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Abstract: Embodied intelligence (EI) generates intelligent behaviors through interactions between the body and the environment but exhibits
deficiencies in areas such as semantic understanding. In contrast, large language models (LLMs) possess powerful language processing
capabilities. Integrating the two can enable a unified system that combines perception, cognition, and decision-making. This article first
introduces the concepts, challenges, and recent breakthroughs in EI. It then analyzes the origin, core technologies, and research progress
of LLMs. Subsequently, it explores the integration pathways and application scenarios of combining the two paradigms. Finally, the
paper highlights ongoing challenges, such as the need for high-quality data and standardized benchmark environments, and underscores
the importance of cross-industry collaboration as well as partnerships between academia and industry. The integration of EI and large
language models represents a promising direction for the development of general artificial intelligence and is expected to drive
innovative applications of intelligent systems across diverse domains.
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1. Introduction

Embodied intelligence (EI) is an intelligent system that perceives
and acts based on the physical body [1]. It emphasizes that the intelligent
agent does not exist in isolation but acquires information, understands
problems, makes decisions, and performs corresponding actions
through continuous and dynamic interaction with the surrounding
environment, ultimately generating intelligent behavior and showing
adaptability to the environment [2]. Simply put, the core of EI is that
intelligence not only exists in the abstract thinking of the brain, but is
also reflected through the actual interaction between the body and
the environment [3].

EI has four core elements: ontology, intelligent agent, data, and
learning and evolution architecture. Among them, ontology is the
physical entity that carries intelligence, usually manifested as a
robot with various forms, such as quadruped robots, composite
robots, or humanoid robots [4]. Ontology has the ability to perceive
the environment and move and perform operations and is the key
medium connecting the digital world and the physical world. Its
ability boundary directly determines the scope of executable tasks
of the intelligent agent, so the design of the ontology with broad
adaptability and generalization is crucial. Intelligent agents are the
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core of EI, deployed on the ontology, responsible for perception,
semantic understanding, task decision-making, and control. With
the continuous evolution of deep learning, intelligent agents
increasingly rely on deep network architectures based on large
language models (LLMs) and integrate multimodal perception
capabilities (such as vision, speech, touch, etc.) to form a new
generation of models with general perception and decision-making
capabilities [S5]. Intelligent agents can not only understand complex
semantic tasks but also adjust strategies in real time in dynamic
environments to complete high-level task goals [6]. At the same
time, in order to cope with different task requirements, intelligent
agents are designed in various forms, covering decision-making and
control mechanisms of different modalities and complexity levels.
Data is the key to driving the generalization ability of EI [7].
Unlike traditional LLM, which mainly relies on large-scale Internet
data, the data required for EI is often more scarce and expensive
and needs to be highly consistent with the perception and behavior
interaction in the real environment [8]. Especially in the face of
changing task chains and decision-making processes, data must not
only cover a wide range of scenarios and environments but also
have high-quality and high-semantic information expression
capabilities. Customized and highly reliable data resources in
industry application scenarios will become the core foundation for
the successful deployment and implementation of intelligent agents
in the future. Finally, the learning and evolution architecture is the
key guarantee for EI to achieve adaptive and self-evolution

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/

licenses/by/4.0/).

01


https://orcid.org/0009-0009-6990-6701
https://orcid.org/0000-0002-2162-3798
mailto:yhpeng@nagoya-u.jp
https://doi.org/10.47852/bonviewSWT52025965
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Smart Wearable Technology Vol.00 Iss. 00 2025

capabilities. Intelligent agents continuously optimize their own models
through repeated interactions with virtual or real environments, learn
new skills, strengthen strategies, and evolve more efficient problem-
solving methods. In practice, virtual simulation environments, such
as NVIDIA’s Omniverse platform, provide an efficient and low-cost
learning scenario, which effectively accelerates the evolution of
intelligent agents in virtual space. However, the complexity of the
real world is much higher than that of the simulation environment.
How to achieve efficient migration and integration from simulation
to reality (Sim2Real) has become an important research direction in
current architecture design [9].

Although EI performs well in perception and action execution,
it still has significant deficiencies in semantic understanding, abstract
reasoning, task planning, generalization, and human—computer
interaction. In particular, it lacks the ability to express complex
tasks in language and high-level semantic control interfaces. At
the same time, the data required to train embodied systems is
expensive and difficult to obtain, which limits their large-scale
deployment and generalization capabilities. With its powerful
language understanding, knowledge transfer, multistep reasoning,
and task decomposition capabilities, the LLM [10] can provide
semantic support, strategy guidance, and natural interaction
interfaces for EI, effectively making up for its shortcomings at the
cognitive and language levels and promoting the evolution of EI
toward a more general and efficient intelligent system [11].

In recent years, the LLM has become a hot topic in the field of
artificial intelligence (AI) [12]. It is a complex system based
on deep learning and natural language processing (NLP)
technology, with billions or even hundreds of billions of
parameters, which enables it to understand and generate human
language [13]. The ability of this model is not limited to processing
text but also has made breakthroughs in the direction of large
multimodal models, successfully combining multiple modes such as
text, images, and audio. Since 2018, LLM has demonstrated its
outstanding capabilities in many fields, not only making progress in
text generation but also making remarkable achievements in image
generation and multimodal applications.

At the core of LLM is the Transformer architecture, which was
proposed by Google in 2017. It can deeply understand the grammar,
word meaning, and context of a language by learning from a large
amount of text data. During the training phase, LLM absorbs a
large text data set to grasp the laws and patterns of the language.
As the model parameters increase, these models can more
accurately predict the next word or generate a coherent text
sequence. Today, the application scope of LLM has far
exceeded the traditional fields of text generation, question-
answering systems, machine translation, and text summarization
[14]. They are now also showing potential in fields such as
media convergence, digital transformation, education, and
multilingual community communication, bringing innovation and
transformation possibilities to these fields. Combining LLMs with
EI can achieve the integration of perception, cognition, and
decision-making, and give the intelligent agent a closed-loop
capability from “understanding language” to “performing actions”
[15]. This fusion not only improves the system’s versatility and
task transfer capabilities but also significantly reduces the demand
for training samples. The embodied system can be controlled at a
high level through natural language, making human—computer
interaction more natural and efficient [16]. At the same time,
LLM can be used as a strategy generator in reinforcement
learning to help the embodied body explore and learn efficiently.
In addition, LLM has excellent multimodal fusion capabilities and
can integrate multiple inputs such as language, vision, and action,
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providing intelligent agents with contextual perception and task
decomposition capabilities [17]. Overall, the combination of LLM
and EI greatly enhances the flexibility, adaptability, and
generalization of intelligent agents and is an important path to
stronger general artificial intelligence.

Nowadays, the combination of EI and the grand prophecy
model is widely used in various fields, but there are no articles
summarizing and evaluating this aspect [18]. This article will
summarize the relevant research on the combination of EI and
LLM and provide application references for subsequent related
researchers. The first section of this article mainly introduces the
introduction of EI related technologies; the second section mainly
introduces the origin of the grand prophecy model and related
technologies; the third section introduces the relevant application
fields of the combination of EI and LLM; the fourth section looks
forward to the future of EI and LLM; and the fifth section
summarizes this article.

2. Foundations of Embodied Intelligence

In this section, the relevant concepts of EI will be introduced,
along with the difficulties associated with EI and the current
research and development efforts in the field of EL

2.1. Introduction to concepts related to embodied
intelligence

In this section, we will introduce several related concepts
around EI, which are embodiment, EI, disembodied Al, embodied
intelligent robots, and embedded tasks.

Figure 1 shows the complete technical chain of the embodied
intelligent system from sensory input to behavioral decision-making,
as well as the synergistic relationship between related disciplines and
technologies. The diagram divides the entire system into multiple
levels: the left side is based on machine learning, social learning, and
psychology as the theoretical support for intelligent behavior; the
middle part includes hardware perception modules such as robot chip
design, computer vision, speech recognition, force and tactile
sensors, which constitute the perception front end for the interaction
between the intelligent body and the external environment; and the
right side shows the software system from sensory information to
cognitive modeling and then to high-level task planning and control,
which integrates interdisciplinary technologies such as NLP,
graphics, physical simulation, and bio-medicine.

2.1.1. Embodiment and embodied

Embodied means that an intelligent agent has a physical body
that can support sensing and motor control. This body is not only a
morphological structure but also the basis for the intelligent agent to
interact with the real world [19]. It enables the intelligent agent to
affect the environment through its own actions and perceive the
changes brought about by these actions, thereby achieving closed-
loop learning and adaptation. Embodied means that a system or
intelligent agent has a physical form and can perceive and
interact. An “embodied” system not only exists in physical space
but also can actively participate in environmental interactions,
such as identifying objects, operating tools, and navigating to
avoid obstacles [20]. The existence of this “physicality” is the key
to the intelligent agent’s true autonomous behavior.

2.1.2. Embodied Al and disembodied Al
Embodied Al refers to Al systems that not only have cognitive
abilities but also have bodies and can actively interact with the
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Figure 1
Components of embodied intelligence
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environment. Unlike traditional models trained with static data, EI
emphasizes learning through interaction with the environment. Its
representative forms include service robots, self-driving cars, bionic
robots, etc. [21]. These systems can “act physically” like humans,
continuously optimize strategies through observation, action, and
feedback, and thus complete complex tasks. Specifically, embodied
intelligent agents need to have the following capabilities:

1) Language understanding:
instructions or dialogues.

2) Task planning and decomposition: being able to automatically
decompose specific subtasks from high-level language commands.

3) Perception and positioning: identifying and locating target
objects in the physical environment.

4) Action and navigation: performing actions, such as moving,
grabbing, and manipulating objects.

5) Feedback and adaptation: adjusting action strategies in real time
based on environmental feedback.

understanding human language

Disembodied Al is a representative of current mainstream Al
models, such as LLMs and image recognition models, which
usually rely on data collected and labeled by humans in advance
for training [22]. This type of Al does not have the ability to
physically interact with the real environment, so its intelligence is
more inclined to “paper talk” or “strategic” reasoning. Although it
can complete tasks such as language understanding and image
generation in virtual space, it has poor generalization ability when
facing real-world problems and lacks the ability to act
autonomously and adapt to changes in the real environment.

2.1.3. Embodied intelligent robots

Embodied intelligent robots are typical representatives of
embodied Al, with the ability to perceive, understand, act, and
learn. They usually have the following characteristics:

1) Multimodal perception: perceive multimodal information such as
images, sounds, languages, temperature, vibrations, etc., through
cameras, microphones, force tactile sensors, etc. [23].

2) Semantic understanding and reasoning: understand complex
instructions and make decisions based on environmental
information.

Embodied
Cognition

3) Movement ability: able to navigate in space, bypass obstacles,
grab and manipulate objects, etc.

4) Interactive learning: acquire new knowledge through interaction
with the environment, achieve self-optimization, and enhance
learning [24].

These robots can not only perform repetitive labor (such as
sweeping robots) but also undertake more complex household
services, medical assistance, warehouse management, post-disaster
search and rescue, etc., becoming truly “useful and smart”
physical intelligent bodies. Figure 2 shows the perception and
interaction system of an embodied intelligent robot.

Figure 2 shows the robot’s perception and interaction system.
Computer vision gives the robot visual capabilities, just like
humans use their eyes to observe the world; acoustic sensors
enable the robot to hear, so that it can receive sound information;
chemical sensors simulate the sense of smell and can detect
environmental chemicals; natural language understanding and
interaction modules allow the robot to understand and respond to
human language; and tactile sensors allow the robot to perceive
physical stimuli such as pressure, temperature, and fluid. These
systems work together to help the robot perceive and interact with
the outside world.

2.1.4. Embodied tasks

Embodied tasks refer to those tasks that require the intelligent
agent to observe, move, speak, and interact through physical
participation like humans. These tasks not only test the perception
and understanding ability of the intelligent agent but also require it
to have flexible response capabilities in complex environments [25].
Interactive teaching or collaborative tasks: such as assisting the
elderly to take medicine, assembling equipment in collaboration
with humans, etc. [26]. This type of task usually has the
characteristics of strong environmental uncertainty, vague goals, and
complex feedback and is an important criterion for evaluating the
actual capabilities of embodied intelligent systems [27].

As shown in Table 1 above, Internet Al and embodied Al have
essential differences in data sources, learning methods, perception
capabilities, action capabilities, generalization capabilities, and
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Figure 2
Perception and interaction system of embodied intelligent robots
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Table 1
Comparison: Internet Al vs. embodied Al
Feature Internet Al Embodied Al

Data Source Static datasets (e.g., images, text, videos)

Learning Method Learning from human-collected/annotated data

Perception Usually unimodal or weakly integrated
Action Ability No physical actuation/control, unable

to affect the environment
Generalization Weak generalization, prone to overfitting

specific tasks
Strong in modeling, reasoning, and
generation, but lacks real-world experience

Intelligence Form

Real-time sensory data from dynamic interaction
with the environment
Learning through interaction with the environment; self-learning
Multimodal integration with comprehensive perception
Capable of sensing, moving, manipulating,
completing task loops
Stronger adaptability to real environments, better generalization

Embodied intelligence combining understanding with action

intelligent manifestation. Internet Al mainly relies on static data sets for
training, usually in a single-modal or weakly fused form. Although it
performs well in modeling and reasoning generation, it lacks
interaction with the real world, resulting in poor generalization and a
lack of action capabilities. Embodied Al on the other hand, obtains
multimodal perception data through real-time interaction with the
environment and has physical behavioral capabilities such as
perception, movement, and operation. It can self-learn and adapt in the
actual environment, reflecting the “behavioral intelligence” that closely
combines understanding and action. This embodied form of
intelligence is more suitable for solving complex tasks in the open
world, showing stronger real-world adaptability and application potential.

2.2. Analysis of difficulties of embodied intelligence

The core elements of EI and its intrinsic connection cause
difficulties in its development, and there are three main
breakthrough difficulties: building a powerful universal ontology
platform, designing an intelligent agent system with advanced
cognitive capabilities, and collecting high-quality industry data.
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2.2.1. Building a powerful universal ontology platform

To achieve EI, we first need an ontology platform with excellent
movement and operation capabilities. However, breaking through
the bottleneck of key hardware technology and building robot
products with high reliability, controllable costs, and strong
versatility is still a very challenging task. In the context of
pursuing “universal capabilities,” humanoid robots are considered
to be one of the final forms of EI. Therefore, research and
development around humanoid structures will continue to be a hot
topic and core problem that the industry and academia are
concerned about [28].

2.2.2. Designing intelligent agent systems with advanced
cognition

As the core element of EI, intelligent agent systems must not
only adapt to the complex and ever-changing real environment but
also have a series of advanced cognitive and interactive
capabilities [29]. Specifically, intelligent agents need to solve the
following key problems:
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1) The ability to accurately perceive the three-dimensional physical
environment;

2) Task scheduling, execution, and dynamic adjustment capabilities;

3) Strong general knowledge and multi-level semantic reasoning
capabilities;

4) Natural and fluent human—computer language interaction
(especially multi-round dialogue);

5) Construction and call of long-term memory mechanism;

6) Personalization and emotional care capabilities;

7) Cross-task generalization capabilities and self-learning and
migration capabilities.

In order to adapt to the complexity of the real environment,
embodied intelligent agents must have real-time perception and
decision-making capabilities, which puts extremely high demands
on the data collection, transmission, and processing speed of the
system. At the same time, the current mainstream LLM has huge
computational overhead. For resource-constrained robot embedded
systems, it is a very challenging task to complete high-complexity
reasoning and decision-making while ensuring low-latency response.

2.2.3. Lack of high-quality industry data is a bottleneck

In the real world, scenarios are highly complex and dynamically
changing. Currently, there is a lack of sufficiently rich, diverse, and
high-quality real-scene data to train a truly “universal” large model.
Especially in critical businesses, the requirements for task success
rates are extremely high, and it is difficult to meet actual
application needs by relying solely on wide-area data.

A major feature of El is that it is highly coupled with the physical
environment, and effective data can only be obtained in real
deployments, which is completely different from non-embodied
intelligent systems that rely on pre-collected data. Therefore, in key
areas, it is particularly important to obtain and build high-quality
vertical industry data sets [30]. At the same time, by designing the
intelligent agent structure in a hierarchical manner and limiting
different tasks to specific scenarios, it is a feasible strategy to strike a
balance between improving generalization ability and task success rate.

2.2.4. Integrate virtual and real interactions to achieve
continuous evolution

The key to the evolution of EI lies in its ability to continuously
learn and self-improve. In order to adapt to environmental changes,
the agent must be able to actively learn new tasks and continuously
optimize strategies during execution. An agent that adapts to its

morphological characteristics can often master problem-solving
methods faster and thus better adapt to new environments.

However, since the space of agent morphological design is
almost infinite, it is not feasible to exhaust all possibilities under
limited computing resources. In addition, the degree of freedom of
the ontology design will also impose physical limitations on its
task adaptability and learning ability, thereby affecting the
learning and decision-making effects of the controller [31].

Therefore, there is a deep implicit relationship between
complex environments, agent morphological evolution, and task
learning ability that has not yet been fully revealed. How to
achieve fast and efficient strategy learning and reasonable
decision-making under limited resources will become a key
breakthrough point for the future development of EL

2.3. The latest breakthroughs in embodied
intelligence

El is an emerging interdisciplinary field that integrates physical
embodiment with cognitive processes, enabling systems to engage in
meaningful interaction with their environments. This literature
review synthesizes recent contributions to the conceptual
understanding and practical application of EI across domains such
as robotics, soft actuators, and adaptive systems.

The latest breakthroughs in EI are shown in Table 2. Ma et al.
[32] introduce an innovative design for soft actuators that integrates
sensing, actuation, and control within individual units. Their research
demonstrates the feasibility of creating autonomous soft robotic
systems that exhibit EI, offering a streamlined yet effective
methodology that advances the functionality and autonomy of soft
robots. Gupta et al. [33] present deep evolutionary reinforcement
learning (DERL), a computational framework that evolves agent
morphologies to address locomotion and manipulation tasks in
complex environments. Their findings reveal strong correlations
between environmental complexity, morphological intelligence,
and the learnability of control strategies, underscoring the adaptive
potential of EI in dynamic and unpredictable contexts. They argue
that EI should not be treated merely as an application area for
machine learning, but rather as a driving force for its
advancement. This perspective encourages a reevaluation of how
embodied systems can inform and enhance the development of
learning algorithms. Mengaldo et al. [34] further investigate
physical modeling in soft robotics by providing a concise guide to
the underlying physics of EI. Their work highlights the
importance of grounding system design in physical principles to

Table 2
Comparison table of embodied intelligence-related research

Author Year Research topic

Key contribution

Application domain

Ma et al. [32] 2021 Integration of sensing and
control in soft robotics
Evolutionary learning and

morphological intelligence

Gupta et al. [33] 2021

Mengaldo et al. [34] 2022 Physical modeling in soft robotics

lida and Giardina [35] 2023 Temporal dimensions of

Embodied Intelligence

Fan et al. [36] 2025 Survey on LLMs in robotic systems

Suo et al. [37] 2025 EI applications in sports science

Designed soft actuators with embedded

DERL framework reveals correlation

Provided concise design guidelines based
Explained how self-organization emerges
Emphasized the role of LLMs in robot

Explored integration of digital human

Autonomous soft robotic

sensing, actuation, and control systems

Robotic locomotion

between environmental complexity and manipulation

and adaptive morphology

Adaptive robotic systems

on physical principles

Autonomous adaptive
systems

Intelligent robotic systems

across different timescales

autonomy and interaction
Sports performance

models with EI optimization and training
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develop more responsive and adaptive robotic systems capable of
real-world interaction. lida and Giardina [35] contribute to the
discourse by examining the temporal dynamics of EI, particularly
within autonomous adaptive systems. Their structured review
elucidates how varying timescales influence self-organization and
the emergence of complex behaviors, offering insights into the
temporal dimensions that underpin embodied functionality. The
integration of LLMs into robotics is explored by Fan et al. [36],
who examine the potential of LLMs to enhance robot intelligence,
autonomy, and human-robot interaction. Their surveys underscore
the transformative impact of LLMs on robotic perception, control,
decision-making, and path planning, marking a significant step
toward more versatile and intelligent robotic agents. Finally, Suo
et al. [37] explore the convergence of digital human models and EI
in the context of sports science. Their work identifies emerging
trends and research opportunities, demonstrating how principles of
EI can be applied to optimize performance and training
methodologies across athletic disciplines.

As presented in Table 2 above, the reviewed studies collectively
highlight the multidisciplinary progress in EI, spanning co-design
frameworks, soft robotics, evolutionary learning, and LLM integration.
Key contributions include structured modeling approaches, integrated
soft actuators, adaptive morphology through DERL, and theoretical
insights into El-driven machine learning. Further developments
explore physical modeling, temporal dynamics, human-in-the-loop
systems, LLM-enhanced robotics, and applications in sports science,
underscoring EI’s potential across robotics, interaction, and intelligent
system design.

3. Capabilities and Limitations of LLM

The core capabilitiess of LLM include linguistic generation,
knowledge generalization, in-context learning, semantic comprehension,
and multimodal Extension. However, LLM has many shortcomings,
and the main limitations are context window restriction, illusion
problem, knowledge limitation and lag, lack of comprehension, and
poor interpretability. Specific explanations of the above issues are
provided below.

3.1. Origin of LLM

LLM, the full name of large language model, is a large language
model [38]. LLM is a powerful Al algorithm that can model natural
language text by training a large amount of text data to learn the

grammar, semantics, and contextual information of the language.
This model has a wide range of applications in the field of NLP,
including text generation, text classification, machine translation,
sentiment analysis, etc. This article will introduce in detail the
principles, development history, training methods, application
scenarios, and future trends of the LLM large language model [39].

The evolution of the LLM can be roughly divided into three key
development stages: statistical machine translation (SMT) stage,
deep learning stage, and pre-training model stage.

The first stage is the SMT period, which began around the
beginning of the 21st century. In this stage, statistical methods
became the mainstream NLP technology [40]. This method relies
on large-scale bilingual corpora and uses statistical means to
model the alignment relationship between the source language and
the target language. Although SMT made important breakthroughs
at the time, its performance in dealing with complex grammatical
structures and long sentence translation was relatively limited, and
it was difficult to capture deep semantic relationships.

The second stage began with the rise of deep learning technology.
In 2013, the introduction of the word2vec model marked the rapid
development of word vector technology. This technology maps
discrete words into continuous low-dimensional vectors, effectively
capturing the semantic associations between words. On this basis,
neural structures such as recurrent neural networks (RNN), long
short-term memory networks, and gated recurrent units have been
introduced into NLP tasks, significantly improving the ability of
language modeling and sequence generation.

The third stage entered the era of large-scale language models
based on pre-training [41]. In 2018, the BERT model launched by
Google became a landmark achievement. For the first time, the
bidirectional Transformer architecture was adopted on a large
scale to learn the deep semantic representation of language from
massive, unlabeled text. The success of BERT triggered extensive
research and application of the Transformer model, followed by a
series of high-performance pre-trained language models, such as
the GPT series, RoBERTa, and XLNet. These models have
achieved unprecedented performance breakthroughs in various
NLP tasks, promoting a paradigm shift in the entire field.

Figure 3 shows the development timeline of the GPT series of
language models. From the birth of the Transformer architecture in
2017, to the start of the research phase of GPT-1 in 2018, followed by
the continuous evolution of GPT-2 and GPT-3, during which
variants such as Codex were derived. InstructGPT, text-davinci
series, GPT-3.5-turbo, and GPT-4 were launched in 2022-2023,

Figure 3
LLM development origin diagram
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going through stages from concept design to online preparation,
showing their continuous iterative upgrade process.

After entering 2020, with the advent of super-large-scale
models such as GPT-3, the development of LLMs has entered a
period of rapid expansion. The scale of the model continues to
grow, and the number of parameters has jumped from hundreds of
millions to hundreds of billions, driving the implementation of
many application scenarios such as Al writing, automatic question
and answer, code generation, and multimodal interaction [42]. At
the same time, major technology companies around the world
have accelerated their layout to promote the rapid evolution of
large models from academic research to industrialization and
ecology. In September 2020, OpenAl authorized the GPT-3 model
it developed to Microsoft for use, making Microsoft the first
company to obtain the right to use GPT-3 [43]. Subsequently,
OpenAl launched the public natural language generation model
ChatGPT in 2022. On March 15, 2023, its multimodal upgraded
version GPT-4 was officially released, further expanding the
capabilities of large models in image and text understanding and
interaction. At the same time, Google has also accelerated its
layout in the field of generative Al In February 2023, its press
conference debuted Bard, a dialogue system driven by the
LaMDA LLM. Then, on March 22, Google announced that Bard
had entered the public beta stage, initially open to users in the
United States and the United Kingdom, and then gradually
promoted to the global market [44].

Domestically, Baidu announced on February 7, 2023, that it
would launch an LLM product “Wenxin Yiyan,” which was
officially launched on March 16. This product is based on Baidu’s
self-developed Wenxin large model, relying on Baidu Smart
Cloud to provide Application Programming Interface and
computing services to enterprises and institutions, aiming to build
an industrial-level Al ecosystem and promote the application of
large model technology in various business scenarios [45].

Amazon also announced its entry into the generative Al track on
April 13, 2023, and launched a generative Al service called
“Bedrock” through its cloud computing platform AWS. At the
same time, it announced its self-developed LLM Titan, marking a

key step in the field of enterprise-level Al services. Entering
2024, the field of open-source large models has also made
important progress. In March 2024, Databricks released its latest
open-source LLM DBRX, calling it “the strongest open source Al
model at present,” showing leading performance on multiple
evaluation benchmarks [46].

In addition, in order to promote the standardized development
of generative Al in April 2024, at the 27th United Nations Science
and Technology Conference held in Switzerland, the World Digital
Technology Academy jointly released two international standards
with OpenAl, Ant Group, iFlytek, Google, Microsoft, NVIDIA,
Baidu, Tencent and other companies and research institutions:
“Generative Artificial Intelligence Application Security Testing
Standard” and “Large Language Model Security Testing Method.”
This marks an important step in the construction of the global
governance and security system of LLMs.

3.2. Introduction to LLM underlying technology

The underlying technology of the LLM incorporates a number of
core Al and deep learning approaches [47]. It is based on deep neural
networks, in particular the model structure represented by the
Transformer architecture, with a self-attention mechanism that enables
powerful context modeling capabilities [48]. At the training level,
strategies such as pre-training fine-tuning paradigms, language
modeling objectives (e.g., autoregressive and masked language
modeling), optimization algorithms (e.g., Adam), regularization, and
so on are employed to improve model -effectiveness and
generalization. To cope with large-scale parameters and data, efficient
computational techniques such as distributed training, mixed-precision
computation, model parallelism, and data parallelism are used. Word
embedding and positional coding techniques help the model to
understand text semantics and order, while for model alignment,
reinforcement learning and human feedback (e.g., RLHF) enhance the
model’s responsiveness to human intent. Together, these underlying
technologies support the current strong performance of LLM in
natural language understanding and generation. Figure 4 below
depicts the development path of an LLM.

Figure 4
LLM technical composition structure diagram
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First, the local document is processed into text by the
unstructured loader, then split into text blocks by the text
segmenter, and then the embedded vector is generated and stored
in the vector storage. When querying, the query is converted into
a vector, and the relevant text blocks are retrieved by vector
similarity. The prompt template is combined to form a prompt,
and the LLM is input to finally get the answer. Each link is
closely connected to build the development process.

3.2.1. Neural network basic technology

Neural networks, also known as artificial neural networks (ANN)
or simulated neural networks, are a key subfield of machine learning
and a core pillar of deep learning algorithms. They are called “neural
networks” because their structure and operation mechanism are
inspired by the biological neural network in the human brain. Just
as many technological inventions are derived from imitating nature
(such as aircraft design is derived from bird flight), neural networks
also imitate the signal transmission mechanism between neurons in
the human brain to build intelligent systems that can learn and
generalize autonomously [49].

In the formal definition, an ANN is a computational model
composed of multiple “neurons” or nodes, which are connected to
each other in the form of layers. Each neuron processes the input
with weights, calculates the weighted sum, and then applies a
nonlinear activation function to pass the information layer by layer
to finally obtain the model output. Such a structure can abstract and
extract high-order features from the data layer by layer and is a
powerful tool for identifying complex patterns and relationships.

The concept of neural networks can be traced back to 1943,
when Warren McCulloch and Walter Pitts proposed the first
mathematical model to simulate the behavior of neurons in the
human brain, which is also regarded as the first ANN. Later in the
1950s, Frank Rosenblatt designed the “Perceptron” model, a simple
two-layer neural network that can be trained to recognize linearly
separable patterns. Although the perceptron attracted great attention
at the time, its limitations in dealing with nonlinear problems
caused research to stagnate. It was not until the 1980s that Geoffrey
Hinton and others proposed the “backpropagation algorithm,” a
breakthrough that enabled neural networks to effectively train multi-
layer structures and thus learn more complex nonlinear mapping
relationships. The introduction of backpropagation opened a new
chapter in neural networks and laid the foundation for later deep
learning [50].

In the 1990s, although deep learning research was still on the
academic fringe, related explorations continued to advance. The
real turning point came in the early 2000s, with the rise of big
data and the leap-forward improvement of computing resources,
deep neural networks achieved performance breakthroughs in
many fields. The most representative achievements include the
widespread application of convolutional neural networks (CNN)
and RNN. CNN is widely used in tasks such as image
recognition, face recognition, and object detection, while RNN
performs well in tasks that process sequence data such as speech
recognition, NLP, and machine translation [S1].

With the improvement of algorithms, the increase of computing
power, and the availability of large-scale training data, deep learning
has made significant progress in many sub-fields of Al in the past
decade, especially in tasks such as image recognition, speech
recognition, natural language understanding, and generation,
showing the ability to surpass traditional machine learning
methods. Today, neural networks and their deep learning variants
have become one of the core technologies driving the
development of Al, and one of the most active and promising
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research directions at present, providing a solid technical
foundation for advanced Al systems including LLMs.

3.2.2. Deep learning core architecture: Transformer

As a major breakthrough in the field of deep learning, the
Transformer model has become the core model structure in NLP and
even the entire field of AL Its innovative design completely
abandons the traditional RNN and CNN structures and instead
introduces a fully parallelized architecture based on the attention
mechanism, which greatly improves the model’s training efficiency
and long-distance dependency modeling capabilities. The core of the
Transformer lies in its encoder-decoder architecture, supplemented by
key components such as positional encoding, multi-head attention
mechanism, and feedforward neural network, which together
constitute a powerful semantic modeling capability [52].

1) Encoder-decoder architecture

The basic structure of the Transformer is a typical encoder-
decoder architecture, which consists of multiple stacked encoder
and decoder layers. Each layer adopts a modular design to
facilitate parallel computing and expansion.

The encoder is responsible for receiving the input sequence and
converting it into a set of hidden representations containing rich
semantic information. Each encoder layer contains two sublayers:
multi-head self-attention mechanism and feedforward network,
plus residual connection and layer normalization.

The decoder receives the output representation of the encoder in
the generation phase and generates the next word based on the existing
output context. The decoder layer contains three sublayers: self-
attention mechanism, encoder-decoder attention mechanism, and
feedforward network. This structure supports context-sensitive
language generation and is widely used in tasks such as machine
translation, text summarization, and dialogue systems.

2) Positional encoding

Since Transformer is completely based on the attention
mechanism and lacks the inherent ability to model sequence
structure, it is necessary to explicitly introduce information about
the sequence order — this is the role of positional encoding [53].

The sine and cosine function position encoding commonly used
in the Transformer adds a set of distinguishable position features to
each input vector, allowing the model to perceive the relative or
absolute position relationship between words.

This encoding method has excellent generalizability and can
effectively migrate to new sequence lengths that do not appear in
the training data.

3) Multi-head attention

Multi-head attention is one of the most representative technical
innovations in the Transformer. It allows the model to learn
information from multiple subspaces simultaneously, enhancing
the diversity and expressiveness of representation.

Each “head” independently learns a set of attention weights
from the input to capture semantic relationships of different
dimensions and levels. For example, one attention head may focus
on the subject-predicate structure, another on the emotional color,
and the third on the entity relationship [54].

In terms of operation, the input query, key, and value vectors are
linearly mapped to multiple subspaces, respectively, and the
attention operation is performed in parallel in these subspaces.
Finally, the outputs of all attention heads are spliced and linearly
transformed to summarize the final result.
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The Transformer model has set a new technical benchmark in
the field of NLP with its highly modular architecture and innovative
mechanisms [55]. From the bidirectional modeling capabilities
provided by the encoder-decoder architecture, to the sequence
awareness brought by positional encoding, to the powerful
representation capabilities of multi-head attention and feedforward
networks, each component complements each other and together
gives the Transformer powerful language understanding and
generation capabilities. It is the synergy of these underlying
mechanisms that has enabled LLMs represented by GPT, BERT,
T5, etc., to develop rapidly and be widely used in multiple Al
application scenarios such as search, question and answer,
translation, dialogue systems, content generation, etc. [56].

3.2.3. Reinforcement learning and alignment techniques

In the field of multimodal learning, different modal data have
very different statistical properties and representations, and the
abstraction level of the same concept in different modalities is not
consistent, making dynamic interaction difficult to realize.
Multimodal alignment technology is committed to establishing
structured associations of different modal data in a unified
semantic space and bridging the semantic gap between modalities
through representation learning, attention mechanism, and
generative modeling. The core lies in constructing cross-modal
mapping functions so that the feature vectors of heterogeneous
data satisfy semantic consistency in the embedding space: for
example, relevant graphic pairs are mapped to neighboring
regions, while irrelevant samples are separated from each other.
To achieve this goal, mainstream approaches rely on three main
paradigms: first, contrastive representation learning, for example,
CLIP, ALIGN models, which utilize large-scale noisy modal pair
data to implicitly match global semantics via contrastive loss
functions; second, cross-modal attention mechanisms, for
example, VILBERT, Flamingo, which dynamically model inter-
modal interaction dependencies on local features via gated
attention weights such as the association of textual lexical items
with image regions; and third, generative alignment, for example,
DALL-E, BLIP, which realizes bidirectional semantic mapping
with the help of explicit constraints on joint distributional learning
of cross-modal generative tasks.

There are three main paradigms for the alignment of LLMs:
supervised fine-tuning-based alignment, reinforcement learning-
based alignment, and in-context learning (ICL). These paradigms
use different mechanisms to make the model more in line with
human expectations and values. Among them, supervised fine-
tuning relies on high-quality annotated data for model adjustment,
reinforcement learning guides model behavior through reward
signals, and ICL controls output behavior through contextual
cues without changing model parameters, gradually becoming a
cost-effective alternative. Figure 5 illustrates the distributed
reinforcement learning architecture [57].

As can be seen from Figure 5, learners acquire sample
experience, and parameters and gradients are updated in the
distributed Q network. Experience is stored in distributed memory
for actors to use in different environments. The interaction
between actors and the environment generates new experience,
forming a cycle. This distributed architecture improves the
efficiency and effectiveness of reinforcement learning and handles
complex tasks [58].

The application of reinforcement learning, especially in RLHF
(reinforcement learning with human feedback), has greatly promoted
the alignment of LLMs with human intentions. RLHF was first
proposed in 2017 to improve the behavioral complexity of deep
reinforcement learning models through human preference
feedback on agent behavior fragments. Subsequently, RLHF was
introduced to tasks such as text summarization, significantly
improving the output quality. In WebGPT, this technology is used
to optimize web page retrieval and information aggregation
capabilities. Although these early applications mainly focus on
improving the “usefulness” and “honesty” of the model,
“harmlessness” is often overlooked, which may lead to model
outputs that violate human values.

To make up for the shortcomings of RLHF, InstructGPT
annotates model responses through human feedback, thereby
achieving deep alignment with user intent and meeting the
standards of “usefulness, honesty, and harmlessness (HHH).” The
success of this technology directly gave birth to ChatGPT, which
has become one of the most successful interactive LLMs to date
and has injected new vitality into the research of artificial general
intelligence (AGI).

Figure 5
Reinforcement learning process schematic diagram
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However, RLHF has significant challenges in training: it usually
requires running multiple LLMs at the same time and relies on a large
amount of high-quality manually annotated data, resulting in high data
and training costs. To this end, researchers proposed the Constitutional
Al framework to reduce dependence on manual labels [59]. This
method uses LLM to generate and correct its own responses,
replaces manual feedback with Al feedback, and thus forms a new
path for reinforcement learning based on Al feedback (RLAIF). An
important variant of RLAIF is to train the reward model using
synthetic preference data from different model scales and prompt
conditions, then automatically generate demonstration data for
supervised fine-tuning, and finally fine-tune the LLM policy
through reinforcement learning. In order to further improve the
training efficiency, the ReST (Reinforcement Self-Training) method
is also proposed to expand the training data by sampling responses
from existing policies and update the model policy under offline
Reinforcement Learning objectives [60].

Although RLHF has good generalization ability and shows
great potential for leveraging human feedback signals, the
instability of its training process and high cost still restrict its
application in a wider range of scenarios. In addition, the trade-off
between different objectives and the lack of a normative loading
mechanism are still challenges in achieving robust alignment.

3.3. LLM latest research

LLMs have attracted considerable scholarly interest in recent
years due to their transformative potential across a wide range
of applications, spanning NLP, personalized learning, and
multimodal systems [61]. This literature review synthesizes recent
advancements and methodological innovations related to LLMs,
with a focus on training paradigms, personalization techniques, and
application strategies. Table 3 describes and compares the results of
research related to LLM.

In the context of language learning, Wang and Reynolds [62]
investigate how Chinese learners of English engage with LLMs for
vocabulary acquisition. Their study identifies effort expectancy as a
key determinant of users’ intention to adopt LLMs and highlights

the underexplored potential of these models in informal learning
environments. The findings suggest that LLMs could serve as
effective tools in nontraditional educational settings, offering
personalized and adaptive support. Yao and Yuan [63] provide a
comprehensive overview of language representation techniques,
model architectures, and contemporary applications of LLMs. Their
work emphasizes the need for systematic exploration of
optimization strategies to enhance model performance and
scalability. This foundational understanding is critical for advancing
the practical deployment of LLMs in diverse domains. Addressing
computational challenges in model distillation, Ko et al. [64]
present DistiLLM, a framework designed to resolve training-
inference mismatches in autoregressive LLMs. Their work
demonstrates the importance of efficient distillation techniques for
improving inference efficiency and maintaining performance in
large-scale systems. Personalization remains a pivotal area in LLM
research. Salemi et al. [65] explore retrieval-augmented generation
as a means of tailoring LLM outputs, optimizing retrieval models
that supply user-relevant documents to enhance the relevance and
coherence of generated text. This research is further extended in
their subsequent study on LaMP, which systematically compares
retrieval strategies for adapting language model behavior to
individual user profiles. Zheng et al. [66] introduce SGLang, a
system that enables efficient execution of structured LLM
programs. By supporting advanced prompting and control flow
mechanisms, SGLang facilitates complex task execution and
expands the functional capabilities of LLMs in real-world applications.

Finally, the integration of vision and language is examined by
Diao et al. [67], who develop a training methodology for encoder-
free vision-language models (VLMs). Their work bridges the gap
between encoder-based and encoder-free paradigms, contributing to
the development of more flexible and efficient multimodal systems.

Recent advancements in LLMs span multiple fronts, including
training methods, personalization, optimization, and multimodal
integration. Yao and Yuan [68] emphasize the need for systematic
optimization. Ko et al. [69] introduce DistiLLM to resolve
training-inference mismatches. Personalization strategies are
advanced by Salemi et al. [70] via retrieval-augmented generation.

Table 3
Comparison table of LLM-related research

Authors Research topic

Method/model

Key findings and contributions

Wang et al. [62] Vocabulary acquisition by English

learners using LLMs

Yao et al. [63] Review of LLM optimization strategies

Ko et al. [64] Addressing training-inference

mismatch via distillation
Salemi et al. [65]  Retrieval-augmented generation
for personalization

Efficient execution of structured
LLM programs

Zheng et al. [66]

Diao et al. [67] Training of encoder-free

vision-language models

Empirical study; surveys
and behavioral data

Review; language representation,
architecture, applications

DistiLLM framework;
autoregressive models

Personalized retrieval models;
LaMP framework

SGLang system; structured
prompting, control flow

Encoder-free training for
multimodal systems

Identifies effort expectancy as a key
factor for adoption; highlights the
potential of LLMs in informal
learning contexts.

Stresses the importance of systematic
exploration of optimization strategies
for broader deployment.

Mitigates inconsistencies between
training and inference, improving
efficiency in large-scale models.

Improves relevance and coherence of
generated outputs by adapting to
user-specific context and profiles.

Supports complex task execution
and expands programming flexibility
in real-world applications.

Bridges encoder-based and
encoder-free approaches,
contributing to more flexible
and efficient multimodal LLMs.
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Zheng et al. [71] present SGLang for structured LLM execution, and
Diao et al. [72] bridge encoder-based and encoder-free VLMs,
supporting more flexible multimodal systems.

4. The Integration Path of Embodied Intelligence
and LLM

The advancements in LLMs have demonstrated their
remarkable capabilities in knowledge acquisition and reasoning.
The integration of EI with LLMs has the potential to endow
intelligent systems with both language comprehension and
sensory perception, thereby significantly enhancing their
reasoning abilities and action execution. In this context, EI
emerges as an autonomous agent capable of interacting with the
environment and making decisions through self-directed planning.
Ongoing research efforts are actively exploring this integration,
and notable progress has already been achieved. Figure 6
summarizes the development of Al and robots. In the early days,
Al simulated human thinking with symbolism and expert systems
and then shifted to data-driven machine learning and deep
learning; EI started from automation and industrial applications
and faced bottlenecks such as mobile collaboration capabilities
and adaptability to complex environments. In the future, the two
need to be integrated and developed to achieve the unification of
perception and interaction and learning and adaptation and build
“embodied” Al with powerful intelligence.

Giircan et al. [68] propose an LLM-augmented world model
that enhances embodied agents’ planning abilities through visual
perception and prediction-oriented prompts. Implemented in the
Minecraft environment using the VOYAGER framework, the
system enables agents to autonomously explore, plan, and
complete tasks. The study demonstrates that integrating visual
data and explicitly guiding LLM predictions significantly
improves performance. However, the model is limited by its
dependence on specific LLMs and constrained task scope,
highlighting the need for broader applicability and validation.

Yang et al. [69] is a language-driven environment generation
system that creates interactive 3D scenes from natural language
prompts. Using GPT-4 and a large asset library, it generates
realistic room layouts and populates them with physically
grounded, interactable objects. The system is integrated with the
AI2-THOR simulator to enable embodied Al agents to train and
evaluate in diverse, customizable virtual spaces. Limitations

include reliance on predefined assets and indoor-only
environments, with future plans to support broader scene
categories. Peng et al. [70] introduce a human-like Al interviewer,
implemented using the android ERICA. The system demonstrates
adaptive conversational behavior including listening, repairing
dialogue, and providing post-interview summaries via LLM-based
processing. Deployed at a real-world conference, the system
received positive human feedback. Limitations include the use of
templated questions, lack of multimodal input, and limited
participant diversity. Dai et al. [71] explore the use of Al-assisted
flexible electronics to create authentic and expressive facial
gestures in humanoid robots. It reviews developments in
biomimetic facial design, including sensors, actuators, and
intelligent artificial skin capable of thermal and color modulation.
Applications span social, companion, and service robotics. Key
challenges include integrating perception and actuation, emotional
reasoning, and the need for interdisciplinary materials and Al
collaboration.

PHYSCENE is a 3D scene generation system designed for
embodied Al training with physical interactivity in mind. It uses
conditional diffusion guided by constraints such as object
reachability, layout rules, and collision avoidance. The resulting
scenes are suitable for manipulation and navigation tasks.
Limitations include support for only certain room types and a lack
of small object interaction capabilities [72]. PR2 is a physics- and
photo-realistic humanoid robot simulation platform designed for
education, competition, and research. It supports the integration of
foundation models, advanced planning algorithms, and dynamic
interaction tasks. The platform was piloted in a national
competition and facilitates both locomotion and manipulation
learning. Challenges include sim-to-real gaps and continued
development for broader task compatibility.

As demonstrated in Table 4, the integration of EI and LLMs
enhances the cognitive-executive feedback loop through
multimodal perception, real-time reasoning, and dynamic
planning. This integration facilitates a shift from passive responses
to proactive decision-making, marking a critical pathway toward
AGI. Bousetouane introduced a modular architecture comprising
perception, cognition, and actuation components. Moreover,
researchers such as Pang, Dai, and Liu have applied the fusion of
EI and LLMs to real-world contexts, including Al interviewers,
healthcare, and humanoid robot simulation platforms, significantly
enhancing operational efficiency in these domains.

Figure 6
The development history of the combination of embodied intelligence and Al
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Table 4
Comparison table of embodied intelligence and LLM-related research

Authors Innovation highlight

Techniques/methods

Application domain Challenges/limitations

Giircan et al. [68] Embodied world model
integrating LLM with
visual perception

Language-driven
automatic generation of
interactive 3D environments

Human-like conversational
interviewer android

Natural facial expressions via
Al-assisted flexible
electronics

prompts
Yang et al. [69]

3D assets
Peng et al. [70]

Dai et al. [71]

LLMs (GPT), visual
encoding, prediction

LLMs (GPT-4), constraint-based Simulation (navigation,
optimization, Objaverse

Conversational AI, LLM-based Human-robot interaction,
analysis, adaptive dialogue
Flexible sensors, artificial skin,

multimodal sensing

Simulation (Minecraft
exploration tasks)

Specific LLM constraints,
limited task generality

Limited asset types,
interaction tasks) mainly indoor scenarios
Small sample size,
qualitative interviewing rigid question templates
Social robotics, interactive Integration of sensing,
humanoid robots actuation, emotional
cognition

5. Future Directions

EI integrated with LLMs exhibits a high degree of interactivity
and adaptability. By executing a perception—action loop, it can
flexibly adjust its behavior in response to environmental changes.
This capability relies on hardware components such as sensors
and actuators, as well as sophisticated control algorithms and
machine learning techniques. However, achieving further
breakthroughs in EI requires addressing several critical challenges.

At present, EI is predominantly trained in virtual simulation
environments, and there remains substantial room for progress in
addressing the representation of complex multimodal information in
real-world 3D settings. To meet the demands of practical applications,
the multimodal unified models used in the integration of EI and
LLMs are expected to evolve toward more comprehensive world
modeling, greater autonomy, and hybrid large model architectures.

The integration of EI with LLMs is primarily driven by
advancements in deep learning for robotics. End-to-end
architectures are commonly adopted as system design paradigms,
enabling efficient responses and emergent intelligence. However,
these models require vast amounts of training data. Currently, the
scale of robotic training data — typically ranging from thousands to
tens of thousands of samples — falls significantly short of the
billions required by VLMs, presenting a gap of several orders of
magnitude. Moreover, the cost of acquiring high-quality data is
substantial. While synthetic data generated in virtual environments
offers an alternative, it often suffers from inaccurate physical
modeling. The shortage of high-quality 3D datasets and the low
level of data standardization further hinder progress. These
challenges collectively pose significant obstacles to the
advancement of EI. To address them, the development of open-
source datasets and standardized benchmark environments is
essential. However, due to significant differences in the physical
design of robots produced by different manufacturers, open-source
datasets often suffer from poor reusability and limited
compatibility, further exacerbating the issue of data scarcity. To
address this, cross-industry collaboration is essential to establish
appropriate and standardized protocols that enhance the
interoperability and reusability of training datasets.

In terms of benchmark environment construction, several high-
quality platforms have been developed to support the training of EI.
For example, Habitat, a high-performance 3D simulation platform
developed by Facebook Al Research (FAIR), is designed to train
embodied agents — such as robots — for navigation and interaction
in complex virtual environments. It emphasizes learning and
adaptation within simulated spaces that closely approximate real-
world physical settings. ALFRED is a benchmark task framework
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that requires embodied agents to execute multistep tasks in a
virtual environment based on natural language instructions. Its
core lies in the integration of language understanding and physical
interaction capabilities, combining visual, linguistic, and action
data. iGibson is an interactive simulation environment that focuses
on robotic physical interaction tasks in domestic settings. It
features a high-fidelity physics engine and a diverse set of
household scenes, enabling complex operations such as door
opening and object manipulation. These platforms provide robust
experimental foundations for the development of EI. However,
due to the inherent complexity and variability of world models, it
remains necessary to construct tailored benchmark environments
for specific scenarios.

The advancement of EI integrated with LLMs relies heavily on
collaboration between academia and industry. These two sectors are
mutually reinforcing and indispensable, forming a relationship
between technological complementarity and collaborative
innovation. Cutting-edge developments in this field — such as the
design of multimodal datasets and deep learning algorithms based
on neural networks — require strong support from academic and
research institutions. Meanwhile, the industrial sector focuses
more on the development of embodied Al hardware and its
application in real-world scenarios, translating technological
innovations into practical use. This, in turn, provides feedback
that helps steer academic research, creating a synergistic effect
through the sharing of resources and knowledge. With continued
interdisciplinary collaboration, the integration of EI and LLMs is
poised for greater breakthroughs and transformative growth.

6. Conclusion

This paper provides and in-depth reviews of the relevant
research on the integration of EI and LLMs. EI shows unique
advantages by interacting with the environment, but it has
shortcomings in semantic understanding and data acquisition.
LLMs are excellent in language processing capabilities and can
effectively make up for the shortcomings of EI. The integration of
the two has significant potential and value, opening up a new path
for the development of Al. With the continuous improvement and
breakthrough of related technologies, it is expected to realize
innovative applications in more fields and promote the
development of Al in the direction of generalization and
intelligence. Although this paper systematically reviews the
research progress of the fusion of EI and LLMs, there are still
some shortcomings that need further exploration. First, current
research is mainly based on literature summary, lacking empirical
experiments and quantitative evaluation, making it difficult to
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fully verify the fusion effect; second, the summary of fusion paths is
still relatively fragmented, lacking a unified system architecture model;
at the same time, key issues such as data privacy, model
interpretability, and ethical risks have not been deeply discussed;
in addition, there is insufficient comparative analysis of existing
open-source tool chains and standardized platforms, and the
environmental complexity and reliability challenges faced in actual
deployment are not fully covered. Future research should strengthen
expansion in building a unified fusion paradigm, strengthening real-
world scenario verification, and promoting cross-industry standard
construction, so as to achieve the improvement of the versatility,
security, and practicality of EI systems.
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