
Received: 10 March 2025 | Revised: 22 April 2025 | Accepted: 12 May 2025 | Published online: 27 May 2025

RESEARCH ARTICLE

Software Defect Prediction Using
Traditional Machine Learning and
Ensemble Learning Algorithms

S. M. Hasan Kabir1, Md. Tanim Rahman1 and Aunik Hasan Mridul2,*

1Software Engineering, Daffodil International University, Bangladesh
2Computer Science and Engineering, Daffodil International University, Bangladesh

Abstract: Software defect prediction (SDP) leverages machine learning to identify potential defects in software systems, enhancing software
quality and reducing maintenance costs. Traditional techniques like Naïve Bayes, Decision Trees, and support vector machines (SVM) have
been widely used for defect prediction due to their simplicity and interpretability. However, ensemble techniques such as Random Forest (RF),
AdaBoost, and Bagging have gained prominence for their ability to improve accuracy by combining multiple models. While these methods
have demonstrated promising results, challenges like overfitting, imbalanced datasets, and inadequate model tuning remain critical for further
improvement in SDP. There are various types of datasets available in online. We have selected four datasets. We employed RF, Logistic
Regression (LR), Gradient Boosting (GB), K-Nearest Neighbor (KNN), Decision Tree (DT), and XGB Classifier. In order to thoroughly
investigate and assess each model’s predictive potential for identifying software defects and the issues they cause, we also used
ensemble approaches. The results were promising, with the KNN achieving a noteworthy test accuracy of 87.08% for Dataset PC1,
KNN of 76.49% for dataset JM1, KNN of 81.45% for dataset KC1 and GB of 92.89% for dataset CM1. Furthermore, Boosting GB also
demonstrated accuracy matching this high standard of 94.5% for dataset CM1. To further enhance performance, we implemented a
range, including Bagging, Boosting, Stacking, and Voting algorithms, optimizing each classifier with the best parameters through
hyperparameter tuning. Through our experimental investigation, we not only contributed to the body of knowledge on SDP but also
identified the Gradient Boosting with Boosting model as the most accurate, achieving an outstanding accuracy rate of 94.5% for SDPs.
This research endeavors to provide invaluable insights into software defect management, offering a potential solution for early
intervention and ultimately improving software outcomes.

Keywords: software defect, bagging, boosting, ensemble, machine learning, recall

1. Introduction

Software defect prediction (SDP) has become an essential
aspect of software engineering, playing a crucial role in
identifying defective modules or components during the software
development process [1]. The early detection of software defects
can significantly enhance software quality, reduce development
costs, and ensure timely delivery of projects. With the increasing
complexity and size of software systems, manual approaches to
defect identification have proven inefficient. As a result, machine
learning (ML) techniques have emerged as a promising solution to
automate the defect prediction process. These techniques are
capable of learning from historical data, extracting meaningful
patterns, and making predictions about future defect occurrences [2].

The traditionalML approaches used for SDP include algorithms
such as Naïve Bayes, Decision Trees (DT), support vector machines
(SVM), K-Nearest Neighbor (KNN), and artificial neural networks
(ANN). These algorithms have been widely applied due to their

simplicity, interpretability, and ability to handle diverse datasets.
For instance, Naïve Bayes is favored for its efficiency in handling
large datasets and its probabilistic approach to classification, while
DTs offer an intuitive model structure that is easy to interpret and
visualize [3]. SVM, on the other hand, is known for its robustness
in high-dimensional spaces, making it suitable for defect
prediction tasks where a large number of features are involved [4].

Despite the success of these traditional ML techniques in defect
prediction, they are often limited by challenges such as overfitting,
imbalanced datasets, and poor generalization across different
software projects. Overfitting occurs when a model becomes too
complex, fitting the training data too closely and failing to
generalize to new data [5]. Imbalanced datasets, where the number
of defective modules is much smaller than non-defective ones, can
cause models to be biased toward the majority class, resulting in
poor predictive performance for the minority (defective) class.
Moreover, the performance of traditional ML models can vary
significantly when applied to different datasets, making it difficult
to develop a generalizable solution [6].

To address these limitations, researchers have increasingly
turned to ensemble techniques for SDP. Ensemble methods

*Corresponding author: Aunik Hasan Mridul, Computer Science and
Engineering, Daffodil International University, Bangladesh. Email: Aunik15-
2732@diu.edu.bd

Smart Wearable Technology
2025, Vol. 00(00) 1–16

DOI: 10.47852/bonviewSWT52025645

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0002-5034-1087
mailto:Aunik15-2732@diu.edu.bd
mailto:Aunik15-2732@diu.edu.bd
https://doi.org/10.47852/bonviewSWT52025645
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

combine the predictions of multiple base models to create a more
accurate and robust predictor. The underlying idea behind
ensemble learning is that a group of weak learners can be
combined to form a strong learner. This approach helps mitigate
the issues of overfitting and variance in predictions, leading to
improved accuracy and stability.

There are several popular ensemble techniques used in SDP,
including Bagging, Boosting, and Stacking. Bagging (Bootstrap
Aggregating) is an ensemble technique that trains multiple models
on different subsets of the training data, obtained through
bootstrapping [7]. Each model makes a prediction, and the final
output is determined by aggregating the predictions (e.g., through
majority voting). Random Forest (RF), a widely used bagging-
based technique, consists of an ensemble of DTs. By combining
the predictions of multiple trees, RF reduces the variance in
predictions and improves generalization [8].

Boosting, another prominent ensemble method, focuses on
creating a strong model by sequentially training weak models. In
Boosting, each subsequent model tries to correct the errors made
by the previous models. The models are trained in a weighted
manner, with more emphasis placed on the misclassified
instances. AdaBoost and Gradient Boosting (GB) are two popular
variants of Boosting that have been successfully applied to SDP.
AdaBoost combines multiple weak classifiers (typically decision
stumps) to create a strong classifier, while GB builds models in a
stage-wise manner to optimize a loss function [9].

Stacking is a more advanced ensemble technique that involves
training multiple base learners and combining their predictions using
a meta-learner. The base learners are trained on the original dataset,
and their predictions are used as input to the meta-learner, which
makes the final prediction. Stacking allows the model to capture
diverse patterns from different algorithms and leverage their
strengths to improve predictive performance [10].

Ensemble methods have shown great promise in overcoming
the limitations of traditional ML techniques. By combining
multiple models, ensemble methods reduce the risk of overfitting,
handle imbalanced datasets more effectively, and produce more
stable and accurate predictions [11]. For example, RF, an
ensemble of DTs, is less prone to overfitting than a single DT and
can achieve higher accuracy in defect prediction tasks. Similarly,
Boosting techniques like AdaBoost and GB have been shown to
improve the performance of weak classifiers by focusing on the
difficult-to-predict instances, resulting in more accurate
predictions [12].

However, ensemble techniques are not without their challenges.
One of the main issues with ensemble methods is their computational
complexity. Training multiple models and combining their
predictions can be computationally expensive, especially for large
datasets. This can make ensemble techniques less feasible for real-
time defect prediction tasks or for applications where
computational resources are limited [13]. Additionally, ensemble
methods can be more difficult to interpret than traditional ML
models. While a single DT is easy to visualize and understand, a
RF consisting of hundreds of trees can be much more complex to
analyze and interpret [14].

Despite these challenges, the advantages of ensemble
techniques in terms of predictive accuracy and robustness have
made them a popular choice for SDP. Several studies have
demonstrated the superior performance of ensemble methods over
traditional ML techniques in SDP [15]. For instance, RF has been
shown to outperform individual DTs, SVM, and Naïve Bayes in
terms of both accuracy and stability. Similarly, Boosting
techniques have been found to achieve higher accuracy than

traditional models by focusing on the difficult-to-classify
instances [16].

Both traditional ML techniques and ensemble methods have
been widely applied to SDP, each with its strengths and
limitations. Traditional models such as Naïve Bayes, DTs, and
SVM are simple and easy to interpret, but they can suffer from
overfitting, imbalanced datasets, and poor generalization across
datasets. Ensemble techniques, on the other hand, address these
issues by combining multiple models to create a more robust and
accurate predictor. While ensemble methods can be
computationally expensive and difficult to interpret, their superior
performance in terms of predictive accuracy and robustness makes
them an attractive option for SDP tasks. As the field of ML
continues to evolve, further research into improving the efficiency
and interpretability of ensemble methods is likely to lead to even
more effective solutions for SDP [17].

2. Literature Review

ML methods play a crucial role in identifying the intricate
architecture of PCOS disease, focusing on the evaluation of
patient diagnosis reports. Various techniques, such as GS, RF,
Logistic Regression (LR), GB, KN, ABC, and DT, are employed
for the exploratory analysis in this field. Researchers have
extensively employed a range of models, as discussed in this
segment, to enhance our understanding of PCOS.

Recent studies on SDP using ML have focused on a variety
of techniques to improve accuracy and model performance,
though several have encountered limitations that hindered their
ability to achieve accuracy rates above 94%. These studies
offer critical insights into the challenges faced when applying
different ML algorithms, feature selection methods, and
ensemble techniques to SDP tasks. Despite their diverse
methodologies, the accuracy of these models remained below
the 94% mark due to factors such as data preprocessing,
imbalanced datasets, overfitting, and insufficient feature
extraction, among other issues.

Ronchieri et al. [18] adopted unsupervised ML methods using
unlabeled datasets, introducing two models—CLAMI and CLAMI+
—which operate independently of metric thresholds and require
minimal expert intervention. Their findings indicated that
Bagging, Boosted LR, and Adaptive Boost techniques yielded the
highest average accuracy across datasets, showing potential for
practical implementation in defect localization [18].

Similarly, Assim et al. [19] presented an SDP model on the
Weka 3.8.3 platform using eight ML algorithms, drawing on
historical software data. Their evaluation revealed that ensemble
models consistently performed well, with the SMOreg algorithm
achieving the best results, while the ANN model underperformed.
Their comparative analysis suggested that integrating multiple
classifiers enhances defect detection accuracy [19].

Qiao et al. [20] emphasized the importance of data
preprocessing—specifically log transformation and normalization
—before feeding it into a neural network-based prediction model.
Applied to two benchmark datasets, their approach significantly
reduced mean square error by over 14% and improved the
squared correlation coefficient by more than 8%, demonstrating
the model’s robustness and accuracy in defect forecasting [20].

In a novel approach, Chen et al. [21] visualized software as
images for direct input into convolutional neural networks
(CNNs), leveraging self-attention and cross-project learning. Their
image-based method eliminated the need for feature extraction
tools. Experimental results from ten open-source projects

Smart Wearable Technology Vol. 00 Iss. 00 2025

02

confirmed the model’s effectiveness in defect detection, validating
deep learning’s capabilities in this domain [21].

Hasanpour et al. [22] introduced deep learning methods—
Stacked Sparse Auto-Encoder (SSAE) and Deep Belief Network
—to manage the challenge of imbalanced and small-sized NASA
datasets. SSAE was noted for its superior generalization ability,
although performance varied across datasets due to data
limitations. SSAE outperformed traditional techniques in several
test cases [22].

Jin [23] addressed class imbalance by applying cost-sensitive
learning to the Large Margin Distribution Machine (LDM),
creating the CS-ILDM model. Evaluated on five datasets, the
model demonstrated a strong performance in mitigating
misprediction costs while maintaining high accuracy [23].

Khan [24] assessed various ML models on healthcare datasets
using metrics such as mean absolute error, recall, and accuracy. RF
achieved the highest performance with an average accuracy of
88.32% and a rank value of 2.96, closely followed by SVM and
Creedal DT, affirming RF’s predictive superiority [24].

Zhang et al. [25] compared LR, SVM, and back propagation
neural network models for SDP. Among these, SVM provided the
highest prediction accuracy based on combined values of
Precision, Recall, and F-measure, despite challenges in parameter
optimization and model stability [25].

Shi et al. [26] introduced a unique representation of source code
using Multi-Perspective Tree Embedding, which extracted nodes
from abstract syntax trees (ASTs) across three distinct views.
Their unsupervised embedding method improved the model’s
ability to detect defects by encoding diverse structural and
semantic information, offering enhanced expressiveness and
adaptability to different software projects [26].

Rahim et al. [27] proposed a three-phase SDP framework
involving data preprocessing, feature extraction, and ML-based
classification. Using Naive Bayes (NB) and linear regression, their
approach reached a remarkable prediction accuracy of 98.7% with
the NB classifier, highlighting the importance of efficient
preprocessing and feature selection [27].

Lin and Lu [28] developed a framework called Feature Learning
via Dual Sequences, which generated semantic features from ASTs
using bi-directional long short-term memory networks. By
combining semantic and structural attributes, the method showed
superior performance across eight open-source Java projects,

outperforming several existing SDP models in terms of predictive
accuracy [28].

Chen et al. [29] employed neighbor cleaning and ensemble
under-sampling strategies to develop a robust model tested on
nine highly imbalanced datasets. Their ensemble approach
demonstrated enhanced accuracy compared to standard classifiers
and preprocessing techniques [29].

Hammouri et al. [30] applied NB, DT, and ANN models across
three real-world debugging datasets, concluding that DT provided
superior prediction accuracy [30].

Additionally, Matloob et al. [31] conducted a systematic
literature review on ensemble learning methods for SDP and
found that ensemble strategies consistently outperformed single
classifiers. The study highlighted the importance of classifier
diversity and feature selection to maximize model performance
[31]. Table 1 shows the comparative analysis with previous work.

3. Research Methodology

A training-and-testing-based supervised learning approach was
applied in this work. The training dataset, from which the algorithm
discovered patterns and correlations, was used to build the
classification model. The trained model was then used to
categorize new occurrences or predict outcomes on the testing
dataset. We have created a number of classifiers, including the
RF, LR, GB, KN, XGB, and DT techniques.

3.1. RF

For problems involving regression and classification, an
ensemble learning technique called a RF is commonly employed.
It works by constructing several DTs during training and
generating the average prediction (regression) or grouping
(classification) of every single tree. The “forest” is constructed
using a process known as bagging (Bootstrap Aggregating), in
which a DT is taught on each of the dataset’s many subsets that
are produced via replacement. This method averages out variances
and biases from individual trees, which helps to decrease
overfitting and increase the model’s generalization. The usefulness
of RFs in producing precise forecasts without requiring substantial
parameter adjustment is well-known, as is their robustness and
capacity to handle big datasets with increased dimensionality [32].

Table 1
Comparative analysis with previous work

SL No Author name Used algorithm Best accuracy

1 Ronchieri et al. [18] CLAMI and CLAMI+ 98.87%
2 Assim et al. [19] MPT-Embedding 80%
3 Qiao et al. [20] Machine Learning 84%
4 Chen et al. [21] PROM, LSTM, CNN 64.2%
5 Hasanpour et al. [22] SSAE, DBN 99%
6 Jin [23] CSL, LDM, CS-ILDM 80.9%
7 Khan [24] RF, SVM, CDT 88.32%
8 Zhang et al. [25] LR, SVM, BPNN 85.8%
9 Shi et al. [26] MPT, ASTs 63.57%
10 Rahim et al. [27] NB, Linear Regression 98.7%
11 Lin and Lu [28] FLDS, BiLSTM 68.4%
12 Chen et al. [29] Ensemble Techniques 74.9%
13 Hammouri et al. [30] NB, DT, ANN 97.1%
14 Matloob et al. [31] Ensemble learning 98%

Smart Wearable Technology Vol. 00 Iss. 00 2025

03

3.2. DT

Examining the attribute that the base of the tree node represents
is the first step in categorizing an instance. Next, we follow the
branch of the structure that corresponds to the value of that
characteristic. With just two number classes needed, the DT
methodology is among the most widely used and effective
prediction techniques. Each inner node of a DT, a data structure
with an ordered structure where each node in the leaf hierarchy
indicates a distinct class, represents an attribute test. On the basis
of DTs, a tree structure known as DT is frequently employed.
This approach can handle classification and regression issues. The
tree starts at the root node and uses the “splitting” method to
select the “Best Features” or “Best Attributes” from the pool of
possible qualities. Entropy examines a dataset’s consistency,
whereas data collection gauges how quickly changes in an
attribute’s volatility occur [33].

3.3. XGB classifier

The XGBoost (Extreme GB) classifier is a powerful and
efficient implementation of the GB framework, specifically
designed for supervised learning tasks. It excels in predictive
performance by combining an ensemble of weak prediction
models, typically DTs, to create a robust predictive model.
XGBoost offers several key advantages, including handling
missing values, incorporating regularization to prevent overfitting,
and leveraging advanced tree learning algorithms that optimize
speed and performance. It is a well-liked option for many
applications because of its scalability and versatility, from
structured/tabular data to more complex domains, offering
superior accuracy and efficiency in comparison to many
traditional ML algorithms [34].

3.4. LR

Modeling the likelihood of a binary result using one or more
predictor variables, LR is a method of statistics used for binary
classification. Typically coded as 0 or 1, LR predicts the chance
that an instance belongs to a certain category, as opposed to linear
regression’s prediction of a continuous result. This is
accomplished by converting the linear sum of the given input
variables into an amount between 0 and 1 using the logistic
function, commonly referred to as the sigmoid function. The
model provides coefficients that indicate the influence of each
predictor and calculates the likelihood that the dependent event
will occur [35, 36]. In order to predict the existence of diseases,
consumer behavior, and other things, LR is often utilized in the
social sciences, medical, and ML domains.

3.5. GB

For regression and classification applications, GB is a potent
ML approach that creates an ensemble of weak learners, usually
DTs. In order to fix the mistakes produced by earlier models,
iteratively adding new models while concentrating on the data
points that are most difficult to forecast correctly is how it
operates. Every new model is trained to gradually minimize the
total prediction error by reducing the residual errors of the
aggregate ensemble. Because GB uses a sequential technique, it
may produce very precise prediction models. This makes it very
useful for managing complicated datasets and identifying minute
trends. To avoid overfitting and maximize performance,

nevertheless, meticulous hyperparameter adjustment is
necessary [37].

3.6. K-Nearest

A straightforward, non-parametric, and user-friendly technique
for classification and regression problems in ML is the KNN
classifier. It functions by finding the k instances in the training
dataset that are the closest to a given input (neighbors) and then
predicting the output based on the average value (for regression)
or majority class (for classification) of these neighbors. Distance
measures like Euclidean distance are commonly used to quantify
similarity. Even though k-NN is straightforward, it can be
effective, particularly for short datasets or in situations where the
decision border is extremely irregular. It is, however, sensitive to
the choice of k and the distance measure and computationally
costly for big datasets. For data to perform better, feature selection
and data scaling must be done correctly.

3.7. Ensemble learning algorithms

Combining many ML models to increase overall prediction
accuracy and resilience is known as ensemble learning [38].
Ensemble learning methods like Boosting and Bagging offer
superior predictive performance in SDP by aggregating the
strengths of multiple base models. These approaches reduce
variance (Bagging) and bias (Boosting), leading to more robust
and generalized models. In the context of SDP, where software
quality and reliability are paramount, these techniques outperform
traditional models by handling noisy, imbalanced, and high-
dimensional data more effectively. They also improve recall and
precision, which are critical in identifying actual defect-prone
modules without too many false positives or negatives.

3.7.1. Bagging classifier
Bootstrap Aggregating, or Bagging, is a strategy for ensemble

learning that aims to increase the precision and resilience of ML
models. It entails using several subsets of the training data
produced by bootstrap sampling—random sampling with
replacement—to train numerous base models, usually DTs. Every
model undergoes separate training, and for classification tasks, the
predictions are aggregated by a majority vote, and for regression
tasks, through averaging. Bagging, as opposed to using a single
model, produces more consistent and dependable performance by
combining the predictions of many models, which lowers variance
and helps prevent overfitting. One of the most well-known uses of
this technique is RF, which expands bagging by adding more
randomization to the characteristics chosen for each split in the
trees [39].

3.7.2. Boosting classifier
An effective ML method that builds a strong overall model by

combining several weak classifiers is called a boosting ensemble
classifier. Boosting is based on the sequential training of
classifiers, where each new model learns from the mistakes made
by the prior ones. This is usually accomplished by giving
misclassified cases larger weights, which incentivizes the
subsequent classifier in the series to fix the errors. AdaBoost and
GB are two popular boosting methods that iteratively modify the
weights of the classifiers and training data. Boosting improves
the final classifier’s accuracy and resilience by combining the
predictions of all the models, frequently beating the performance

Smart Wearable Technology Vol. 00 Iss. 00 2025

04

of individual models, especially in situations with complicated
patterns and noisy data [40].

3.7.3. Stacking classifier
An effective ML method that mixes many base models to

increase prediction accuracy is the stacking ensemble classifier.
This approach involves training several learning algorithms on the
same dataset so they can each generate unique predictions. The
final prediction is then produced by a second-level meta-model
using these predictions as input attributes. By leveraging the
strengths and compensating for the weaknesses of the individual
base models, stacking often results in superior performance
compared to any single model. This approach effectively reduces
overfitting and bias, making it particularly useful in complex tasks
where no single model performs optimally across all scenarios [41].

3.7.4. Voting classifier
AML model called a voting ensemble classifier aggregates the

predictions of several different classifiers to increase overall
resilience and accuracy. The way the ensemble functions is by
using a voting mechanism, which can be either soft or hard
voting, to aggregate the predictions of its component models.
Hard voting selects the class with the majority of votes as the
final forecast, with each classifier voting for a particular class
label. During the soft voting process, the class with the greatest
average probability is selected by averaging the projected
probabilities of each class from all classifiers. This approach
leverages the strengths of diverse models, reducing the likelihood
of errors and increasing the performance, especially in complex
and noisy datasets. By pooling the decisions of several models, a
voting ensemble can achieve better generalization compared to
any individual model alone [42–44].

3.8. Flow chart

The research utilizes four datasets sourced from Kaggle. First,
the datasets we selected were put into use. By locating and updating
any inaccurate or missing numbers, we guaranteed the integrity of the
data. Next, we employed a range of algorithms and assessed their
performance. It employs a variety of algorithm models, including
GB, KNN, XGB Classifier (XGB), RF, LR, and DT, to predict
software defect risks. To enhance prediction accuracy, the study
also incorporates ensemble models such as Bagging, Boosting,
Stacking, and Voting. We resorted to ensemble algorithms, which
include bagging, boosting, stacking, and voting, in order to
maximize our forecast accuracy. This enabled us to get the most
out of the integrated algorithms and produce thoroughly examined
outcomes. To find out how well the models used in this phase
predicted software defects, they were put through an outcome
analysis. The study applied Grid Search and Cross-Validation
methods to fine-tune the hyperparameters of the classifiers.
Parameters such as the number of estimators, learning rate, and
maximum depth in boosting models were optimized. This tuning
significantly influenced the final results by ensuring each model
performed at its best possible configuration, thus enhancing
accuracy, minimizing overfitting, and improving generalization
across datasets. The model, depicted in Figure 1, provided
insights into the most successful methods used in our study and
summarized our research path.

3.9. Data collection and preprocessing

The datasets used in this study—PC1, JM1, KC1, and CM1—
were selected from the NASA MDP (Metrics Data Program)
repository. These datasets are widely recognized benchmarks in
defect prediction research due to their detailed software metric
attributes and real-world relevance. The variation in dataset size,
the ratio of defective to non-defective instances, and the
distribution of feature values significantly impacted model
accuracy. For example, JM1 is larger and more complex, often
leading to different prediction dynamics compared to smaller
datasets like KC1 or CM1. The data were stored in GitHub nearly
prepared for utilization. Dataset CM1 has 498 rows, 22 columns,
dataset JM1 contains 10880 columns and 22 rows, dataset KC1
contains 2109 columns and 22 rows and dataset PC1 contains
1109 columns and 22 rows [45]. The column “Defect” is
responsible for categorizing SDP prevalence. Each attribute in the
dataset played a vital role in SDP, where target was classified into
two groups. The datasets were then divided into two subsets: one
for testing (20%) and the other for training (80%) [46]. The target
column has been balanced using ADASYN. Figure 2 shows the
count plot of CM1 dataset, Figure 3 for JM1 dataset, Figure 4 for
KC1 dataset, and Figure 5 for PC1 dataset.

4. Experimental Result

In order to determine the effectiveness of the suggested model
aimed at SDP using the assigned datasets, the evaluation of current
models was crucial in this stage of the project. After the selected
datasets were first implemented, a thorough analysis was
conducted to find and correct any missing or incorrect data points
and guarantee the dataset’s integrity. After that, a wide variety of
ML methods were used, and their effectiveness was carefully
examined. A thorough evaluation of the suggested algorithms’
predictive skills was carried out using confusion matrices, which
comprised important metrics including accuracy, precision, recall,
and F-1 score. A comparison examination was also made possible
by the same inspection that was given to conventional algorithms.
The assessment also looked at how various ensemble methods,
such as bagging, boosting, stacking, and voting, may be used to
combine the advantages of several models to improve prediction
accuracy. Six different classical classifiers were used, and the
results, which were carefully evaluated, made it easier to
determine which methods were best for predicting software
defects. This thorough assessment procedure was essential for
determining the suggested model’s performance and optimizing its
forecast accuracy for real-world use. Table 2 shows the
comparative analysis of traditional algorithms.

Table 2 summarizes the evaluation results of traditional ML
algorithms for SDP across four datasets: PC1, JM1, KC1, and
CM1. These datasets are commonly used in software engineering
research to benchmark defect prediction models. The algorithms
assessed include LR, RF, DT, GB, KNN, and Extreme GB
(XGB). Various performance metrics such as accuracy, precision,
Sensitivity (recall), and F1-Score were used to evaluate the
algorithms’ effectiveness in predicting software defects.

For the PC1 dataset, KNN delivered the best accuracy of
87.08%, with a high F1-score of 87.61%, which suggests a strong
balance between precision and recall. RF followed closely with an
accuracy of 86.36%, with a slightly lower recall but higher

Smart Wearable Technology Vol. 00 Iss. 00 2025

05

precision compared to KNN, indicating that it identified more true
positives but missed a few more true defects. The GB algorithm
performed well with 83.97% accuracy and an impressive recall of
91.41%, but its F1-score of 84.87% implies that its precision was
somewhat lacking compared to other models. LR, by contrast,
showed a lower performance at 59.33% accuracy, which
underscores its limitations when applied to the PC1 dataset.

In the JM1 dataset, KNN emerged as the top performer, with an
accuracy of 76.49% and an F1-score of 77.48%, indicating robust
performance in identifying software defects while maintaining a
balance between precision and recall. In contrast, the RF and DT
models performed significantly worse, with accuracies of 55.6%
and 53.06%, respectively. The GB and XGB algorithms were
among the least effective, with accuracies around 51%, suggesting

that ensemble methods did not generalize well on the JM1 dataset.
The low precision scores for GB and XGB also reflect a high
number of false positives, meaning they incorrectly predicted
many non-defective cases as defective.

In the KC1 dataset, KNN was the most effective model again,
achieving 81.45% accuracy and an F1-score of 82.14%. This
demonstrates KNN’s capability in predicting software defects with
a high balance between precision and recall. XGB followed with
70.85% accuracy, but it had a lower F1-score of 73.81%,
indicating slightly weaker performance in balancing precision and
recall. RF underperformed in this dataset, with an accuracy of
63.87% and lower recall, which signals that it struggled to
generalize across different instances of software defects. GB
performed particularly poorly, with an accuracy of just 53.41%, a

Figure 1
Methodology of software defect prediction

Smart Wearable Technology Vol. 00 Iss. 00 2025

06

Figure 2
Count plot before and after using ADASYN (CM1 dataset)

Figure 3
Count plot before and after using ADASYN (JM1 dataset)

Figure 4
Count plot before and after using ADASYN (KC1 dataset)

Smart Wearable Technology Vol. 00 Iss. 00 2025

07

precision of 6.19%, and a recall of 95.65%, indicating that although it
found almost all of the true defects, its precision was alarmingly low,
resulting in a very high number of false positives.

For the CM1 dataset, GB was the standout performer with an
accuracy of 92.89%, and it maintained high scores across all
metrics, with a precision of 90.47%, recall of 93.82%, and an
F1-score of 92.98%. This reflects its ability to accurately predict
software defects while minimizing false positives. RF also
achieved strong performance, with 90.71% accuracy and a
balanced F1-score of 90.67%, indicating high effectiveness. In
contrast, KNN struggled with this dataset, achieving only 72.13%

accuracy, which may be attributed to its sensitivity to the choice
of neighbors or the distribution of the data in the CM1 dataset.
LR performed reasonably well with 78.68% accuracy, but its F1-
score of 74.72% highlights some imbalance in precision and recall.

Across all datasets, the KNN algorithm demonstrated consistent
performance, particularly excelling in the PC1 andKC1 datasets with
accuracies of 87.08% and 81.45%, respectively. However, its
performance dipped in the CM1 dataset. RF and GB performed
well in certain datasets (CM1), but their effectiveness varied
significantly across others (JM1, KC1). XGB showed moderate
results, with its best performance in the KC1 dataset (70.85%

Figure 5
Count plot before and after using ADASYN (PC1 dataset)

Table 2
Comparative analysis of traditional algorithms

Dataset Algorithm Accuracy Precision Sensitivity F-1 score

PC1 LR 59.33 39.60 62.50 60.1
RF 86.36 89.6 83.41 86.3
DT 76.07 73.76 76.02 76.0
GB 83.97 73.76 91.41 84.8
KNN 87.08 79.7 92.52 87.6
XGB 79.9 72.27 83.9 80.3

JM1 LR 64.76 67.17 63.36 64.7
RF 55.6 13.52 77.99 63.4
DT 53.06 6.22 78.72 62.6
GB 51.18 1.01 78.26 61.7
KNN 76.49 64.59 83.89 77.4
XGB 51.49 1.68 83.33 63.4

KC1 LR 72.66 70.70 73.17 72.6
RF 63.87 30.7 70.81 89.3
DT 69.17 54.08 76.8 70.4
GB 53.41 6.19 95.65 67.3
KNN 81.45 72.11 88.27 82.1
XGB 70.85 49.57 85.43 73.8

CM1 LR 78.68 80.95 78.46 74.7
RF 90.71 89.28 90.36 90.6
DT 84.15 82.14 83.13 84.0
GB 92.89 90.47 93.82 92.9
KNN 72.13 64.28 72.11 72.1
XGB 80.87 77.38 80.8 80.2

Smart Wearable Technology Vol. 00 Iss. 00 2025

08

accuracy). LR consistently underperformed across datasets, which
aligns with its known limitations in handling complex, non-linear
relationships often present in SDP problems.

In terms of metrics, precision and Recall varied widely
depending on the dataset and algorithm, with ensemble methods
like GB excelling in recall but sometimes suffering in precision.
The imbalance between precision and recall in many models
highlights the challenge of handling imbalanced datasets, which is
a common issue in SDP tasks. Figure 6 shows the comparative
analysis of traditional algorithms.

Table 3 shows the comparative analysis of bagging ensemble
algorithms. The evaluation results for the ensemble bagging
techniques, specifically RF, DT, GB, and KNN, were compared
across four datasets (PC1, JM1, KC1, and CM1) for SDP. These
results highlight the performance of each algorithm in terms of
accuracy, precision, sensitivity (recall), and F1-score, offering
insights into their effectiveness in handling defect prediction tasks.

In the PC1 dataset, KNN performed the best with an accuracy of
86.84% and a high F1-score of 86.72%, showcasing its balanced
performance across both precision and recall. This suggests that
KNN had a strong ability to classify both defective and non-
defective instances effectively. RF and DT followed closely with
accuracies of 82.75% and 83.01% respectively, maintaining
competitive F1-scores. GB showed slightly lower performance
with an accuracy of 80.62%, and XGB underperformed with an
accuracy of 74.16%. This suggests that while bagging-based
models like RF and DT performed well, boosting-based models
like XGB struggled more on this dataset.

In the JM1 dataset, KNN once again led the performance with
72.95% accuracy, 74.15% precision, and an F1-score of 72.5%. The
ability of KNN to generalize well on this dataset is notable, as it
balanced precision and recall better than other models. However,
RF, DT, GB, and XGB showed a significant drop in performance,
with accuracies ranging from 50.91% (GB) to 54.44% (RF). This

drop in performance may be attributed to the complexity of the
JM1 dataset, where ensemble techniques struggled to handle the
distribution of defects effectively. Particularly, GB and XGB had
low F1-scores, signaling a higher number of false positives and
lower model stability.

For the KC1 dataset, KNN delivered the highest accuracy at
80.89% with a solid F1-score of 80.73%, reaffirming its strength
in defect prediction. XGB performed competitively with 70.99%
accuracy and a F1-score of 69.85%, while RF followed closely
with 70.85% accuracy. Both algorithms demonstrated an ability to
detect defects, but the marginally better precision of KNN allowed
it to outperform other models. DT and GB lagged behind, with
significantly lower accuracies of 57.46% and 51.04% respectively,
indicating that these algorithms struggled with the complexity of
the KC1 dataset. GB in particular showed a very low F1-score,
which reflects poor classification balance.

The CM1 dataset saw the best overall performance from
ensemble models. DT slightly outperformed the other models with
an accuracy of 89.61% and an F1-score of 89.55%, followed by
GB and RF, both showing strong accuracies at 89.07% and
87.97% respectively. The high F1-scores across all three
algorithms—DT (89.55%), GB (88.89%), and RF (87.84%)—
indicate that these models effectively balanced precision and
recall, making them reliable predictors of software defects in this
dataset. KNN also showed commendable results with an accuracy
of 84.15% but underperformed slightly compared to bagging-
based models. XGB again lagged behind with 72.67% accuracy,
which demonstrates the challenges that boosting-based models
faced with this particular dataset.

Across all datasets, KNN emerged as the top performer in most
cases, particularly in the PC1 and KC1 datasets, where it
demonstrated the highest accuracy and balanced metrics. Its
ability to leverage neighbor-based classification seemed to
generalize well to software defect data, especially in cases where

Figure 6
Comparative analysis of traditional algorithm

Smart Wearable Technology Vol. 00 Iss. 00 2025

09

other models struggled. DT, RF, and GB also performed effectively
in several datasets, especially in CM1, where they showed strong
overall performance. GB and XGB, although powerful boosting-
based techniques, did not consistently outperform bagging
methods like RF or DT across these datasets, particularly showing
weakness in JM1 and KC1 datasets.

These results underscore that while ensemble techniques are
powerful, their performance in SDP is highly dataset-dependent.
For instance, models like DT and RF generally perform well in
datasets with more clear defect patterns (e.g., CM1), but struggle
with noisier or more complex datasets (e.g., JM1). On the other
hand, KNN’s simplicity and ability to adjust to local data
distributions make it more consistent across varying datasets.
Furthermore, models like GB and XGB, which are known for
handling non-linear relationships, might require further tuning or
additional data preprocessing to perform better in defect
prediction tasks. Overall, bagging-based techniques tend to offer
more stable and reliable results for SDP across these datasets.
Figure 7 shows the comparative analysis of bagging ensemble
algorithms.

Table 4 shows the comparative analysis of boosting ensemble
algorithms. The evaluation results for boosting algorithms in SDP
reveal significant differences in performance across four datasets
(PC1, JM1, KC1, and CM1) when compared to LR, RF, DT, GB,
and XGBoost (XGB). Each algorithm’s accuracy, precision,
sensitivity, and F1-score are important metrics to analyze their
performance in identifying software defects.

In the PC1 dataset, RF outperformed the other boosting
algorithms with an accuracy of 86.36% and a high F1-score of
86.33%, demonstrating strong predictive power with consistent
precision and recall values. GB performed similarly well with
83.25% accuracy and an F1-score of 83.08%, suggesting that

boosting techniques can handle defect prediction effectively.
However, XGB performed very poorly with an accuracy of
51.67% and an F1-score of 34.06%, indicating that it struggled
with this dataset, potentially due to overfitting or the nature of the
dataset not being well-suited for XGBoost’s complexity. LR also
performed decently with an accuracy of 76.31%, but it could not
match the ensemble methods.

In the JM1 dataset, RF once again led the results with an
accuracy of 72.01% and an F1-score of 71.92%, showcasing its
strong classification abilities in this dataset. GB, on the other
hand, underperformed significantly with an accuracy of 52.09%
and a low F1-score of 36.82%, indicating that it struggled with
the JM1 dataset, which may be more complex or noisy. XGB was
the worst-performing algorithm in this dataset, with 50.82%
accuracy and an F1-score of 33.69%, suggesting that it faced
difficulties similar to those in the PC1 dataset. LR performed
slightly better than boosting methods like XGBoost and GB,
achieving 64.29% accuracy, but overall, the results indicate that
boosting techniques are not as effective in this dataset.

In the KC1 dataset, none of the boosting algorithms showed
impressive performance. RF managed to achieve 65.13% accuracy
and an F1-score of 61.68%, which was the highest among the
boosting models. GB followed with 53.41% accuracy, but its
F1-score of 40.4% reflects its struggle with maintaining a balance
between precision and recall. XGB again performed poorly with
an accuracy of 50.48% and an F1-score of 33.54%, indicating that
it was not effective in this dataset. LR performed better than the
boosting models with 71.82% accuracy, suggesting that linear
methods may be more suited for KC1's data patterns than
complex boosting techniques.

The CM1 dataset yielded the best performance overall,
especially for GB, which achieved an impressive accuracy of

Table 3
Comparative analysis of bagging ensemble algorithms

Dataset Algorithm Accuracy Precision Sensitivity F-1 score

PC1 LR 74.4 74.72 74.57 74.3
RF 82.75 83.74 82.48 82.5
DT 83.01 83.38 82.82 82.8
GB 80.62 82.67 80.19 80.1
KNN 86.84 87.46 86.62 86.7
XGB 74.16 75.48 73.74 73.5

JM1 LR 63.13 63.18 63.16 63.1
RF 54.44 65.22 53.72 43.3
DT 52.12 69.4 51.32 36.9
GB 50.91 75.43 50.08 33.8
KNN 72.95 74.15 72.76 72.5
XGB 51.04 60.47 50.22 34.4

KC1 LR 68.47 68.8 68.53 68.3
RF 70.85 75.49 70.63 69.3
DT 57.46 70.57 57.06 48.8
GB 51.04 67.05 50.56 35.0
KNN 80.89 81.71 80.81 80.7
XGB 70.99 74.27 70.8 69.8

CM1 LR 78.14 78.16 78.35 78.1
RF 87.97 88.06 87.71 87.8
DT 89.61 89.52 89.59 89.5
GB 89.07 89.51 88.63 88.8
KNN 84.15 85.98 83.18 83.5
XGB 72.67 72.63 72.13 72.2

Smart Wearable Technology Vol. 00 Iss. 00 2025

10

94.5% and an F1-score of 92.26%, demonstrating that GB is highly
effective when the dataset structure favors non-linear relationships
and complex feature interactions. RF also performed excellently
with 90.71% accuracy and an F1-score of 90.51%, maintaining a
balanced and strong classification performance. DT followed

with a commendable accuracy of 86.33%. However, XGB
lagged again with 54.09% accuracy and a poor F1-score of
35.1%, indicating that it was outperformed by all other boosting
methods and even linear models like LR (which achieved
74.31% accuracy).

Figure 7
Comparative analysis of bagging classifiers

Table 4
Comparative analysis of boosting ensemble algorithms

Dataset Algorithm Accuracy Precision Sensitivity F-1 score

PC1 LR 76.31 77.11 76.58 76.2
RF 86.36 86.38 86.3 86.3
DT 82.77 82.95 82.9 82.7
GB 83.25 83.92 83.01 83.0
XGB 51.67 25.83 50 34.0

JM1 LR 64.29 64.28 64.26 64.2
RF 72.01 72.16 71.94 71.9
DT 61.69 64.01 61.34 59.6
GB 52.09 69.91 51.29 36.8
XGB 50.82 25.41 50 33.6

KC1 LR 71.82 71.83 71.83 71.8
RF 65.13 72.76 64.84 61.6
DT 59.55 69.65 59.19 53.1
GB 53.41 70.45 52.96 40.4
XGB 50.48 25.24 50 33.4

CM1 LR 74.31 74.65 74.72 74.3
RF 90.71 91.58 90.15 90.5
DT 86.33 86.27 86.2 86.2
GB 94.5 92.5 92.11 92.2
XGB 54.09 27.04 50 35.1

Smart Wearable Technology Vol. 00 Iss. 00 2025

11

The results across all datasets suggest that ensemble boosting
techniques like GB and RF are generally effective for SDP, but
their success varies significantly depending on the dataset. RF
proved to be the most stable performer across different datasets,
consistently yielding high accuracy, precision, and F1-scores,
especially in the PC1, JM1, and CM1 datasets. GB showed strong
potential, particularly in the CM1 dataset, where it outperformed
other methods, but struggled in more complex or less structured
datasets like JM1.

XGB, surprisingly, performed poorly across all datasets,
particularly with its accuracy hovering around 50% and F1-scores
below 40%. This is unusual given XGBoost’s reputation for
strong performance in many classification tasks, and it may
indicate that the algorithm’s default hyperparameters were not
optimal for these specific datasets or that XGBoost was more
prone to overfitting or underfitting in these cases. Figure 8 shows
the comparative analysis of boosting ensemble algorithms.

Table 5 shows the comparative analysis of stacking and voting
ensemble algorithms. The results of stacking and voting ensemble

algorithms in SDP across four datasets—PC1, JM1, KC1, and
CM1—indicate varying performance levels.

In the PC1 dataset, stacking performed slightly better than
voting, achieving an accuracy of 86.36% compared to voting’s
85.88%. Stacking also had superior F1-scores (86.21%) and
precision (87.17%), demonstrating its ability to combine models
effectively and yield higher predictive accuracy.

In the JM1 dataset, stacking again outperformed voting, with an
accuracy of 70.47% compared to voting’s 53.17%. The precision and
F1-scores also highlight stacking’s superior performance: 76.63%
precision and 68.39% F1 compared to voting’s 39.24% F1. The
notable gap between the two methods suggests that stacking is
more suited to this dataset’s complexity.

For the KC1 dataset, voting was more effective than stacking,
showing an accuracy of 75.59% versus 61.78% for stacking. Voting
also had better precision (79.71%) and F1-scores (74.62%),
indicating that combining predictions through voting provided
better generalization for this dataset compared to the more
complex stacking method.

Figure 8
Comparative analysis of boosting classifiers

Table 5
Comparative analysis of stacking and voting ensemble algorithms

Dataset Algorithm Accuracy Precision Sensitivity F-1 score

PC1 Stacking 86.36 87.17 86.11 86.2
Voting 85.88 86.79 85.62 85.7

JM1 Stacking 70.47 76.63 70.06 68.3
Voting 53.17 70.89 52.39 39.2

KC1 Stacking 61.78 75.29 61.42 55.5
Voting 75.59 79.71 75.4 74.6

CM1 Stacking 91.8 91.88 91.61 91.7
Voting 92.34 92.5 92.11 92.6

Smart Wearable Technology Vol. 00 Iss. 00 2025

12

In the CM1 dataset, voting slightly outperformed stacking in
terms of accuracy, with 92.34% compared to stacking’s 91.8%.
However, stacking still delivered strong results with F1-scores
and precision above 91%, showing that both ensemble methods
performed well in this dataset. The minimal difference between
the two methods suggests that both were well-suited to the CM1
dataset’s characteristics. Figure 9 shows the comparative analysis
of stacking and voting ensemble algorithms.

While the Gradient Boosting with Boosting (GBB) model
showed exceptional accuracy in the studied datasets, its
generalizability to other datasets or real-world projects depends on
various factors. These include the similarity of data distributions,
the relevance of selected features, and the prevalence of defects.
Nonetheless, the robust performance of GBB across multiple
datasets in this study suggests it has strong potential for broader
applicability, provided appropriate tuning and preprocessing are
applied.

5. Conclusion

The comparison of various ML models, including traditional,
bagging, boosting, stacking, and voting ensemble techniques, for
SDP shows that no single method universally outperforms the
others across all datasets. Traditional methods like RF and KNN
performed consistently well, especially in datasets like PC1 and
CM1. However, ensemble techniques like stacking and voting
offered improved performance in some cases, particularly for
complex datasets like JM1 and KC1, where stacking outperformed
voting in accuracy and precision. Ensemble techniques, due to
their ability to integrate multiple models, provided a balanced
approach to handling SDP, showing resilience in datasets with
different characteristics. This reinforces the importance of
selecting the right algorithm based on dataset attributes, as more
sophisticated techniques such as stacking could be advantageous
when the dataset presents more complex patterns.

One of the primary challenges in using ensemble models for
SDP is the risk of overfitting, especially when dealing with small

or imbalanced datasets. Boosting methods, while powerful, may
fit noise in the data if not properly regularized. Additionally,
ensemble models can be computationally intensive, requiring
more resources and time for training and inference, which may
limit their scalability in large, real-time systems without proper
optimization.

In future work, further improvements in SDP could be achieved
by exploring hybrid ensemble techniques that combine the strengths
of stacking, voting, and other ensemble methods. Incorporating
advanced feature engineering, such as deep learning-based feature
extraction, could also enhance model performance. Additionally,
investigating deep learning methods like CNNs and recurrent
neural networks (RNNs) may yield new insights, particularly for
larger datasets. Moreover, cross-dataset validation and automated
hyperparameter tuning through optimization algorithms can help
ensure model robustness and generalizability across various
software projects.

Recommendations

To further improve SDP, future research should explore hybrid
ensemble techniques that integrate stacking, voting, and other
ensemble methods to enhance predictive performance. Advanced
feature engineering, including deep learning-based feature
extraction, could provide better representations of software defect
patterns. Investigating deep learning models like CNNs and RNNs
may offer new insights, especially for larger datasets.
Additionally, cross-dataset validation should be conducted to
assess model generalizability across diverse software projects.
Automated hyperparameter tuning using optimization algorithms
can further refine model performance, ensuring robustness and
adaptability to varying dataset characteristics.

Acknowledgement

The authors sincerely acknowledge the support and resources
provided by their respective institutions, which facilitated the

Figure 9
Comparative analysis of staking and voting classifiers

Smart Wearable Technology Vol. 00 Iss. 00 2025

13

successful completion of this research. They also extend their
gratitude to the developers and maintainers of the publicly
available datasets used in this study, as well as the open-source
ML communities for providing valuable tools and frameworks.
Additionally, the authors appreciate the constructive feedback
from peers and reviewers, which contributed to refining the
study’s methodology and findings.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data that support the findings of this study are openly
available in Software Defect Prediction Datasets at https://github.
com/SinghJasmeet585/Software-Defect-Prediction/tree/master/Da
ta/data.

Author Contribution Statement

S.M. Hasan Kabir: Methodology, Software, Formal analysis,
Data curation, Writing – original draft, Writing – review & editing.
Md. TanimRahman: Software, Validation, Data curation, writing –
original draft, Writing – review & editing. Aunik Hasan Mridul:
Conceptualization, Software, Investigation, Resources, Data
curation, Writing – review & editing, Visualization, Supervision,
Project administration.

References

[1] Chengxiao, Y., Owais, J., Ahmed, A., Khan, M. O., Xiaoyang,
Z., & Tunio, M. H. (2023). Software defect prediction using
machine learning-a systematic literature review. In 2023 20th
International Computer Conference on Wavelet Active Media
Technology and Information Processing, 1–9. https://doi.org/
10.1109/ICCWAMTIP60502.2023.10387043

[2] Sekaran, K., & Annabel, L. S. P. (2023). A deep learning based
model for defect prediction in intra-project software. In 2023
7th International Conference on Trends in Electronics and
Informatics, 1148–1155. https://doi.org/10.1109/ICOEI56
765.2023.10126014

[3] Gautam, S., Khunteta, A., & Ghosh, D. (2023). A review on
software defect prediction using machine learning. In
Proceedings of the 4th International Conference on
Information Management & Machine Intelligence, 81, 1–10.
https://doi.org/10.1145/3590837.3590918

[4] Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S.
(2011). A systematic literature review on fault prediction
performance in software engineering. IEEE Transactions on
Software Engineering, 38(6), 1276–1304. https://doi.org/10.
1109/TSE.2011.103

[5] Mohammadi, M., Di Nucci, D., & Tamburri, D. A. (2023).
Bayesian meta-analysis of software defect prediction with

machine learning. IEEE Transactions on Industrial Cyber-
Physical Systems, 1, 147–156. https://doi.org/10.1109/
TICPS.2023.3306723

[6] Chen, H., Jing, X. Y., Li, Z., Wu, D., Peng, Y., & Huang, Z.
(2020). An empirical study on heterogeneous defect
prediction approaches. IEEE Transactions on Software
Engineering, 47(12), 2803–2822. https://doi.org/10.1109/
TSE.2020.2968520

[7] Guo, Z., Liu, S., Liu, X., Lai, W., Ma, M., Zhang, X., : : : ,
& Zhou, Y. (2023). Code-line-level bugginess identific-
ation: How far have we come, and how far have we
yet to go?. ACM Transactions on Software Engineering
and Methodology, 32(4), 1–55. https://doi.org/10.1145/
3582572

[8] Jiarpakdee, J., Tantithamthavorn, C., & Hassan, A. E. (2019).
The impact of correlated metrics on the interpretation of defect
models. IEEE Transactions on Software Engineering, 47(2),
320–331. https://doi.org/10.1109/TSE.2019.2891758

[9] Giray, G., Bennin, K. E., Köksal, Ö., Babur, Ö., &
Tekinerdogan, B. (2023). On the use of deep learning in
software defect prediction. Journal of Systems and Software,
195, 111537. https://doi.org/10.1016/j.jss.2022.111537

[10] Jiarpakdee, J., Tantithamthavorn, C. K., Dam, H. K., &
Grundy, J. (2020). An empirical study of model-agnostic
techniques for defect prediction models. IEEE Transactions
on Software Engineering, 48(1), 166–185. https://doi.org/10.
1109/TSE.2020.2982385

[11] Li, Z., Jing, X. Y., Zhu, X., Zhang, H., Xu, B., & Ying, S.
(2019). Heterogeneous defect prediction with two-stage
ensemble learning. Automated Software Engineering, 26,
599–651. https://doi.org/10.1007/s10515-019-00259-1

[12] Li, Z., Jing, X. Y., Zhu, X., Zhang, H., Xu, B., & Ying, S.
(2019). On the multiple sources and privacy preservation
issues for heterogeneous defect prediction. IEEE
Transactions on Software Engineering, 45(4), 391–411.
https://doi.org/10.1109/tse.2017.2780222

[13] Karnavel, K., & Dillibabu, R. (2014). Development and
application of new quality model for software projects. The
Scientific World Journal, 2014, 1–11. https://doi.org/10.
1155/2014/491246

[14] Alsawalqah, H., Hijazi, N., Eshtay, M., Faris, H., Al-Radaideh,
A., Aljarah, I., & Alshamaileh, Y. (2020). Softwaredefect
prediction using heterogeneous ensemble classification based
on segmented patterns. Applied Sciences, 10(5), 1745.
https://doi.org/10.3390/app10051745

[15] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., &
Matsumoto, K. (2018). The impact of automated parameter
optimization on defect prediction models. IEEE Transactions
on Software Engineering, 45(7), 683–711. https://doi.org/10.
1109/TSE.2018.2794977

[16] Saheed, Y. K., Longe, O., Baba, U. A., Rakshit, S., & Vajjhala,
N. R. (2021). An ensemble learning approach for software
defect prediction in developing quality software product. In
Advances in Computing and Data Sciences: 5th
International Conference, 317–326. https://doi.org/10.1007/
978-3-030-81462-5_29

[17] Ge, J., Liu, J., & Liu, W. (2018). Comparative study on defect
prediction algorithms of supervised learning software based
on imbalanced classification data sets. In 2018 19th IEEE/
ACIS International Conference on Software Engineering,

Smart Wearable Technology Vol. 00 Iss. 00 2025

14

https://github.com/SinghJasmeet585/Software-Defect-Prediction/tree/master/Data/data
https://github.com/SinghJasmeet585/Software-Defect-Prediction/tree/master/Data/data
https://github.com/SinghJasmeet585/Software-Defect-Prediction/tree/master/Data/data
https://doi.org/10.1109/ICCWAMTIP60502.2023.10387043
https://doi.org/10.1109/ICCWAMTIP60502.2023.10387043
https://doi.org/10.1109/ICOEI56765.2023.10126014
https://doi.org/10.1109/ICOEI56765.2023.10126014
https://doi.org/10.1145/3590837.3590918
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TICPS.2023.3306723
https://doi.org/10.1109/TICPS.2023.3306723
https://doi.org/10.1109/TSE.2020.2968520
https://doi.org/10.1109/TSE.2020.2968520
https://doi.org/10.1145/3582572
https://doi.org/10.1145/3582572
https://doi.org/10.1109/TSE.2019.2891758
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1109/TSE.2020.2982385
https://doi.org/10.1109/TSE.2020.2982385
https://doi.org/10.1007/s10515-019-00259-1
https://doi.org/10.1109/tse.2017.2780222
https://doi.org/10.1155/2014/491246
https://doi.org/10.1155/2014/491246
https://doi.org/10.3390/app10051745
https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1007/978-3-030-81462-5_29
https://doi.org/10.1007/978-3-030-81462-5_29

Artificial Intelligence, Networking and Parallel/Distributed
Computing, 399–406. https://doi.org/10.1109/SNPD.2018.
8441143

[18] Ronchieri, E., Canaparo, M., Belgiovine, M., & Salomoni, D.
(2019). Software defect prediction on unlabelled dataset with
machine learning techniques. In 2019 IEEE Nuclear Science
Symposium and Medical Imaging Conference, 1–2. https://
doi.org/10.1109/NSS/MIC42101.2019.9059737

[19] Assim, M., Obeidat, Q., & Hammad, M. (2020). Software
defects prediction using machine learning algorithms. In
2020 International Conference on Data Analytics for
Business and Industry: Way towards a Sustainable Economy,
1–6. https://doi.org/10.1109/ICDABI51230.2020.9325677

[20] Qiao, L., Li, X., Umer, Q., & Guo, P. (2020). Deep learning
based software defect prediction. Neurocomputing, 385,
100–110. https://doi.org/10.1016/j.neucom.2019.11.067

[21] Chen, J., Hu, K., Yu, Y., Chen, Z., Xuan, Q., Liu, Y., & Filkov,
V. (2020). Software visualization and deep transfer learning for
effective software defect prediction. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, 578–589. https://doi.org/10.1145/3377811.
3380389

[22] Hasanpour, A., Farzi, P., Tehrani, A., & Akbari, R. (2020).
Software defect prediction based on deep learning models:
Performance study. arXiv Preprint: 2004.02589.

[23] Jin, C. (2021). Software defect prediction model based on
distance metric learning. Soft Computing, 25(1), 447–461.
https://doi.org/10.1007/s00500-020-05159-1

[24] Khan, B., Naseem, R., Shah, M. A., Wakil, K., Khan, A.,
Uddin, M. I., & Mahmoud, M. (2021). Software defect
prediction for healthcare big data: An empirical evaluation of
machine learning techniques. Journal of Healthcare
Engineering, 2021(1), 8899263. https://doi.org/10.1155/
2021/8899263

[25] Zhang, W. H., He, R. Y., Wu, L. J., Jian, Y., & Han, X. Y.
(2021). Comparison of software defect prediction models
based on machine learning. IOP Conference Series:
Materials Science and Engineering, 1043(3), 032074. https://
doi.org/10.1088/1757-899x/1043/3/032074

[26] Shi, K., Lu, Y., Liu, G., Wei, Z., & Chang, J. (2021). MPT-
embedding: An unsupervised representation learning of code
for software defect prediction. Journal of Software:
Evolution and Process, 33(4), e2330. https://doi.org/10.1002/
smr.2330

[27] Rahim, A., Hayat, Z., Abbas, M., Rahim, A., & Rahim, M. A.
(2021). Software defect prediction with naïve Bayes classifier.
In 2021 International Bhurban Conference on Applied
Sciences and Technologies, 293–297. https://doi.org/10.1109/
IBCAST51254.2021.9393250

[28] Lin, J., & Lu, L. (2021). Semantic feature learning via
dual sequences for defect prediction. IEEE Access, 9,
13112–13124. https://doi.org/10.1109/ACCESS.2021.305
1957

[29] Chen, L., Fang, B., Shang, Z., & Tang, Y. (2018). Tackling
class overlap and imbalance problems in software defect
prediction. Software Quality Journal, 26, 97–125. https://doi.
org/10.1007/s11219-016-9342-6

[30] Hammouri, A., Hammad, M., Alnabhan, M., & Alsarayrah, F.
(2018). Software bug prediction using machine learning
approach. International Journal of Advanced Computer

Science and Applications, 9(2), 78–83. https://doi.org/10.
14569/IJACSA.2018.090212

[31] Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M.,
Khan, M. A., : : : , & Soomro, T. R. (2021). Software defect
prediction using ensemble learning: A systematic literature
review. IEEe Access, 9, 98754–98771. https://doi.org/10.
1109/ACCESS.2021.3095559.

[32] Tajmen, S., Karim, A., Hasan Mridul, A., Azam, S., Ghosh, P.,
Dhaly, A. A., & Hossain, M. N. (2022). A machine learning
based proposition for automated and methodical prediction
of liver disease. In Proceedings of the 10th International
Conference on Computer and Communications Management,
46–53. https://doi.org/10.1145/3556223.3556230.

[33] Mridul, A. H., Islam, M. J., Asif, A., Rahman, M., & Alam,
M. J. (2022). A machine learning-based traditional and
ensemble technique for predicting breast cancer. In
International Conference on Hybrid Intelligent Systems,
237–248. https://doi.org/10.1007/978-3-031-27409-1_21

[34] Pasha, M., & Fatima, M. (2017). Comparative analysis of meta
learning algorithms for liver disease detection. Journal of
Software, 12(12), 923–933. https://doi.org/10.17706/jsw.12.
12.923-933

[35] Chandrasekaran, M. (2021). Logistic regression for machine
learning. Retrieved from: https://www.capitalone.com/tech/
machine-learning/what-is-logistic-regression/

[36] Ghosh, P., Karim, A., Atik, S. T., Afrin, S., & Saifuzzaman,
M. (2021). Expert cancer model using supervised
algorithms with a LASSO selection approach. Inter-
national Journal of Electrical and Computer Engineering,
11(3), 2632–2640. https://doi.org/10.11591/ijece.v11i3.
pp2631-2639

[37] Lemmens, A., & Croux, C. (2006). Bagging and boosting
classification trees to predict churn. Journal of Marketing
Research, 43(2), 276–286. https://doi.org/10.1509/jmkr.
43.2.276

[38] Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A
comparative analysis of gradient boosting algorithms.
Artificial Intelligence Review, 54, 1937–1967. https://doi.org/
10.1007/s10462-020-09896-5

[39] Wang, Y., Jha, S., & Chaudhuri, K. (2018). Analyzing the
robustness of nearest neighbors to adversarial examples. In
International Conference on Machine Learning, 5133–5142.
https://doi.org/10.48550/arXiv.1706.03922

[40] Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y., & Vapnik, V.
(1994). Boosting and other ensemble methods. Neural
Computation, 6(6), 1289–1301. https://doi.org/10.1162/neco.
1994.6.6.1289

[41] Sharma, A., & Suryawanshi, A. (2016). A novel method for
detecting spam email using KNN classification with
spearman correlation as distance measure. International
Journal of Computer Applications, 136(6), 28–35. https://
doi.org/10.5120/ijca2016908471

[42] Bakır, H. (2025). VoteDroid: A new ensemble voting classifier
for malware detection based on fine-tuned deep learning
models. Multimedia Tools and Applications, 84,
10923–10944. https://doi.org/10.1007/s11042-024-19390-7

[43] Islam, R., Beeravolu, A. R., Islam, M. A. H., Karim, A., Azam,
S., & Mukti, S. A. (2021). A performance based study on deep
learning algorithms in the efficient prediction of heart disease.
In 2021 2nd International Informatics and Software

Smart Wearable Technology Vol. 00 Iss. 00 2025

15

https://doi.org/10.1109/SNPD.2018.8441143
https://doi.org/10.1109/SNPD.2018.8441143
https://doi.org/10.1109/NSS/MIC42101.2019.9059737
https://doi.org/10.1109/NSS/MIC42101.2019.9059737
https://doi.org/10.1109/ICDABI51230.2020.9325677
https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.1007/s00500-020-05159-1
https://doi.org/10.1155/2021/8899263
https://doi.org/10.1155/2021/8899263
https://doi.org/10.1088/1757-899x/1043/3/032074
https://doi.org/10.1088/1757-899x/1043/3/032074
https://doi.org/10.1002/smr.2330
https://doi.org/10.1002/smr.2330
https://doi.org/10.1109/IBCAST51254.2021.9393250
https://doi.org/10.1109/IBCAST51254.2021.9393250
https://doi.org/10.1109/ACCESS.2021.3051957
https://doi.org/10.1109/ACCESS.2021.3051957
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.14569/IJACSA.2018.090212
https://doi.org/10.14569/IJACSA.2018.090212
https://doi.org/10.1109/ACCESS.2021.3095559
https://doi.org/10.1109/ACCESS.2021.3095559
https://doi.org/10.1145/3556223.3556230
https://doi.org/10.1007/978-3-031-27409-1_21
https://doi.org/10.17706/jsw.12.12.923-933
https://doi.org/10.17706/jsw.12.12.923-933
https://www.capitalone.com/tech/machine-learning/what-is-logistic-regression/
https://www.capitalone.com/tech/machine-learning/what-is-logistic-regression/
https://doi.org/10.11591/ijece.v11i3.pp2631-2639
https://doi.org/10.11591/ijece.v11i3.pp2631-2639
https://doi.org/10.1509/jmkr.43.2.276
https://doi.org/10.1509/jmkr.43.2.276
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.48550/arXiv.1706.03922
https://doi.org/10.1162/neco.1994.6.6.1289
https://doi.org/10.1162/neco.1994.6.6.1289
https://doi.org/10.5120/ijca2016908471
https://doi.org/10.5120/ijca2016908471
https://doi.org/10.1007/s11042-024-19390-7

Engineering Conference, 1–6. https://doi.org/10.1109/
IISEC54230.2021.9672415

[44] Mridul, A. H. (2025). The precision skin disease classification
in IoMT systems harnessing SVM and SmoothGrad for better
interpretability: Skin disease classification in IoMT systems
harnessing SVM and SmoothGrad. International Journal of
Digital Innovation, Insight, and Information, 1(01), 60–68.

[45] SinghJasmeet585. (2019). Software-Defect-Prediction/Data/
data at master · SinghJasmeet585/Software-Defect-Prediction.
GitHub, https://github.com/SinghJasmeet585/Software-Defe
ct-Prediction/tree/master/Data/data (Accessed May 03, 2025).

[46] Mridul, A. H., Ahsan, N., Alam, S. S., Afrose, S., & Sultana, Z.
(2024). Polycystic ovary syndrome (PCOS) disease prediction
using traditional machine learning and deep learning
algorithms. International Journal of Computer Information
Systems and Industrial Management Applications, 16(3),
25–25.

How toCite:Kabir, S.M.H., Rahman,M. T., &Mridul, A.H. (2025). SoftwareDefect
Prediction Using Traditional Machine Learning and Ensemble Learning Algorithms.
Smart Wearable Technology. https://doi.org/10.47852/bonviewSWT52025645

Smart Wearable Technology Vol. 00 Iss. 00 2025

16

https://doi.org/10.1109/IISEC54230.2021.9672415
https://doi.org/10.1109/IISEC54230.2021.9672415
https://github.com/SinghJasmeet585/Software-Defect-Prediction/tree/master/Data/data
https://github.com/SinghJasmeet585/Software-Defect-Prediction/tree/master/Data/data
https://doi.org/10.47852/bonviewSWT52025645

	Software Defect Prediction Using Traditional Machine Learning and Ensemble Learning Algorithms
	1. Introduction
	2. Literature Review
	3. Research Methodology
	3.1. RF
	3.2. DT
	3.3. XGB classifier
	3.4. LR
	3.5. GB
	3.6. K-Nearest
	3.7. Ensemble learning algorithms
	3.7.1. Bagging classifier
	3.7.2. Boosting classifier
	3.7.3. Stacking classifier
	3.7.4. Voting classifier

	3.8. Flow chart
	3.9. Data collection and preprocessing

	4. Experimental Result
	5. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

