
in Figure 4.

The “Specialist” model (Model A), with an accuracy of
98.1% on the test set, implemented by overfitting high-
resolution annotated images, performed well on the unit test
set. And while this model meets expectations for normal
operational routines, it does fail to perform adequately for
three rather commonplace challenges: dim lighting, crates
being touched, streaks of water frosted on the camera lens

alongside new types of bottles, and industrial settings with
high throughput, as supported by Chen et al. [31]. Typically,
in a production environment, we would see specific production
lines suffer from dim lighting, which should be complemented
with controlled lighting. In the rare case that an overhead light
fails, we would see dim lighting for a period of up to 48 h
until the issue is resolved. Regarding new bottle types,
production lines change brands up to once per week during a
scheduled maintenance day, then the new brand will run for up
to 2-3 weeks. Streaks of water can appear after a weekly
scheduled clean, and the occlusion will then remain until a
team is sent to clean the camera, usually 8—24 h after detection.

Independently, the performance of “Generalist” Model B was
poorer than Model A, reaching an independent accuracy score of
95.8% on the same test set. However, the purpose of Model B
was not to stand alone but to complement Model A.

As a baseline, we tested Model A with a 20% blur and an 80%
clean dataset. With this model, we saw (as expected) a slight
improvement in the Model A performance from 98.10% accuracy
to 98.23% accuracy in the unit tests. Blurring a subset of the
dataset during training is a well-documented method for making
marginal improvements to model accuracy. But given the high
accuracy requirements for our industrial applications, this
improvement was not significant enough.

The introduction ensemble of Model A and Model B, in
combination with the IoU-based filtering technique, led to a
significantly enhanced total accuracy of an outstanding 99.97%.
Notably, the performance of Model B was strongest in the exact
scenarios where Model A had previously struggled, showcasing the
benefits of ensemble learning. Specifically, in scenes characterized
by visual ambiguity (such as water marks, occlusions, reduced
lighting), Model B consistently delivered stable detections
accompanied by high confidence levels. Throughout the test set,
Model B effectively compensated for nearly all of Model A’s
misclassifications, particularly in problematic edge-case frames that
typically challenge classification models. Importantly, the
modification led to a 62% reduction in false positives and a
significant decrease in false negatives within visually degraded
frames, indicating a substantial improvement in overall detection
accuracy. Model B contributed to 18% of the final detections,
demonstrating considerable overlap in frames where the output
confidence of Model A fell below the established threshold.

Table 1
Baseline results of each model

Model name Blur applied

Works referenced

Model A (Specialist)

Model B (Generalist)

Model A (20% blur)
Ensemble A + B

SSD with WBF or Soft-NMS
Temporal Smoothing Model

100% clean, 0% blur

100% blurred (9 x 9 Gaussian)
80% clean, 20% blurred

Dual input: clean + blurred
100% clean, 0% blur

100% clean, 0% blur (time filter)

Sinha and El-Sharkawy [1], Choi et al. [2], Oleiwi and Kadhim [3]
Duong et al. [13], Yoshihara et al. [27]

Alomar et al. [14], Yoshihara et al. [27]

Katkoria et al. [11], Hong et al. [12], Nijkamp et al. [4]

Proposed future work

Proposed future work

Table 2
Quantitative results comparing accuracy of baseline and ensemble methods

Model name Accuracy (%)

Notes

Model A (Specialist) 98.10
Model B (Generalist) 95.80
Model A (20% blur) 98.23
Ensemble A + B 99.97

Failed in blur, occlusion, poor lighting

Weaker overall but succeeded in visual edge cases
20% blur during training improved Model A accuracy
Fusion approach with IoU + confidence filter
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Figure 4
Accuracy comparison across evaluated models

Model A (Specialist)

Model B (Generalist)

Model A (20% blur)

Ensemble A+ B

90.00% 92.50%

98.10%
95.80%
98.23%
99.97%
95.00% 97.50%

Figure 5
Visual comparison of inference results
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Figure 5 above shows an example from the unit test dataset,
illustrating:

1) Raw image from the camera (example with over-exposure),

2) Model A output (with one missed detection),

3) Model B output (lower average confidence, but higher minimum
confidence),

4) Final fusion result (accurate detection across all objects).

4.5. Significance testing

Formal significance testing (e.g., McNemar’s or t-tests) was not
conducted, as it falls outside the scope of this performance-focused

study. However, observed accuracy differences are substantial
enough to suggest practical relevance.

4.6. Significance testing

In addition to the ensemble tests, two ablation tests were run
on the test set, namely, Model A only and Model B only. In both
these cases, each model on its own showed poorer performance
(98.1% for Model A and 95.8% for Model B). Only in
conjunction did they provide excellent results (99.97% for the
ensemble method).
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4.7. Performance and latency

From a performance perspective, inference latency remained
comfortably below 15 ms per frame we were allowed to use,
ensuring that the system is well-suited for real-time applications,
while system memory usage adhered to the operational limits of
the Jetson Orin NX platform. The fusion of these models added
only a marginal post-processing overhead of approximately 3 ms,
maintaining the efficiency required for industrial applications [7].

4.8. Summary and insights

To summarize, these results demonstrate that using model fusion
(with a Model B trained on a blurred version of Model A’s dataset)
significantly improved detection accuracy beyond what either
Object Detection model could achieve on its own. The results are
summarized in Table 3. These results confirm that combining
specialized (Model A) and generalized (Model B) detection models
boosts overall accuracy and also increases resilience to edge-case
conditions in production environments, which is greatly needed.

Table 3
Latency breakdown per model

Model name Latency (ms)

Model A (Specialist) 3 ms
Model B (Generalist) 3 ms
Model A (20% blur) 3 ms

Ensemble A + B 3ms+3 ms=6ms

5. Conclusion

In this paper, we propose a two-model ensemble with a
specialist high-resolution Model A and a blurred image generalist
Model B for real-time object detection on embedded systems,
based on recent trends in machine learning and image processing
[32]. This work underscores a key point: Model B not only
generalized across a wide range of input conditions but also
helped mitigate shortcomings arising from Model A’s
underperformance. This supports existing findings that ensemble
methods improve robustness [20]. Model B delivered reliable and
accurate detections in difficult conditions such as poor lighting,
occlusion, and blur, which are typically challenging for Model A,
highlighting its value in practical deployments.

This outcome demonstrated that the ensemble reached an accuracy
benchmark of 99.97%. It marks another step toward building high-
performing Al systems for real-world use. This collaboration between
specialized and generalized vision pathways represents an industrial
Al milestone and reinforces the importance of hybrid models for
comprehensive detection. Without significantly increasing inference
time or resorting to more complex object detection architectures, we
achieve meaningful redundancy, robustness, and precision, all within
production-grade deployments. This suggests that combining diverse
model types leads to improved real-time system performance.

6. Future Work

Future work could include looking at alternative Object
Detection models (e.g., Yolo or ViT) or adding feedback loops
from real-world data back into the training dataset. Also, testing
this method on other datasets (e.g., drone images, CCTV images)
may have varying results. The experimentation in this paper was
limited to a very specific manufacturing application only. In
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addition, future work could explore replacing the current fusion
logic with WBF or Soft-NMS, which have shown promising
results in complex detection environments [11, 12]. These
methods may offer comparable improvements in accuracy without
requiring a dual-model setup. Another potential extension would
be testing temporal smoothing approaches. These would retain
detections that persist across multiple frames, helping to reduce
flicker and improve detection stability in video streams —
especially under challenging conditions such as poor lighting or
occlusion.
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