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Abstract:As society progresses, diabetes has emerged as one of the major global health concerns. Traditional diagnostic methods for diabetes
rely heavily on blood tests, which are often invasive, costly, and require specialized equipment. Consequently, this study adopts a non-invasive
pulse wave analysis technique, utilizing key feature extraction from pulse wave signals combined with machine learning techniques to predict
the presence of diabetes risk. Data for this study were sourced from the Guilin People’s Hospital, with a collection of 657 pulse wave samples
from 219 participants. Through signal preprocessing and feature extraction, a classification model centered on Dung Beetle Optimization
(DBO) and Random Forest (RF) was developed to detect diabetes. The preprocessing included the use of Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise combined with Permutation Entropy and wavelet thresholding methods to enhance signal
quality. Subsequently, 29 key features, including time domain, entropy domain, and statistical features, were extracted from the
processed signals to create a comprehensive feature set. Here optimize the model’s classification performance and address issues of
missing values in feature vectors and sample imbalance, further evaluate various machine learning algorithms and select the most
effective one. Ultimately, the DBO algorithm was applied to optimize the number of decision trees and the selection of feature numbers
in the RF classifier. Experimental results demonstrated that our method achieved a 100% accuracy rate on the training set and 92.9% on
the test set, significantly outperforming traditional machine learning approaches. These findings confirm the potential of non-invasive
pulse wave analysis in the early detection of diabetes, offering possibilities for future clinical applications.
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1. Introduction

As society progresses, diabetes has emerged as one of the major
global health concerns [1]. In response, the Chinese government has
implemented a series of measures to address the challenges posed by
the high prevalence and increasing trend of diabetes, which has
garnered significant national attention and has become a critical
policy issue. Recent years have seen innovative technological
advances in diabetes detection research based on pulse wave
analysis, encompassing areas such as signal processing, feature
engineering, model selection, and optimization to enhance data
accuracy and usability. In signal processing, Liang [2] employed
techniques including wavelet denoising, rational cycle segmentation,
and outlier elimination. Using the ShuffleNet neural network, he
successfully analyzed and processed fingertip pulse signals to
detect hyperglycemia with an accuracy of up to 86%. Liu [3]
adopted improved signal preprocessing techniques for analyzing
photoplethysmographic (PPG) and electrocardiogram (ECG) signals
and integrating Extreme Learning Machine, convolutional neural
network, and fractional order system methods achieved effective
blood sugar detection with an accuracy exceeding 85%. Ramu
Reddy et al. [4] explored the role of heart rate variability and PPG
signal waveform characteristics in the classification of Type 2
diabetes mellitus (DM). Temporal (F1), frequency (F2), nonlinear

(F3), and waveform (F4) features were utilized to develop a support
vector machine (SVM) model, achieving a performance of 82%. The
study further validated the effectiveness of the DM classification
system by combining different feature sets and feature percentages.

In the realm of feature engineering, Shi [5] focused on
processing electromyographic noise and motion artifacts,
employing techniques for extracting temporal, frequency,
and nonlinear features. A total of 52 features were initially
derived, from which 29 key features were retained after
optimization for sleep classification. The integration of
Genetic Algorithms (GA), Dung Beetle Optimization (DBO), and
Radial Basis Function (RBF) neural networks demonstrated a
comprehensive classification performance of 74%. Similarly,
Chen et al. [6] enhanced the accuracy of non-invasive blood
glucose monitoring by combining temporal and frequency domain
analyses. Temporal analysis was used to capture waveform
characteristics of PPG signals, while frequency domain analysis
employed fast Fourier transform to extract spectral information. A
BP-based glucose detection model was established and optimized
using GA. This integrated approach exhibited excellent predictive
accuracy in oral glucose tolerance tests, with both MAE and root
mean square error (RMSE) remaining within reasonable ranges.
Jiang [7] proposed a feature extraction method for single-cycle
pulse wave signals, capturing physiological information such as
main waves, tidal waves, and reperfusion waves, based on
Gabor time-frequency atoms and sparse representation. The
extracted Gabor feature vectors achieved an accuracy of 93.54%
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in SVM-based pulse wave diabetes classification. Xiao et al. [8]
developed a blood glucose control detection method based on
collision entropy, utilizing features extracted from pulse and ECG
signals to accurately differentiate between healthy individuals,
well-controlled, and poorly controlled diabetic patients.
Hettiarachchi and Chitraranjan [9] delved into the morphological
features related to PPG waveforms and their derivatives,
successfully identifying characteristics closely associated with
Type 2 DM and validating the feasibility of predicting this
condition using short PPG signals. Among various classification
models based on the selected feature sets, linear discriminant
analysis achieved the highest area under the ROC curve, reaching
79%. Saha et al. [10] implemented the XGBoost algorithm to
create 35 feature subsets, evaluating their individual and collective
impacts on predictive modeling. The evaluation highlighted that
specific feature combinations significantly influenced model
accuracy, particularly those including the mean and standard
deviation of instantaneous frequency, with the highest accuracy
reaching 96%, underscoring its critical role in predicting Type 2 DM.

In the realm of model selection and optimization, Li [11] utilized
processed PPG signals to extract glucose-related features and
employed a RBF neural network optimized with Particle Swarm
Optimization to enhance the accuracy and practicality of non-
invasive glucose monitoring. Zhang et al. [12] analyzed diabetes
patients’ pulse signals through a 9-level wavelet decomposition,
employing a Stacking ensemble learning algorithm to underscore
the significance of arterial damage in early diabetes detection,
achieving high accuracy where the weak learner, Random Forest
(RF), reached an accuracy of 91.1%. Bavkar and Shinde [13]
applied various machine learning methods, extracting various
frequency and time-domain features from single pulse wave PPG
signals, and trained neural networks for glucose detection. Their
results indicated that the decision tree algorithm performed best in
diabetes prediction, achieving an accuracy of 89.97%. Zhang et al.
[14] proposed a blood glucose monitoring system based on pulse
wave analysis, achieving an accuracy rate of 81.49%. Shi et al. [15]
input selected features into seven widely used machine learning
algorithms, evaluated their performance using stratified 10-fold
cross-validation, and applied multiple regularization techniques to
prevent overfitting. Experimental results showed that the SVM
based on the RBF model performed best, with an average accuracy
of 84.7%, a G-mean of 84.54%, and an F-score of 84.03%.

Overall, physiological signals, due to their cost-effectiveness
and ease of use, have been widely employed for diabetes
estimation [16–18], diabetes diagnosis [19–21], and the detection
of diabetic complications [22–24]. On the other hand, they also
have been used in the field of hypertension research.

2. Methods

2.1. Database used

This study’s data originated from the People’s Hospital of Guilin,
China, and involved pulse wave sensor (PPG) data from 219
participants, totaling 657 entries. The data collection captured
physiological information and cardiovascular history of the
participants using portable hardware devices, synchronously
collecting PPG waveforms from the left fingertip and blood
pressure data from the right forearm. The entire data recording
process was completed within three minutes by professional
medical staff, with a sampling rate of 1 kHz and a precision of 12-
bit AD conversion. Each participant’s data were divided into three
segments, each containing 2100 sample points, corresponding to a

duration of 2.1 s. All data were saved in text files (*.txt format).
Moreover, data quality was assessed using the Skewness SQI value
to ensure the accuracy of the records obtained.

2.2. Data preprocessing

Human fingertip pulse signals are non-stationary, low-
frequency, weak signals with a frequency range of 0–40 Hz,
where the main energy is concentrated in the 0–1.0 Hz range. The
low-frequency components reflect the characteristics of the signal,
while the high-frequency components capture subtle differences.
However, the signal may contain noise due to the movement of
the subject’s body, particularly high-frequency noise, which can
impact the performance of the model in recognizing signal patterns.

Zhang et al. [25] proposed a pulse signal denoising method that
integrates Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) and Permutation Entropy (PE). The
process begins with the decomposition of the signal using
CEEMDAN to obtain intrinsic mode functions (IMFs). PE is then
utilized to determine the boundary between noise and signal
components, followed by adaptive threshold processing of the noisy
IMFs, and finally reconstructing the denoised signal. Results indicate
that this method improves the signal-to-noise ratio (SNR) and
reduces the (RMSE) across various SNRs, outperforming traditional
methods. Wu et al. [26] developed a pulse wave denoising algorithm
based on the wavelet thresholding method. By selecting an
appropriate wavelet base and decomposition levels, the algorithm
effectively suppressed motion artifacts. The best results were
achieved using the db9 wavelet base with six levels of wavelet
decomposition, significantly enhancing the SNR. Chen et al. [27]
introduced a photoplethysmogram signal denoising method that
combines Ensemble Empirical Mode Decomposition (EEMD) with
wavelet thresholding. The signal is decomposed through EEMD, the
coherence of modal components is calculated, and noise components
are processed using wavelet thresholding, effectively removing high-
frequency noise and baseline drift. This approach improves SNR and
reduces RMSE, providing new insights for accurate measurements.
Li et al. [28], Liu et al. [29], and Lou et al. [30] also conducted
significant research on denoising methods for vibration signals, heart
sounds, and rain noise using techniques like CEEMDAN and
wavelet thresholding. These studies demonstrate the effectiveness
and applicability of combining CEEMDAN with wavelet-related
technologies in various signal processing contexts, offering efficient
solutions for noise suppression and signal preservation.

Based on the aforementioned research, the CEEMDAN and PE
and wavelet threshold denoising techniques were applied to the
dataset. CEEMDAN addresses the mode mixing issue present in
traditional EMD methods by decomposing the signal multiple
times and incorporating white noise, thereby yielding a series of
IMF components. Through repeated experiments, it was found
that the best decomposition results occurred when the ratio of the
standard deviation of the added white noise to the standard
deviation of the vibratory radial signal (amplitude) was 0.2, with
an average of 500 iterations and a maximum of 2100 iterations.

This approach effectively extracts the true characteristics of the
signal, enhancing the precision and reliability of subsequent analysis
and processing. The 11 IMF components (IMF1 to IMF11) are
derived from the original signal through CEEMDAN decomposition,
with the results displayed in Figure 1. After obtaining all IMF
components through CEEMDAN, we here introduce PE as a
nonlinear dynamical metric to assess the complexity and regularity
of each component. PE quantifies the dynamic information of a time
series, allowing us to determine whether each component primarily
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contains useful signal or noise based on its numerical value. The
specific PE values are illustrated in Figure 2.

For IMF components identified as noise-dominated, we next
apply wavelet threshold denoising techniques for processing.
Wavelet thresholding is capable of selectively eliminating noise
based on the frequency characteristics and energy distribution of the
signal, while maximally preserving the effective information of the
signal. Here, the soft thresholding method is utilized, processing
IMF components with thresholds exceeding 0.3. After processing
all IMF components using wavelet threshold denoising, they are
recombined to achieve denoising reconstruction of the original
signal. The soft wavelet reconstruction of image is displayed in
Figure 3.

Finally, the preprocessed signal undergoes smoothing, as
illustrated in Figure 4. The original signal is represented in blue in
the upper part of the figure, displaying significant peaks and
fluctuations, likely caused by measurement noise or other
interfering factors. The red represents the smoothed signal, where
it is evident that the fluctuations are substantially reduced, and the
peaks and valleys are smoother and easier to discern. From a
signal processing perspective, smoothing helps to reduce random

Figure 1
CEEMDAN treatment effect

Figure 2
The PE value of each IMF component
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Figure 3
Soft wavelet reconstruction effect image

Figure 4
Smoothing effect images
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variability in the data, making the main trends and periodic
characteristics of the signal more apparent. This treatment is
commonly used to enhance data readability, reduce noise impact,
and provide a clearer data foundation for subsequent analysis.

2.3. Feature extraction

In the medical field, pulse wave analysis is an expanding area of
research, particularly in its application of non-invasive methods for
health monitoring and disease prevention. As a crucial biosignal
reflecting the cardiovascular status of individuals, pulse wave
analysis offers substantial potential for the early detection of
cardiovascular diseases. This study successfully extracted 29
features from the pulse wave signal, covering time domain, entropy
domain, and statistical characteristics, thereby constructing a
comprehensive feature set. These features were used to perform a
binary classification of health states, differentiating between healthy
and unhealthy individuals.

2.4. Missing value handling

During the extraction of time-domain features in biomedical
signal processing, missing value processing is particularly
important. The occurrence of missing values can be attributed to
various factors, including limitations of the signal capture
equipment, poor sensor contacts, or physiological changes in the
subjects. Addressing missing values is crucial to ensure the
quality of data and the accuracy of research outcomes. Incorrect
handling of missing data could lead to biased analysis results,
which in turn could impact the final diagnosis of diseases.

Therefore, we chose to delete data records containing missing
values as a resolution strategy. Additionally, we excluded signals
that did not meet the analytical requirements. To evaluate the
effectiveness of this data handling strategy, we designed a series
of comparative experiments to assess the performance of the
processed data against the original data using the same
classification model. We employed a RF model, setting the
training and testing set ratio at 8:2. The specific outcomes of this
comparison are presented in Tables 1 and 2.

The experimental results indicated that the classification
accuracy improved by 2% after processing the data. This not only
validates the rationale behind our strategy of deleting records with
missing values but also confirms the effectiveness of this
approach. By employing this method, we ensure a higher quality
of datasets used for training and testing, thereby enhancing the
reliability and accuracy of the entire study.

3. Model Selection

3.1. Model comparison

In this study, we employed a variety of traditional machine
learning algorithms to address the binary classification problem of
pulse wave signals. These algorithms include Naive Bayes, SVM,
AdaBoost, RF, K-Nearest Neighbors, and Decision Trees. By
analyzing the 29 extracted features, our objective was to
determine which algorithm is most suitable for the classification
of this type of biomedical data. After a series of detailed
experimental designs and data analyses, the results are presented
in Table 3.

In this study, we compared the accuracy of several algorithms to
determine the most suitable method for pulse signal classification.
The RF algorithm performed the best among all tested algorithms,
achieving an accuracy rate of 92.9%. This high level of accuracy
is attributed to the algorithm’s ability to handle complex feature
interactions and reduce the risk of overfitting through ensemble
learning. Furthermore, the majority voting mechanism of the RF
algorithm further enhances the model’s stability and accuracy,
making it an ideal choice for pulse signal classification.

3.2. Sample equilibrium

In our study, while RF demonstrated excellent overall
classification accuracy, a deeper analysis of the experimental results
revealed some issues, particularly in the performance on the test set:
the classification accuracy for patients without disease reached as
high as 94%, but it was only 29% for patients with disease, as
shown in Table 2. This huge difference caught our attention, which
was carefully analyzed, and believe it was primarily due to sample
imbalance. Sample imbalance is a common problem in machine
learning, especially in the medical field, where data for healthy
individuals are often more abundant than data for individuals with
diseases. In our dataset, the number of samples for patients without
disease far exceeded those for patients with disease. This caused the
model, during its learning process, to overemphasize the features of
the majority class (patients without disease) and fail to adequately
learn the critical features necessary to identify the minority class
(patients with disease). To address the issue of sample imbalance,
we utilized the synthetic minority oversampling technique
(SMOTE), which generates synthetic samples by interpolating
between existing minority class samples. SMOTE not only
increases the number of the minority class but also enhances the
diversity of the data. This diversity is crucial for the model to learn
more generalized features, which can improve its ability to correctly
classify minority class instances. The effectiveness of this approach
is demonstrated in Table 4, which shows the improved performance
metrics after applying SMOTE to our dataset.

Table 1
Diagnosis rate of unprocessed missing values

Diagnose Misdiagnosis Diagnosis rate

Diabetes 104 0 100%
No diabetes 6 22 21.4286%
Accuracy 83.3333%

Table 2
Diagnosis rate after processing missing values

Diagnose Misdiagnosis Diagnosis rate

Diabetes 98 6 94.23%
No diabetes 5 12 29.41%
Accuracy 85.124%

Table 3
Classification accuracy of traditional

machine learning

Algorithm Accuracy

NB 66.6667%
SVM 81.6092%
AdaBoost 82.5758%
RF 85.124%
KNN 72.7273%
DT 75.7576%
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After adjusting for sample balance, we retrained the RF model
as well as other models and compared the classification
performance before and after the adjustments. The models
processed for sample balance showed significant improvement in
identifying patients with the disease, with a substantial increase
in accuracy, while still maintaining high accuracy for identifying
patients without the disease, as shown in Table 5. These results
underscore the importance of sample balance in enhancing the
overall performance of models.

4. Classification Model of Diabetes Based on DBO-RF

4.1. Classification and evaluation

The RF algorithm is widely favored for its robust classification
capabilities and excellent resistance to overfitting. However, its
performance heavily depends on the setting of several key parameters,
including the number of trees, tree depth, and other variables.
Inappropriate parameter settings can lead to poor model performance
on specific datasets. Here apply the DBO algorithm, inspired by dung
beetle behavior, to optimize RF parameters. This optimization
approach is used to fine-tune the number of trees and the maximum
number of features considered during the splitting process of each
decision tree in the RF, aiming to achieve higher prediction accuracy.
Flowchart of the DBO-RF Algorithm as shown in Figure 5.

The DBO algorithm classifies the population into four roles
based on the social divisions of dung beetles: ball-rolling beetles,
brooding ball beetles, juvenile beetles, and thief beetles. In a
population of 30, these roles are allocated to 6, 6, 7, and 11
individuals, respectively. Each type of beetle is represented by
different symbols—R, B, L, and T—which denote their positions
in the solution space. When the population count N equals 30, the
number of beetles in these four roles is set to 6, 6, 7, and 11,
respectively. If the dimension of the optimization problem is D,
with a corresponding objective function f, then each beetle’s
position, representing a solution, is expressed as fxi1, xi2···, xiD},
and individual fitness values, indicating optimization quality, are
denoted by f(xi). Fitness values are represented similarly, with
smaller values indicating better optimization outcomes. Thus, a
smaller fitness value signifies a better position for survival. The
mathematical representation of the best and worst positions based
on these strategies is as follows:

Xb ¼ Xi 2 X; i ¼ 1; 2 ���;Nj8Xj; f Xið Þ � f Xj

� ��
Xw ¼ Xi 2 X; i ¼ 1; 2 ���;Nj8Xj; f Xj

� � � f Xið Þ�
� �

(1)

The standard DBO algorithm steps are as follows.
Step 1: Set the maximum number of iterations as T, population

size as N, randomly initialize the population, and calculate the fitness
value of each individual.

Step 2: Update the positions of the ball-rolling dung beetles. If
λ < γ, update the position under the unobstructed state using
Equation (2); otherwise, update it under the obstructed state using
Equation (4), where λ is a random number within [0,1] and γ= 0.9.

Rtþ1
new;e ¼ Rt

1 þ α� k� Rt�1
e þ u�Δx (2)

Δx ¼ Rt
e � Xwj j (3)

Rtþ1
new;e ¼ Rt

e þ tan θð Þ Rt
e � Rt�1

ej j (4)

where t represents the current iteration count; Rt
e denotes

the position of the e-th rolling beetle after the t-th iteration; k= 0.2
represents the position deflection coefficient; α represents the natural

Table 4
Sample imbalance

Label Number Percentage

Before equilibrium Healthy 495 81.95%
Unhealthy 109 18.05%

After equilibration Healthy 495 50.00%
Unhealthy 495 50.00%

Table 5
Effect of the sample before and after equilibration

Algorithm Before equilibrium After equilibration

NB 66.6667% 68.1818%
SVM 81.6092% 84.8126%
AdaBoost 82.5758% 84.3434%
RF 85.124% 86.8687%
KNN 72.7273% 73.2323%
DT 75.7576% 78.7879%

Figure 5
Flowchart of the DBO-RF algorithm
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environmental interference coefficient; u is a random factor; θ rep-
resents the deflection angle in radians, and θ is a random number with
θ ∈ [0, π]. If θ is 0, π/2, or π, the position is not updated.

Step 3: Update the position of the brood ball according to
Equation (6) and use the upper and lower bounds in Equation (5)
to constrain the new position.

Lb� ¼ max Xb� � 1�Qð Þ; Lb� �

Ub� ¼ min Xb� � 1þQð Þ;Ub� �
(5)

Btþ1
new;m ¼ Xb� þ a1 � Bt

m � Lb�ð Þ þ a2 � Bt
m � Ub�ð Þ (6)

In Equations (5) and (6), Ub� and Lb� represent the upper and lower
bounds of the spawning area, respectively; Xb� denotes the current
optimal position of each dung beetle; Q= 1–t/T, where T represents
the maximum number of iterations; Ub and Lb are the global upper
and lower bounds of the problem; Bt

m represents the coordinates of
the m-th brood ball after the t-th iteration; a1 and a2 are both 1×D-
dimensional random vectors; D is the dimension of the optimization
problem solution.

Step 4: Update the position of the little beetle from Equation (7).

Ltþ1
new;h ¼ Lth þ C1 � Lth � Lb

0� �þ C2 � Lth � Ub
0� �

(7)

In Equation (7), Lth represents the coordinate of the h-th dung beetle
after the t-th iteration; C1 follows a normal distribution and C1 ∈
[0,1], while C2 is a random vector with all components falling within
the range of [0,1];

Step 5: Update the location of the thief dung beetle by Equation (8).

Ttþ1
new;z ¼ Xb þ S� g� Tt

z � Xb��� ��þ Tt
z � Xb

�� ��� �
(8)

In Equation (8), Xb denotes the globally optimal position; Xb� is the
best solution obtained through the integration of various roles in the
current iteration. Tt

z signifies the coordinate of the z-th thieving dung
beetle after the t-th iteration; S= 0.5; g is a random vector with all
components lying between [0,1].

Step 6: Update the global optimal and worst positions.

Step 7: Determine if the algorithm has reached the number of
iterations. If so, terminate the operation and return to the optimal
position, which is the optimal solution to the problem. Otherwise,
proceed to step 2. We initiated training using the established
model, setting the number of decision trees between 100 and 200,
and the optimal number of features for each split between 1 and
5. Additionally, the model was trained with a population of 30,
and the total number of iterations was set at 50. The experimental
results show that the model achieved an accuracy rate of 92.9%
on the test set. The results are shown in Figure 6. The fitness
change curve is depicted in Figure 7.

4.2. Model evaluation index

The confusion matrix is an important tool for evaluating the
performance of classification models, especially in handling
binary classification issues. It provides a detailed view of
performance by comparing the model’s predicted categories with
the actual categories, as shown in Figure 8.

Finally, to comprehensively evaluate the classifier’s performance,
precision, recall, and F1-score metrics were derived from the confusion

matrix. The results were subsequently compared with the performance
of the RF algorithm and other algorithms, as shown in Table 6.

According to the data presented in Table 6, it is observed that the
DBO-RF model outperforms the RF model across all evaluation
metrics, demonstrating a significant enhancement in the overall
performance of the DBO-RF model. The substantial improvements
in accuracy and recall specifically highlight the DBO-RF model’s
advantages in effectively identifying healthy class samples. These
results effectively validate the efficacy of the methodology
proposed in this paper.

5. Some Common Mistakes

In our research, we here obtained pulse wave data from the
Guilin People’s Hospital and subjected it to a comprehensive
series of preprocessing, feature extraction, and classification
experiments. Our study distinctly emphasized the importance of
removing missing values in experiments, where adopting

Figure 6
The comparison of prediction results between test sets

Figure 7
Fitness change curve of DBO algorithm
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appropriate strategies ensured the high quality of training and testing
datasets, thereby enhancing the reliability and accuracy of the
research. Furthermore, sample imbalance is a major issue when
handling medical data. Through techniques such as oversampling
the minority class and undersampling the majority class, we
successfully balanced the sample distribution, significantly
improving the model’s ability to recognize diabetes risk (the
minority class), while maintaining high accuracy for identifying
healthy individuals (the majority class). This achievement
highlights the importance of balancing samples to enhance the
overall performance of classification algorithms. Additionally, our
experiments tested a variety of machine learning algorithms,
including RF, SVM, and logistic regression. Notably, after data
balancing, the RF algorithm performed the best, underscoring the
importance of choosing the right algorithm based on specific data
characteristics. Finally, we utilized the DBO algorithm to adjust
model parameters, improving accuracy from 82% to 92.9%. These
findings not only demonstrate the potential of our methods in
handling real medical data but also highlight the necessity of
finely tuning model parameters in complex medical data analysis.
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