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Abstract: Predicting the final grasp tendency at the start of movement in prosthetic hands is crucial for improved control. Biological data, such
as 3D movement and muscle activity, have been using by researchers to predict the final grasp. Early prediction of the intended grasp allows
the prosthetic device to initiate control actions before the motion is complete, resulting in faster and more intuitive responses. Most machine
learning algorithms are trained to predict the gesture of the final grasp. The aim of this study is to accurately estimate the final grasp state using
inertial measurement unit (IMU) data. This estimation, based on movement trajectories, will allow prosthetic devices to respond more quickly
to user actions. Deep Learning model was trained using movement data collected from a prosthetic hand controlled certain gesture trajectories
without any human involvement. Data such as acceleration, angular velocity, and orientation were gathered through IMU sensors to create 3D
orientation matrices representing the movement process. A deep convolutional neural network was used for training, with data labeled by the
final grasp states. The deep learning algorithm successfully predicted the final handmotion with 93% accuracy. This trained model enables the
generation of smooth supervisory trajectories, facilitating faster andmore accurate control of the prosthesis. The proposedmodel demonstrates
significant potential in improving prosthetic hand control by predicting the final hand movement at an early stage of motion, contributing to
more responsive and effective prosthetic devices.

Keywords: trajectory estimation, deep learning, prosthesis

1. Introduction

Controlling prosthetic hands is regarded as one of the most
important tools for improving the quality of life for prosthetic users.
To create any movement in prosthetic hands, the controller must
first determine the type of motion that the user tends to perform.
Determination of the movement traditionally relies on biological
signals, such as electromyogram (EMG) data which capture muscle
activity [1–3]. The ability to predict the final grasp type from early-
stage motion improves responsiveness by allowing the system to
begin executing control strategies sooner, reducing delay and
enhancing the fluidity of interaction between the user and the
prosthetic hand.

Processing such signals can be unreliable and complex because of
the challenges related to signal noise, variability between users, and
complexity in real-time control [4, 5]. These difficulties necessitate
alternative approaches. One of these approaches is motion
orientation and trajectory. The concept of motion orientation and
trajectory in prosthetic hands refers to more than just the path of

movement. It involves understanding the factors that affect how the
hand moves and interacts with its surroundings [6, 7]. The
trajectory depends on the kinematic capabilities of the prosthetic
hand. It also depends on the changing environment and the
coordination between the user’s intentions and movements [8].

Using advanced motion trajectory planning can significantly
improve the performance of a prosthetic hand. It enhances
precision and dexterity. Whether the task involves reaching,
grasping, or executing complex movements, an optimized
trajectory ensures the prosthetic hand operates efficiently [9, 10].
A well-designed motion trajectory improves the user’s comfort
and overall experience, reducing the physical and cognitive effort
needed to use the prosthesis [11, 12].

It is necessary to understand the functional movements of the
human hand to develop prosthetic systems with the capability to
mimic the dexterity and control of natural grasping behavior.
Functional hand movement depends on the sophisticated
coordination of anatomical components and biomechanical forces
that are responsible for precise manipulation during activities of
daily living. Recent research has stressed the complexity of hand
prehension and the requirement for systematic classification of
grasp types and motion patterns [13]. Biomechanical studies have
shed light on the coordination of the joints and muscle groups of
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the hand in functional activities, emphasizing how these patterns help
achieve stable and adaptive grasping [14]. Furthermore, it has been
shown that hand coordination strategies are not just task dependent
but also mirror highly optimized motor control mechanisms
specialized for daily activities [15]. Both ergonomic and functional
evaluations still provide useful paradigms for the quantification of
hand performance and the comprehension of normal and
pathological movement patterns [16, 17]. The integration of such
research into prosthetic system design guarantees that the control
strategies are compatible with the natural functional abilities of the
hand. Therefore, our research focuses on movement classes that
account for a large percentage of everyday hand activities to
close the gap between machine learning-based prediction and
biomechanically driven grasp function.

Motion estimation in Cartesian space is one of the most
challenging tasks for almost any dynamic system. Accurate
measurement equipment and a suitable data analysis system are
needed to measure movement, determine its behavior and produce
meaningful information from the obtained data. To acquire and
collect information from motion, inertial measurement unit (IMU)
devices have attracted much attention from industrial applications
to daily activities [18–20]. Generally, an IMU consists of
accelerometers and gyroscopes, which can be used to measure
angular and linear acceleration in different axes. These small,
lightweight sensors are used to track the prosthetic hand’s motion
by measuring the hand’s changes in orientation and position. The
data collected by the IMU are then used to estimate the hand’s
position and orientation. These data can be used to track the
hand’s rotation, orientation, and movement, and this information
can be used to control the prosthetic hand’s or fingers’ direction.

Deep learning (DL) algorithms are the most popular approaches
in data science [21–23]. These algorithms can interpret data to
predict patterns. Data fed into a DL are transformed into
meaningful representations [24]. The power of DL in data analysis
has led researchers to design models capable for various fields
such as computer vision, speech recognition, medical research,
robotics, genetics, transportation, etc., [25–28].

Convolutional neural networks (CNN) as DL models are
particularly suited for classification tasks due to their ability to
capture both spatial and temporal relationships in the data [29–31].
CNNs can automatically learn the features needed for classification
from raw data allowing it to make predictions or control decisions
based on high-dimensional and complex input. They simplify the
process and improve accuracy. Furthermore, CNN is a powerful
technique that has been applied to various problems in prosthetics,
including control of hand motion and orientation [32–34].

In the context of prosthetic hand motion trajectory, CNNs have
shown strong potential for learning complex patterns in both the
kinematics and dynamics of movement, as well as user intention
[35, 36]. When trained on motion data collected via wearable
sensors, these models can predict intended hand trajectories and
orientations, enabling prosthetic systems to mimic natural
movement or adapt to varying grasping forces [37].

Recent developments in intention prediction systems have
incorporated cognitive control architectures and neural learning to
recognize user intention in real time, particularly within assistive
robotics [38]. These approaches typically combine multimodal
sensor data with advanced classifiers to generalize across different
user behaviors. Even though some prior research has focused on
lower-limb movements such as gait using IMU signals
and CNN-based feature extraction techniques [39, 40], the
methodological foundations are applicable to upper-limb
prosthetics as well. These studies highlight the effectiveness of

time-frequency analysis and convolutional architectures in
extracting meaningful features from IMU data, regardless of the
limb in question. This supports the idea that intention prediction
techniques developed for gait or full-body motion analysis can
inform upper-limb applications, especially when viewed from a
sensor modality and data-processing perspective.

Recent advances in wearable devices such as muscle-driven
control systems [41] and cognitive computing for flow status
prediction [42] reflect the growing trend of integrating soft
actuators and AI models in assistive technologies, complementing
data-driven sensing approaches like the one presented in this study.

The development of lightweight, embedded IMU systems
further supports this transition. Studies have demonstrated how
such sensors can be integrated into intelligent orthotics and
prosthetics to enhance motion tracking and control [43]. Similarly,
gesture recognition systems designed for individuals with
neurological disorders have successfully combined temporal
signal preprocessing with artificial neural networks to classify
motion intentions based on wrist-worn devices [44]. Additionally,
CNN-based models originally developed for detecting fine-
grained hand motions in sports contexts—such as swing analysis
in tennis or golf—offer insights into how hand motion patterns
can be modeled and classified in real-world environments [45].
These applications reinforce the versatility of DL in motion
intention recognition across domains. Recent reviews emphasize
the growing preference for IMU-based control systems due to
their robustness, cost-efficiency, and ease of use compared
to EMG-based counterparts [1, 2, 18]. Feature extraction
methods optimized for embedded implementation [18], wearable
electromechanical sensor designs [34], and the integration of
sensor fusion strategies [10, 46] reflect a growing focus on
intelligent, user-centered design in modern prosthetic development.

In this study, we propose a novel pipeline that projects
IMU-based 3D motion trajectories onto 2D images, so that matured
CNN models can be utilized for final grasp prediction with minimal
hardware overhead. In comparison with purely EMG-based
solutions, our approach alleviates the effects of skin-electrode
impedance and user signal variation [8] while preserving real-time
performance. Our innovations are the single-sensor approach with
onboard embedded GPU processing, a novel CNN model that
captures salient spatiotemporal features from partial trajectories, and
extensive validation with multiple daily-living grasp types. This
specifically responds to the growing demand for affordable, user-
friendly prosthetic options.

2. Materials and Methods

The pre-designed and 3D-implemented prosthetic hand is used to
collect data and conduct verification. The prosthetic hand used in this
study has 6 degrees of freedom in total: five for individual finger
flexion-extension and one for thumb abduction/adduction. Although
a full kinematic chain analysis is beyond the scope of this study, this
configuration aligns with the theoretical estimation derived from
Grübler’s criterion for planar mechanisms as given in Equation (1) [47].

DOF ¼ 3 n� 1ð Þ � 2j (1)

Here n is the number of links, and j is the number of joints. Each
finger joint acts as a single DOF revolute joint, and the total DOF
of 6 reflects the functional movement capabilities of the device used
for data collection.

As seen in Figure 1, the system includes the IMU, motor driver,
and main control unit (MCU). As seen in Figure 2 for collecting
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motion data, BNO05518 MEMS IMU has been chosen for its
affordability and accessibility. NVIDIA Jetson Nano is selected
as the MCU due to its ability to meet the system’s specific
requirements. This board has a GPU featuring 128 CUDA cores.
This feature empowers the system to perform DL algorithms in
real-time duties efficiently.

2.1. Data collection

During the data collection process, acceleration data related to
hand movements are obtained using the IMU sensors. The sensor is
placed on the hand as seen in Figure 1 and collected acceleration data
in the x, y and z axes at a rate of 63 Hz.

The collected acceleration data are used to create a 3D trajectory of
handmovements as seen in Figure 3. These trajectories formed the basis
for estimating grasping states. Common hand movements in daily life,
such as grasping positions and pointing states, are analyzed. The
trajectories of different grasping and pointing movements are defined
with the unique characteristics of each movement.

The processing structure of motion measurements, which
involves converting the acquired data into a 3D motion curve and
then displaying it as an image, is clearly summarized in Figure 3.

All experimental data were obtained using a prosthetic hand setup
that operates independently without any human involvement.
Acceleration and angular velocity data were collected solely from
an inertially instrumented prosthetic hand mounted on a controlled
hardware setup.

The dataset contains 7 different movement classes, and these
specific behaviors are chosen as they accounted for a substantial

portion, approximately 80%, of the actions performed by individuals
in their daily lives [48–50]. Each set contains 120 samples, and a
total of 840 samples were collected. This dataset is used to train the
CNN model and is divided into 70% for training, 15% for validation,
and 15% for testing, with a stratified split applied to maintain class
balance. The whole process begins with measurement, preprocessing,
and training of CNN as illustrated in Figure 4.

2.2. CNN architecture

The model is built using convolutional layers to extract image
features, followed by dense layers for classification. In the
constructed model, a 48 × 48 image file is fed into the model,
passing through several convolution layers. Sixty-four filters
construct the first convolutional layer with an 11 × 11 kernel size
and the same padding. The architecture was optimized through
iterative experiments, where the 11 × 11 kernel in the first layer
was chosen to capture broader motion patterns, followed by
smaller kernels for fine-grained features. Dropout rates and filter
counts were selected based on validation performance and
common best practices to balance generalization and accuracy.

The ReLU (rectified linear unit) is selected as the activation
function because it improves the convergence rate during training
and eliminates the vanishing gradient problem. Also, it helps to
reduce computational complexity, as it is computationally
efficient. Outputs of activation functions pass through maximum
pooling operation with a pool size of 2 × 2 and 2 × 2 stride.
Finally, a dropout operation with a 0.25 dropout rate is applied to
the pooled data to suppress the overfitting tendency of the model.
The constructed CNN model is shown in Table 1.

A similar strategy is followed for the subsequent two
convolutional layers with different filter counts and kernel sizes.

Figure 1
The prosthetic hand and hardware setup attached

Figure 2
Connection schema for hardware setup

Figure 3
3D trajectory curve stacked image representations
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Parameters of each layer are also shown on the given CNN model
representation in Table 1. The output of the last convolutional
layer is fed into a fully connected layer with 512 units with ReLU
activation. A dropout layer with a 0.5 rate is inserted to increase
the generality and decrease the overfitting.

Softmax activation is selected as the output layer activation
function in CNNs for several reasons; since this work deals with
multi-class classification problems, the Softmax function can
handle multiple classes simultaneously. It also is a probability
distribution function that maps the output of the last layer of the
CNN to a probability distribution over the possible classes to
ensure that the network’s production is a valid probability

distribution. Finally, a previous classification dense layer is
connected to the model with seven units, where 7 holds the
number of classes followed by a Softmax activation as output.

2.3. Training procedure

A robust CNN model capable of predicting movement
trajectories in prosthetic hands is developed through a structured
process. First, the IMU data produced by the prosthetic hand
while performing various grasping tasks are collected, and these
data provide the input features for model training. The collected
data are divided into a training set to be used in model training
and a validation set to evaluate its performance. IMU data are
normalized to ensure consistent scaling of the data, which
facilitated stable learning of the model.

Cross-entropy has been used as a loss function for training
process. Throughout the training, the model performance on the
validation dataset is constantly monitored. Hyperparameters are
adjusted to avoid overfitting. This process is repeated by fine-
tuning the parameters and hyperparameters of the model until the
desired performance is achieved.

3. Results

The test accuracy of the model is calculated as 93%. The
performance of the model is evaluated using precision, recall, and
F1-Score metrics, as shown in Tables 2 and 3. These metrics
provided valuable insights into the model’s ability to classify
various motion classes.

Percentage of data to confidence level is shown in Figure 5. This
shows that for point and spherical movements, the confidence level
does not drop below 0.8 after reaching the halfway point of the
movement. Overall, from the halfway point to the end of the
grasping movement, the confidence level remains above 0.65 for
all movement types. The proposed system has shown promising
results in improving the operating speed and usability of

Figure 4
Prosthetic hand grasping detection system

Table 1
Convolutional deep neural network structure

Layer Description

Input 48 × 48 image files
Convolution 64 filters of size 11 × 11
Activation function RELU
Max Pooling 2 × 2 pooling with 2 × 2 stride
Dropout 0.25 cut ratio to increase generally
Convolution 128 filters of size 5 × 5
Activation function ReLU
Max Pooling 2 × 2 pooling with 2 × 2 stride
Dropout 0.25 cut ratio to increase generally
Convolution 256 filters of size 3 × 3
Activation function ReLU
Max Pooling 2 × 2 pooling with 2 × 2 stride
Dropout 0.25 cut ratio to increase generally
Fully connected Fully connected layers with 512 units
Activation function ReLU
Dropout 0.5 cut ratio to increase the generality
Fully connected Fully connected layer with 7 units
Activation function Softmax layer
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prosthetic hands and has provided a more intuitive and efficient user
experience.

The confusion between Tip and Trip likely results from similar
inertial patterns during the early motion phase, where their
trajectories have high overlap. This suggests that fine-grained
class separation may benefit from temporal modeling or additional
sensing inputs in future work.

4. Discussion

The objective of this research was to enhance motion trajectory
estimation for prosthetic hands through the implementation of DL
techniques. Findings show that an impressive degree of accuracy
(93%) is achievable with the utilization of IMU-based data and a
CNN model. Interestingly, recent research still underscores the
potential of wearable sensor technologies, specifically IMUs, in
rehabilitation, activity monitoring, and prosthetics due to their
portability and comparative low susceptibility to noise [18–20]. Their
efficacy has been proved not just in simple motion classification but
also in more complex activities such as path planning and gait
recognition, thus showing the promise of continuous improvement of
algorithms designed for the operation of a prosthetic hand.

Compared to EMG-only techniques, IMU-based techniques are
less affected by complications from changing electrode-skin contact,
muscle fatigue, and between-user variations [5, 10]. Yet every
approach has its limitations as well; for example, motion artifacts

Table 2
Confusion matrix for prosthetic hand grasping detection system

Cyl Hook Pinch Point Sph Tip Trip

Cyl. 18 0 0 0 0 1 0
Hook 0 17 0 0 0 0 2
Pinch 0 0 19 0 0 0 0
Point 0 0 0 19 0 0 0
Sph. 0 0 0 0 18 0 1
Tip 0 0 0 0 0 17 2
Trip 0 0 0 0 0 3 17

Table 3
Precision, recall, and F1-Score information for prosthetic hand

grasping detection system

Precision Recall F-1 Score Support

Cyl. 1 0.95 0.97 19
Hook 1 0.89 0.94 19
Pinch 1 1 1 19
Point 1 1 1 19
Sph. 0.95 0.95 0.95 19
Tip 0.81 0.85 0.83 20
Trip 0.77 0.85 0.81 20

Figure 5
Confidence levels for each motion using various subsets of the collected test data
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and external accelerations can ruin IMU performance when sensor
placement is not ideal, or the hand comes into contact with
objects that impart forces not related to the intended movement of
the user.

While CNN models have already proven to be robust to the
removal of these artifacts [23, 24], continued improvements in
data preprocessing (i.e., sensor fusion, filtering, segmentation)
remain crucial to ensure reliability, especially in real-world daily-
living scenarios.

One direction for ongoing research is multimodal sensor fusion,
pairing IMUswith other signals such as EMGormuscle synergy data
[5, 10]. Fusing these complementary sensing modalities has the
promise of enhancing both control precision and responsiveness,
even if the increased system complexity would require greater
onboard higher-level processing [30]. In this regard, previous
research has shown that more recent architectures—such as
recurrent neural networks and Transformers—are better able to
maintain temporal dependencies and thus could be used to
advance real-time motion prediction [23, 31]. User-centered
design principles, as explored in literature on human-machine
collaboration, call for the provision of intuitive control in the
context of prosthetic devices [9, 36]. As this study illustrates, by
anticipating the ultimate shape of the hand, prostheses can be
rendered more responsive, decreasing cognitive load and
enhancing quality of life overall [12, 18].

Furthermore, current research on virtual and augmented reality
training systems shows that IMU-based solutions can also be used for
immersive rehabilitation and skills learning [12]. The systems can
offer the potential to integrate motion data, user interaction, and
game-based training exercises to create a comprehensive and user-
centered strategy for prosthesis adaptation. While the current
dataset provided promising results, we acknowledge that the
limited number of samples per class may affect generalizability. In
future work, we plan to expand the dataset with more diverse and
larger-scale motion recordings to further validate the robustness of
the model across users and scenarios. Follow-up work can expand
the dataset to include a more varied range of fine-grained grasp
types and test the system’s robustness in real-world settings with
varying users. Hardware acceleration (e.g., quantization or model
pruning for embedded GPUs) can further reduce latency for
onboard processing, essential for fluency in prosthetic hand
control. Future work will also include benchmarking against
simpler architectures such as MLPs and classical machine learning
models using raw IMU features, in order to assess trade-offs
between model complexity and prediction performance.
Ultimately, clinical trials involving subjects with differences in
limbs will be important for quantifying the real-world impacts of
the system, thus enabling comprehensive integration of IMU-
based trajectory estimation into prosthetic hand design and control.

5. Conclusion

In conclusion, integrating DL algorithms and motion-sensing
technology represents a pioneering approach to advancing prosthetic
hand control. By accurately anticipating motion trajectories and
grasping actions, individuals can attain a seamless and proficient
user experience, ultimately enhancing their overall well-being.
Utilizing an affordable yet dependable IMU enables the capture and
analysis of intricate motion data. At the same time, a deep CNN
model extracts valuable patterns and facilitates precise prediction of
grasping actions. Our research findings, demonstrating an
impressive accuracy rate of 93%, testify to the transformative
potential of incorporating intelligent predictive systems into

prosthetics hands. The practical application of this research holds
tremendous promise in elevating the functionality and usability of
prosthetic hands, empowering individuals to seamlessly execute a
diverse range of tasks with remarkable dexterity and ease.
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