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Abstract: As robotic technology advances towards autonomy and intelligence, tactile sensing systems have become a key technology for
overcoming the bottleneck of environmental interaction. Unlike visual perception, which captures macroscopic information, tactile sensing
provides precise mechanical feedback for robotic manipulation by real-time analysis of microscopic physical parameters such as contact force,
material properties, and surface morphology. This is particularly important in application scenarios that require high precision in force control,
such as minimally invasive surgery and precision assembly, where the sensitivity, multimodal perception capabilities, and environmental
adaptability of tactile sensors directly determine the operational performance of the robotic system. However, traditional tactile sensors
are limited by rigid structures, limited sensitivity, and a single perception modality, making it difficult to meet the demands of complex
interactions. In recent years, breakthroughs in flexible electronic materials, biomimetic microstructure design, and multimodal sensing
integration technologies have provided innovative opportunities for tactile sensing systems. This review provides a detailed overview of
the key technological advancements in tactile sensors and their applications in robotic surfaces, analyzes the major challenges currently
faced, and looks ahead to future development directions, particularly the potential in flexible materials and intelligent algorithms.
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1. Introduction

With the rapid development of robotic technology and automation
systems, the demands for perception capabilities in robots for precise
operation and complex task execution are continuously increasing [1–4].

As a core component of robotic perception systems, tactile
sensing technology plays a crucial role in enhancing the autonomy,
flexibility, and adaptability of robots in handling complex tasks
[5–8]. By simulating human tactile functions, tactile sensors can not
only be used for human health monitoring and motion detection but
also have widespread applications in robotic surfaces for tactile
perception, helping robots more accurately sense and respond to
environmental information. This, in turn, greatly improves the
intelligence level and work efficiency of robots in industries such as
manufacturing, healthcare, and services [9–13].

However, existing traditional tactile sensor technologies still
face many challenges. For example, many traditional sensors, due

to their rigid structures, struggle to adapt to complex flexible
surfaces, leading to inaccurate force feedback [14, 15] Moreover,
there are significant differences in their ability to perceive various
types of forces (such as normal force, shear force, and bending
force), which limits their accuracy in multimodal applications
[16–18]. Additionally, the limitations in sensitivity [19, 20]
response speed [21, 22] and adaptability of traditional sensors
restrict their potential for high-precision task [23, 24]. To
overcome these limitations, significant progress has been made in
the research of flexible materials and intelligent tactile sensors. In
recent years, the emergence of new sensor materials such as ion-
electronic sensors [25, 26] hydrogel sensors [27–29], and flexible
electronic skins has greatly improved the sensitivity, response
speed, and environmental adaptability of tactile sensors [30–33].
In particular, in the medical field, these innovative technologies
enable robots to accurately perceive small changes in tissue
hardness, providing more precise force feedback during surgery
and preventing damage to surrounding tissues [34, 35]. In
industrial automation, tactile sensors allow robots to achieve high-
precision force control in precision assembly and manufacturing,
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thereby improving production efficiency and product quality [36, 37]
(Figure 1).

Nevertheless, existing tactile sensor technologies still face many
pressing challenges, especially in areas such as sensor sensitivity,
multimodal force perception fusion, and system integration [38–41].
Therefore, further research on tactile sensing systems remains a key
area of robotic technology development. In the future, with the
continuous advancement of flexible materials, sensing mechanisms,
and intelligent algorithms, tactile sensors are expected to achieve
even greater breakthroughs in precise sensing, flexible applications,
and strong adaptability. This review will review the latest
developments in tactile sensor technology, particularly sensor
designs based on novel materials and structural optimization,
analyze their application results and challenges in robotic perception
systems, and provide a theoretical foundation and technical
direction for the future research and development of tactile sensing
technology through a systematic analysis of existing technologies.

2. Pressure Sensing Mechanism and Structural Design

Pressure sensors, as a key research focus in the field of tactile
sensing, have developed a variety of technological solutions,
including resistive, capacitive, and triboelectric types [42–45].
Tactile sensors can convert externally applied pressure into
electrical signals, and by analyzing the changes in these signals,
they can determine the magnitude and/or direction of the pressure.
Each conversion mechanism has unique characteristics depending
on the materials and structures used [46–48]. Next, we will
provide a brief overview of the basic structure, common materials,
and operating principles of these sensors.

2.1. Resistive tactile sensors

Resistive tactile sensors operate based on the principle of
resistance change caused by pressure. When external pressure is
applied to the sensor, the contact area between the conductive
material in the electrodes increases, leading to a decrease in
resistance [44, 49, 50]. Common conductive materials include
carbon nanotubes [51–53] and silver nanowires [54, 55], while
flexible materials such as PDMS [56, 57] or fibers [47, 58, 59]
are typically used as substrates. Chen et al. combined carbon
nanotubes with fabric to create a high-temperature-resistant
pressure sensor, demonstrating excellent thermal stability, good
pressure response, and cycle stability [53]. Jia et al. used MXene
nanosheets with accordion-like nanostructures and protruding
structures transferred from sandpaper, detecting resistance changes
based on the interlayer contact area variation during the pressure
loading process. Resistive sensors offer good cost-effectiveness
and are suitable for simple tactile sensing, but they have
limitations in terms of high precision and fast response [60].

2.2. Capacitive tactile sensors

Capacitive tactile sensors detect external pressure by causing
changes in the geometric structure of the electrodes, which in turn
affects the capacitance value, establishing a relationship between
pressure and capacitance [61–63]. Common electrode materials
include metallic nanowires [64–66] and graphene [67–69], while
dielectric layers are typically made from flexible materials such as
PDMS and polyurethane [70–72]. Lv et al. [73] developed an
MWCNT/PDMS dielectric layer with spontaneous wrinkling

Figure 1
The tactile sensor is applied to human body as health or motion monitoring and to robot tactile sense
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characteristics, exhibiting ultra-high linearity in capacitive sensing,
making it capable of detecting weak signals and successfully
integrating it into the surface of pneumatic fingers for hardness
sensing. Luo et al. [74] fabricated a capacitive sensor with a
dielectric layer of inclined micro-pillar arrays, utilizing the
reduction of air gaps during pressure loading to increase
capacitance, and its simple, easy-to-manufacture structure makes it
highly suitable for wearable technologies. Capacitive sensors offer
high sensitivity and precision, making them widely used for
precise tactile sensing and surface texture recognition.

2.3. Piezoelectric tactile sensors

Piezoelectric tactile sensors work by generating a voltage change
in piezoelectric materials when subjected to external force [75–78].
Common piezoelectric materials include polyvinylidene fluoride
(PVDF) [79–81] and lead zirconate titanate [82, 83]. External
pressure induces deformation in the material, causing a change in
the dipole density, which generates a voltage signal. These sensors
offer sensitive dynamic responses, making them suitable for
vibration detection and texture recognition, but they tend to perform
poorly in static pressure sensing. Seong et al. [76] developed
BaTiO3/PDMS materials by combining piezoelectric materials with
micro-patterning techniques, exhibiting high sensitivity and a wide
pressure range. Huang et al. prepared PVDF/BTO composites and

used a porous structure as a pressure sensor, with a high output of
approximately 20.0 V and a sensitivity of ∼132.87 mV/kPa,
demonstrating long-term durability [84]. PVDF-based sensors are
widely applied in practical scenarios due to their flexibility, low
cost, and ease of processing.

2.4. Triboelectric tactile sensors

Triboelectric tactile sensors detect changes in voltage generated by
the contact and separation of materials with different electronegativities.
The triboelectric nanogenerators (TENG) senses pressure through the
combination of triboelectric and electrostatic effects [85, 86]. Its
output signal is closely related to changes in the contact area and
pressure frequency. Triboelectric sensors exhibit strong dynamic
pressure sensing capabilities, making them suitable for wearable
devices and flexible sensors. Common materials used include PDMS
and PTFE [87–89]. Dong et al. [90] developed a skin-inspired
triboelectric nanogenerator for biomechanical energy harvesting and
multifunctional pressure sensing. By embedding silver-nylon fibers
into an elastomer, they successfully achieved good stretchability,
pressure sensitivity, and mechanical stability, applying it in
physiological signal monitoring and intelligent prosthetics [90]. Wang
et al. [91] fabricated a PAM/BaTiO3 composite film that is flexible,
stretchable, and highly transparent, achieving high sensitivity to
pressure via the triboelectric effect (Figure 2 [53, 60, 73, 74, 76, 84]).

Figure 2
Example of sensors with four different mechanisms: (a) changes in MWCNT/quartz fabric structure before and after pressure
loading, (b) structural and circuit changes of MXene/PDMS structure under different pressure loading, (c) structural and circuit
changes of MWCNT/PDMS layer during pressure loading, (d) pressure sensing process of microcolumn structure, (e) mechanism of
BaTiO3/PDMSpyramid structure under pressure loading, and (f) changes in loading and unloading process of PVDF/BTO composite

Smart Wearable Technology Vol. 00 Iss. 00 2025

03



An analysis of the working principles of tactile sensors reveals
that the material requirements vary depending on the sensor type.
Resistive and capacitive sensors depend on the conductivity and
dielectric layer properties, with common materials including
nanometer-scale conductive substances (e.g., carbon nanotubes,
silver nanowires, graphene) and highly elastic and flexible matrix
materials (e.g., PDMS). Piezoelectric and triboelectric sensors, on
the other hand, rely primarily on the material’s stress and charge
response mechanisms. PVDF, due to its good flexibility and low
production cost, is a popular choice for piezoelectric sensors.
Triboelectric sensors achieve efficient energy conversion and
pressure sensing through composite materials with different
electronegativities. Typically, representative sensitivity pairs of
different mechanisms are shown in Table 1. Representative
structural and material comparisons of haptic sensors of different
mechanisms from 2010 to 2025 are shown in Table 2. PDMS-based
materials (with CNTs, silver nanowire (AgNWs), MXene) are
commonly used for flexible, stretchable sensors due to PDMS’s
inherent flexibility and the conductive fillers enhancing its

performance. These materials offer a balance of mechanical
flexibility and electrical conductivity. PU and fiber-based materials
provide high mechanical flexibility and can be used in textile-based
sensors. Their properties can be further optimized by adding
conductive fillers such as CNTs and AgNWs. PVA and PAM-based
composites show high sensitivity, with PVA/MXene being
particularly noted for its impressive sensitivity, making it useful in
highly responsive sensor applications. Materials like PDMS, PU,
Fiber, PVA, and PAM, when combined with conductive fillers like
CNTs, AgNWs, and MXene, can be engineered to provide sensors
with varying sensitivities, flexibility, and mechanical properties.
Examples of different materials are shown in Table 3. In addition,
some commercial sensors are listed as shown in Table 4.

2.5. The development of ion-electronic sensors

Although capacitive sensors have a simple structure and high
stability, their ability to achieve high sensitivity over a wide range
is limited when relying solely on changes in sensor thickness. In

Table 1
Sensitivity and performance comparison of different types of sensors

Sensor type Sensitivity (kPa−1) Materials used Range (KPa) Response time Reference

Resistive 0.127 CNTs@HAPAAm 0–50 600 ms [53]
Resistive 4.97 rGO@CNTs/CS 0–3 170 ms [52]
Capacitive 0.33 PDMS@Graphene 0–5 20 ms [67]
Capacitive 2.04 PDMS@AgNWs 0–8 100 ms [65]
Piezoelectric 0.0393 P(VDF-TrFE) @BN – 30 ms [75]
Piezoelectric 4.19 BaTiO3@PDMS 0–100 – [76]
Triboelectric 0.75 BaTiO3@PDMS@AgNWs 0–140 – [86]
Triboelectric – EGaIn@PDMS 0–100 – [88]
Ion-electronic 3302 PVA@H3PO4 0–400 9 ms [92]
Ion-electronic 1716 PAM@Alg@Zn2+ 0–200 30 ms [93]

Table 2
Technology evolution in tactile sensors (2010–2025)

Year Sensing Type Structure Materials References

2010–2014 Resistance Hollow-Sphere PPy [94]
Resistance Copper Mesh Graphene/PDMS [95]
Capacitance Air Gap PDMS/SWNT [96]
Capacitance Hydrophobic Sponge PDMS/Al [97]
Piezoelectric – Zirconate Titanate [98]
Piezoelectric Dome PDMS [99]
Triboelectric Nanorod (NR) arrays FEP [100]
Triboelectric Etched Nanowire PA/PTFE [101]

2015–2020 Resistance Pyramid PDMS/AgNWs [102]
Resistance Porous PAA/CNT [103]
Capacitance Micro-pillar Arrays Au/PET [74]
Capacitance Pyramidal Microstructures ITO/PET/PDMS [104]
Piezoelectric – PTNWs/Graphene [77]
Piezoelectric – AlGaN/GaN [105]
Triboelectric Micro/Nanostructure PDMS/EVA [22]
Triboelectric Interlocking PDMS/PTFE/AgNWs [106]

2021–2025 Resistance Spider Web-Like PIFs/CNT [107]
Resistance Multi-level nano-Microstructures PDMS/MXene [108]
Capacitance Micro-cilia array

Micro-dome array
CNT/PDMS [19]

Capacitance Graded intrafillable PVA/H3PO4 [92]
Piezoelectric – Fibers/CNT [109]
Piezoelectric Micropyramidal BaTiO3/PDMS [76]
Triboelectric Cellulosic CNTs/ Cellulosic [110]
Triboelectric LiCl/ CNTs Ion gradient [43]
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2012, Nie et al. [151] proposed an innovative sensor structure using
ion-containing droplets as the medium between electrodes. The
double electric layer structure formed by ions reduces the
capacitance gap to the nanoscale (∼1 nm), significantly increasing
charge density and enhancing sensor sensitivity. This innovation
overcame the traditional thickness limitations of capacitive
sensors, optimizing performance by altering the electrode contact
area rather than relying solely on thickness changes. Furthermore,
the design of ion-droplet electronic sensors has opened new
research directions for the application of ionic gels and ionic

droplets. Ionic gels, as a new material, have shown significant
advantages in flexible sensors. In 2014, Sun et al. [152] proposed
an ion-based hydrogel capacitive sensor with excellent mechanical
flexibility and transparency, capable of detecting tiny pressure
changes, and demonstrated the key role of ionic materials in
improving sensor performance.

2.5.1. The development of ion-electronic sensors
The term “iontronic” officially entered the research field of

flexible pressure sensors. Nie et al. [153] developed an ion-electronic
microdroplet sensor with extremely high sensitivity, reaching 0.43
nF/kPa. Compared to traditional parallel-plate capacitive sensors, this
sensor significantly improved the response sensitivity between
pressure and capacitance through the double electric layer
mechanism of ionic materials such as ionic liquids, ionic gels, or
ionic nanofibers. In 2015, Nie et al. [154] successfully replaced ionic
droplets with ionic gels as the medium, overcoming the instability of
droplets while maintaining the high conductivity of ionic liquids and
offering better mechanical stability. The new design of the ionic
electronic thin-film sensor demonstrated extremely high capacitance
per unit area (5.4 μF/cm2) and ultra-high sensitivity (3.1 nF/kPa),
with sensitivity over 1,000 times that of traditional solid-state sensors
[154]. In 2018, Zhu et al. [155] combined a single-sided ion-
electronic device with skin, proposing a novel pressure sensor
architecture for wearable sensor applications. This architecture
utilized the epidermal-ion-electronic interface and exhibited high
adaptability under ultra-thin packaging (1.9 μm), effectively
detecting internal and external mechanical stimuli [155]. In 2019,
Choi et al. [156] fabricated a pyramid-shaped ionic gel structure that
can detect both pressure and shear force, with high sensitivity and a
wide range of detection capabilities [156]. In 2021, Shen et al. [157]
developed a supercapacitive tactile sensor using hydrogels and
arranged it in an array for robotic surfaces, achieving high sensitivity
and resolution. In 2021, Zhu et al. [158] implemented pressure
sensing through the buckling instability structure of elongated micro-
pillars and replaced ionic materials with human skin, ensuring
excellent biocompatibility. This ion interface holds great potential for

Table 3
Comparison of common flexible sensor

materials and their sensitivities

Base material
(Conductive) Materials Sensitivity References

PDMS
(CNTs
AgNWs
MXene)

PDMS/CNTs GF=17.5 [111]
PDMS/MWNTs 40.12 KPa−1 [60]
reCNT-PDMS 372.2 kPa−1 [112]
PDMS/AgNWs 2.04 kPa−1 [65]
PDMS/AgNWs/CNFs —— [64]
AgNWs/PDMS —— [113]
Mxene/CFs/PDMS 35.12 kPa−1 [114]
AgNWs/MXene/PDMS 0.812 kPa−1 [115]
PDMS/ MXene 39.3 kPa−1 [116]

PU
(CNTs
AgNWs
MXene)

PU/CNTs —— [117]
PU/CNTs-COOH GF=17.5 [118]
CNTs/PU/AgNPs —— [119]
PU/AgNWs 0.009 KPa−1 [54]
PU/AgNWs 6.258 KPa−1 [120]
PU/PDA/AgNWs —— [121]
MXene/TPU/PAN 0.208 KPa−1 [122]
MXene@PU GF=0.7659 [123]
MXene/polyurethane
(PU)

150.6 KPa−1 [124]

Fiber
(CNTs
AgNWs
MXene)

CNTs/SNWF GF=74 [125]
CNTs/AgNPs@p-SF GF=740 [126]
Sericin–CNTs —— [127]
Silk fibroin/AgNWs 2.27 KPa−1 [128]
AgNWs/pSBS/ Fiber 5.2 KPa−1 [129]
AgNWs/Fiber 0.2 KPa−1 [130]
MXene/AgNWs/Fabric 14.28 KPa−1 [131]
Mxene/Paper 0.04 KPa−1 [132]
MXene/Fabric 6.31 KPa−1 [133]

PVA
(CNTs
AgNWs
MXene)

PVA/mCNT-OH GF=2.52 [134]
SWCNT/PVA —— [135]
PVA/SS@CNTs GF=4.75 [136]
PVA/AgNWs —— [137]
PVA/CMS/AgNWs —— [138]
PVA/AgNWs —— [139]
MXene/PVA 2320.9 kPa−1 [140]
PVA/MXene 0.45 kPa−1 [141]
GO/PVA/MXene 1.744 kPa−1 [142]

PAM
(CNTs
AgNWs
MXene)

PAAm/CNTs GF=343 [143]
CNTs/HAPAAm GF=2 [53]
PAM/CNTs GF= 54.89 [144]
Aam/AgNWs —— [145]
PAM/AgNWs GF= 1.8 [146]
PVA/TA/PAM/
AgNWs

—— [147]

PAM/MXene 782.7 kPa−1 [148]
PAAm/SA/MXene GF =7.4 [149]
PAAm/PVA/MXene GF =5.02 [150]

Table 4
Commercially available tactile sensors

Sensing type
Schematic
diagram Company

Resistance Suzhou Nengsda Electronic
Technology Co., Ltd.

Capacitance Suzhou Nengsda Electronic
Technology Co., Ltd.

Piezoelectric Suzhou Nengsda Electronic
Technology Co., Ltd.

Resistance Guangzhou Puhui
Technology Co., Ltd.

Piezoelectric Murata Manufacturing
Co., Ltd.
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intelligent epidermal monitoring and medical devices [158]. In 2022,
Niu et al. [159] combined the triboelectric effect and ion-electronic
mechanisms to fabricate a bionic hair-like structure with dual-
interlocking microcone electronic skin, applied to both static and
dynamic tactile sensing, and conducted experiments on tactile gloves
for sign language recognition and robot interaction [159]. In 2023,
Xu et al. [160] developed a stretchable ion-electronic touchscreen
panel with good touch sensing resolution, suitable for handwriting
interaction, gaming control, and expanding research on ion-electronic
mechanisms in wearable fields. In 2024, Li et al. [161] also utilized
hydrogels as human-machine interface layers, fabricating stretchable,
high-ion-conductivity hydrogel structures combined with machine
learning for recognition and authentication, showcasing the immense
potential of ionic conductive layers in human-machine interactions
(Figure 3).

2.5.2. Microstructural ion-electronic pressure sensing
Microstructural design plays a crucial role in enhancing the

performance of tactile sensors. By optimizing the microstructure,
the sensitivity and response speed of the sensor can be significantly
improved. Microstructure design typically involves controlling the
deformation capacity of the sensor and the electrode contact area,
both of which influence the sensor’s performance.

For instance, pyramid-shaped microstructures take advantage
of the compressibility of air in the pores to enhance the
deformation ability while reducing the electrode contact area,
thereby improving the response speed. Novel microstructures,
such as micro-domes and interlocking structures, are widely used
in piezoelectric and triboelectric sensors, contributing to improved
sensitivity and accuracy. The micro-dome design enables the
sensor to deform easily under pressure, enhancing its sensitivity to
minute pressure changes.

In 2014, Tee et al. [162] introduced pyramid microstructures
to enhance the device’s deformation capacity through the
compressibility of air in the pores, while reducing the electrode
contact and adhesion area to increase response speed. Following
this, micro-domes [19, 163, 164], porous structures [165–168],

and interlocking microstructures [169–171] have been widely
applied in capacitive, resistive, and triboelectric sensing
mechanisms. Despite the effective enhancement of sensitivity and
response speed with the introduction of microstructures, the
sensor’s working mechanism often relies on the deformation of
the intermediate layer. Thus, even with microstructural
incorporation, there remain certain limitations in sensitivity and
response speed. In this context, the application of microstructures
in ion-electronic sensors has been further optimized. In 2018, Qiu
et al. [172] reported a low-cost microstructural ion gel (MIG),
which features a uniform conical surface microstructure,
effectively enhancing the sensor’s sensitivity and response range.
The MIG film was patterned using soft lithography from the
leaves of Calathea zebrina and integrated with a flexible electrode
interlayer, maintaining excellent sensitivity across a wide range
from 0.1 Pa to 115 kPa. The microstructure optimization allows
the device to maintain high sensitivity even under low-pressure
conditions, making it suitable for haptic perception in human-
machine interaction applications [172].

In 2022, Tang et al. [173] proposed a TIS device architecture
that achieves high sensitivity and excellent optical transparency.
This device employs a two-layer sensing structure combining
transparent AgNw conductive films with a microscopic
hemispherical transparent ion elastomer array, with a nonionic
liquid filling between the ion electrodes and counter electrodes.
This design not only maintains the high sensitivity of the device
but also enables dual optical and tactile functions without
compromising transparency, making it capable of evaluating tissue
stiffness during endoscopic imaging [173].

In 2020, Bai et al. [92] introduced a graded, fillable
microstructure (GIA) design that significantly improves sensitivity
and extends the pressure response range. The GIA structure
accommodates deformed surface microstructures via undercuts
and grooves, enhancing compressibility and pressure response
range. It demonstrates extremely high sensitivity and ultra-high
resolution across a broad pressure range from 0.08 Pa to 360 kPa
while maintaining significant mechanical stability [92]. In 2022,

Figure 3
The development and application of ion-electronic mechanism-based sensors
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Guo et al. [174] proposed an integrated hybrid device based on ion
sensing and electrochromic display for interactive pressure sensing.
The device uses capacitance changes in the ion gel layer to achieve
highly sensitive pressure detection with a large capacitance response
range. The introduction of microstructures improves the contact area
between the electrodes and the gel, increasing the electrical double-
layer (EDL) capacitance and allowing the sensor to maintain high
sensitivity over a wider pressure range [174]. In 2023, Guo et al.
[175] used a simple photopolymerization process to fabricate
crosslinked ion hydrogels, integrating them into a wireless
monitoring system as a pressure sensor application. Unlike
conventional capacitive pressure sensors, ion-electronic sensors
replace the insulating dielectric layer with an ion hydrogel layer,
enhancing sensitivity through the EDL formed at the electrode-ion
membrane interface. This design enables high noise immunity and
significant signal enhancement in complex dynamic
environments [175].

In 2022, Bai et al. [176] further optimized flexible ion-
electronic pressure sensors by incorporating micro-pillars to
improve sensitivity and linear response. The micro-pillar
design effectively enhances the structure’s compressibility, evenly
distributes stress, prevents signal saturation, and increases the
initial contact area, ultimately achieving high sensitivity (49.1 kPa−1)
and good linearity [176] (Figure 4 [92, 172–176]).

2.6. Multifunctional sensing systems

Multifunctional sensing systems integrate different types of
sensors (such as temperature [177–179], slide [180–182],
humidity) [183–185] to simultaneously detect various physical
and chemical stimuli. These systems are particularly suitable for

fields like human-machine interaction and robotic perception,
where they can significantly enhance sensing accuracy and
response speed. When designing multimodal sensing systems, a
common approach is to integrate multiple sensors into a single
platform, creating a multifunctional sensing system. By
responding to multiple input stimuli, these systems effectively
simplify the device structure and reduce system complexity.

For example, in the design of pressure-temperature dual-
functional sensors, the capacitance and resistance changes of a
single sensing element can simultaneously respond to different
stimuli from temperature and pressure, thereby simplifying the
device structure and reducing the complexity of the measurement
system. In this process, neural networks can efficiently extract
useful information from mixed signals. Ren et al. [186]
successfully achieved dual sensing of temperature and pressure
using a gradient ion gel via an electric field-induced strategy. By
employing the Vogel-Tamman-Fulcher equation, they established
the relationship between capacitance, temperature, and pressure,
significantly improving the sensor’s measurement accuracy [186].

Machine learning algorithms also play an important role in
multimodal sensor systems. Ren et al. [186] leveraged the unique
response characteristics of capacitance and resistance to changes
in temperature and pressure to achieve synchronous measurement
of both temperature and pressure. They used neural network
technology as a data processing method to establish a mapping
between capacitance/resistance signals and pressure/temperature,
thus enabling high-precision calibration of the sensors [93].

Ding et al. [185] fabricated a pressure/proximity dual-mode sensor
using a template method. By utilizing the sensitivity differences
between pressure sensing and proximity sensing, they achieved
crosstalk-free detection and differentiation, offering potential

Figure 4
Microstructure devices: (a) structural diagram of conical leaf template, (b) schematic diagram of micro-dome structural layer, (c)
schematic diagram of filling structure of sandpaper template, (d) schematic diagram of hollow and microcolumn structural layer, (e)

schematic diagram of hollow structural layer, and (f) interlocking fill structure layer diagram
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applications in robotic touch and human-machine interaction. Chen
et al. [187] developed a pressure-temperature-proximity sensor using
ion gel fibers. With the assistance of the EDL effect, they achieved
highly sensitive pressure sensing, while temperature sensing was
enabled through the dielectric constant of the gel layer. Proximity
detection was realized via changes in the electric field. This design
provides new insights for the application of ion-electronic
mechanism sensors in the wearable field. Zhu et al. [188] proposed a
triboelectric-based technology capable of detecting bending and
sliding in multiple directions and developed a haptic feedback glove
on this basis, using machine learning to assist in object recognition
tasks. These innovations showcase the vast potential applications of
multimodal sensor systems in smart devices and human-machine
interaction. Another type of multi-sensor system integrates different
sensor types into the same platform to form multimodal perception.
One effective strategy is to carefully select materials suited to
specific stimuli to differentiate various types of signals. Ge et al.
[189] proposed a low-coupling multifunctional electronic skin
capable of simultaneously sensing proximity, pressure, temperature,
and relative humidity, demonstrating its potential in multimodal
perception. Zhang et al. [190] developed a stretchable sensor that
can recognize various stimuli such as in-plane strain, temperature,
and pressure. These three different sensory functions were achieved
using a mechanical color-changing layer, a thermal resistance layer,
and a triboelectric layer, respectively, each utilizing their unique
materials and mechanisms to decouple different sensory signals.
The integration and optimization of these technologies have greatly
enhanced the performance of sensor systems, making the detection

of various physical and chemical stimuli more precise. By
achieving high-performance, multifunctional tactile sensor systems,
these advancements have not only promoted the application of
sensor technologies in multiple fields but also provided more
accurate and reliable perceptual capabilities for various smart
devices (Figure 5 [93, 185, 186, 189, 190]).

3. Technological Advances and Challenges of
Tactile Sensors in Robotic Surface Applications

Tactile perception is a core capability for robots to interact with
their environment and perform finemanipulation tasks. In recent years,
significant breakthroughs have been made by integrating new sensor
designswith artificial intelligence algorithms. The integration of tactile
sensors on robotic surfaces has not only enhanced the adaptability and
safety of grasping operations but also provided solid technical support
for multimodal perception in complex scenarios.

3.1. Application of tactile sensors in robotic
grasping control

Traditional robotic grasping relies on visual feedback, but often
lacks real-time sensing of tactile information, such as contact forces
and material properties. Sundaram et al. [191] proposed a solution
based on a scalable tactile glove (containing 548 sensors). This
system uses piezoelectric films and conductive fiber networks to
create a distributed sensor network, combined with deep
convolutional neural networks to perform object recognition,

Figure 5
Multifunctional sensor device: (a) capacitor and resistor signals are used to achieve temperature-pressure sensing,
(b) bionic jellyfish structures use different sensitivity to achieve pressure-temperature sensing, (c) only capacitive

signals are used to achieve pressure-proximity sensing, (d) vertical integrated pressure-temperature-approximation-humidity
sensing diagram, and (e) strain-temperature-pressure sensor with tensile properties
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weight estimation, and tactile pattern analysis. The resulting dataset
of 135,000 frames of full-hand tactile data provides an important
research benchmark in the field of tactile perception [191].
Similarly, Shen et al. [157] introduced a novel touch skin based
on supercapacitive sensing, which combines ion-based hydrogels
with conductive fabrics. This significantly enhances the sensitivity
and tactile feedback of robotic hands, opening up broad prospects
for applications in industrial robots and prosthetics.

Furthermore, Shi et al. [192] present a tactile sensor array based
on an ion-electronic mechanism for robotic surfaces, effectively
suppressing signal crosstalk while maintaining high-performance
pressure sensing. This advancement holds great potential for
tactile feedback in robotics and pressure detection in aerospace
applications [192].

3.2. The role of tactile sensing in material
recognition and operational adaptability

The robot’s ability to perceive material properties (e.g., softness,
roughness) is critical to performing safe operations. Qu et al. [193]
described the development of a smart finger using the triboelectric
effect, which generates a unique triboelectric fingerprint upon
material contact (with an accuracy rate of 96.8%). This approach
enables the dual recognition of material types and surface
roughness. These breakthroughs not only overcome the limitations
of traditional tactile sensors that only measure physical parameters
but also pave the way for the perception of psychological
parameters in robotic operations, such as tactile texture
recognition [193].

Qiu et al. [194] proposed a non-invasive method
for quantifying the elastic modulus of soft materials using a

multi-sensory electronic skin and improved machine learning
algorithms. By utilizing the synergistic mechanism of
piezoelectric signals and strain feedback, the robotic hand can
dynamically adjust its grasping force based on the object’s
softness (ranging from kPa to MPa), successfully applied to
sorting fragile items (such as fruits of varying freshness) [194]
(Figure 6 [157, 191–194]).

3.3. Integrated development of multimodal tactile
sensing systems

The integration of tactile sensors with other perception
modules is driving the multifunctional development of robots.
Yu et al. [195] presented a flexible physical and chemical
sensor array (M-BOT system) fabricated using inkjet printing
technology, which combines tactile sensing, electrophysiological
signal detection, and chemical hazard identification. By
applying machine learning algorithms to analyze surface
electromyographic signals and tactile feedback, the system
can make autonomous decisions and issue threat warnings in
contaminated environments. Such multimodal integration
technologies not only expand the application boundaries of
tactile sensors (e.g., in explosive detection and pathogen
screening) but also introduce a new mode of interaction for
remote robot operation in extreme environments [195].

Liu et al. [196] proposed a closed-loop human-machine interface
system based on skin-integrated electronics, which integrates tactile
feedback and visual signals, and enables wireless motion capture
via Bluetooth, Wi-Fi, and the Internet. This system shows great
potential in non-contact biological sample collection and the care of
patients with infectious diseases. Its innovation lies in enhancing

Figure 6
Robotic tactile sensing: (a) scalable haptic gloves with distributed sensing systems, (b) hydrogel array devices for robotics and

prosthetics, (c) ion-electronmechanism array applied to the surface of robotic wrist, (d) triboelectricmechanism enablesmaterial type
and roughness identification, and (e) piezoelectric signal and strain feedback are used together to sort fragile items feedback
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remote robotic control through tactile feedback, playing a significant
role in improving remote control precision [196].

In the field of multimodal sensing, Hua et al. [197] introduce
electronic skin based on a polyimide network, successfully
extending the sensory capabilities of E-Skin to multiple dimensions,
including temperature, humidity, light, and magnetic fields [197].

Wei et al. [198] demonstrated an intelligent tactile sensing
system combining TENG and deep learning technology,
which can reliably identify materials under various contact
conditions, achieving an accuracy rate of 96.62%. This system has
promising applications in bionic prosthetics and virtual space
construction [198].

Ren et al. [186] presented a flexible sensor based on gradient ionic
gels, inspired by the structure of human fingertip skin, exhibiting high
sensitivity and a wide detection range (3 × 10² to 2.5 × 106 Pa), while
maintaining excellent performance under extreme conditions (from
−108°C to 300°C). This sensor has significant potential in
intelligent grasping systems, capable of adapting to diverse tactile
tasks in complex environments [186] (Figure 7 [186, 195–198]).

3.4. Current challenges and future directions

Despite significant advancements in tactile sensing technology,
several key challenges remain, including the balance between sensor
density and flexibility, bottlenecks in multimodal data fusion,
the need for modeling tactile psychophysical parameters,
environmental adaptability issues, and limitations in low-cost

integration. Future research should focus on the development of
biomimetic materials, such as self-healing conductive polymers
and smart nanomaterials, to enhance durability and adaptability;
the integration of neuromorphic computing chips for embedded
processing to optimize real-time tactile perception data; the
creation of cross-modal perception frameworks to improve robots’
environmental adaptability; large-scale manufacturing of flexible
electronic skins to achieve low-cost and high-performance tactile
sensing; and AI-driven intelligent tactile interactions to enhance
tactile recognition capabilities, thereby advancing fields like
biomimetic prosthetics and smart gloves [199–202].

4. Conclusion

As robotics technology continues to evolve toward greater
autonomy and intelligence, tactile sensing systems have become one
of the key technologies for overcoming the interaction bottleneck
between robots and complex environments. The sensitivity,
multimodal perception capabilities, and environmental adaptability of
tactile sensors directly impact the operational precision and
adaptability of robotic systems across various application scenarios.
This is particularly important in fields such as precision surgery,
minimally invasive operations, and complex industrial manufacturing,
where tactile sensors capable of providing real-time, precise force
feedback are becoming increasingly vital in robotic perception systems.

Currently, the rigid structure, limited sensitivity, and single-modal
perception of traditional tactile sensors restrict their application in

Figure 7
Integration of tactile sensing on robot surfaces: (a) sensor integrating tactile perception, electrophysiological signals, and chemical
hazard identification, (b) closed-loop human-machine interface system for enhanced remote operation capabilities, (c) temperature-
humidity-light-magnetic field multi-dimensional perception, (d) tactile sensing system for stable material identification, and (e)

fingertip-inspired gradient ion gel sensors for grasping under extreme conditions
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complex interactive scenarios. In recent years, tactile sensor technologies
based on flexible electronic materials and biomimetic microstructure
designs have offered new solutions to address these challenges. The
emergence of novel sensing materials, such as ionic gels and flexible
electronic skin, has significantly enhanced the sensitivity, response
speed, and adaptability of sensors, driving their widespread application
in fields like healthcare, industry, and wearable devices. Different types
of sensors, such as resistive, capacitive, piezoelectric, and triboelectric
sensors, each exhibit unique advantages in their respective applications,
with piezoelectric and triboelectric sensors particularly excelling in
dynamic response and texture recognition.

However, despite some progress, tactile sensing technology still
faces numerous challenges. For instance, enhancing the multimodal
perception ability of sensors and improving their accuracy in
sensing complex mechanical parameters (such as normal and shear
forces) remain hot research topics. Furthermore, the high sensitivity
and fast response characteristics of sensors may encounter issues of
flexibility and stability in large-scale applications, requiring further
optimization throughmaterial innovations andmicrostructure designs.

Future research directions may focus on several key areas:
First, enhancing the sensitivity and environmental adaptability of
sensors through the use of flexible materials and biomimetic
designs, second, integrating multimodal sensing systems to
enable the simultaneous detection of multiple physical or
chemical parameters on a single sensor platform, thereby
improving the comprehensiveness and precision of robotic
perception. Finally, combining machine learning and intelligent
algorithms for sensor data processing could significantly
enhance the system’s adaptability and intelligence, making
tactile sensing technology more suitable for complex and
dynamic working environments.

Overall, with the continuous advancement of flexible materials,
sensor designs, and intelligent algorithms, tactile sensors are
expected to play an increasingly important role in future robotic
perception systems, providing strong support for the further
development of robotics technology.
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