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Abstract: Wearing wearable devices has become a part of daily life for many people worldwide. Wearables provide various applications,
including health monitoring, diagnosis, treatment, and rehabilitation. Since wearable devices are in close contact with the human body,
considering human factors aspects during the design and development stages is essential for the success of future wearables. This
research aims to assess the optimal body part for medical wearable sensors’ placement based on the wearable’s expert opinion
questionnaire. The study focused on four main categories: cardiovascular monitoring, neuromuscular monitoring, biofluids, and gait
disorders, considering three placement criteria: comfort, accuracy, and simplicity. Corresponding to the findings, there is a gap between
the recent research outcomes and the experts’ answers. In particular, the answers to the questions related to the placements of wearable
sensors for neurological and gait disorders were limited to the traditional clinical diagnosis techniques. This could be attributed to
insufficient knowledge and collaboration between engineers and medical professionals. This highlights the need for a systematic way to
evaluate the wearability of wearables based on their performance alongside wearability criteria by establishing a wearability assessment
human-centric framework for each wearable sensor application supported by clinical studies and experimental data, which could reduce
the time for development and commercialization of accurate, reliable, and comfortable wearable medical devices.
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1. Introduction

The applications of wearable technology have been increasing
rapidly in the last few years, driven by the latest advancements in
smart sensors, additive manufacturing, augmented reality, and data
analysis [1, 2]. Wearable technologies support a wide range of
applications, including health monitoring, treatment, rehabilitation,
activity recognition, and fitness [3]. These applications pave the
way for the development of innovative wearable devices and
practical solutions aimed at enhancing users’ quality of life
worldwide. For example, recent advancements in Artificial
intelligence (AI) and blockchain have significantly influenced
wearable medical technologies [4]; given that microstrip antennas
have shown promise in improving signal fidelity in body-worn
IoT applications, future research should consider integrating such
innovative approaches for enhancing the wearability of medical
wearable sensors [4]. Currently, wearable devices are available in
several different forms in the market, such as accessories
(smartwatches, wristbands, smart eyewear, headsets, smart
jewelry, and straps), e-textiles (smart garments, foot-worn, and
hand-worn), and e-patches (sensor patches, e-tattoo, and e-skin)
[5, 6]. Accordingly, since wearable devices are in direct contact
with the human skin or fluids, taking human factors aspects into

consideration during the design and development stages is an
essential part of the success of future wearables and cannot be
neglected. Therefore, criteria such as weight and dimensions,
comfort, simplicity, and user-friendliness should be considered
alongside other hardware and software aspects [7]. Many of the
placement preferences observed in this study align with
fundamental human factors principles. For example, discomfort
associated with the wrist and neck can be attributed to high
mobility, soft tissue deformation, and sweat exposure. In contrast,
higher chest and upper arm ratings reflect these regions’ relative
stability, flatness, and lower flexion. These patterns suggest that
expert preferences are influenced consciously or not by ergonomic
and anthropometric considerations that affect sensor adhesion,
comfort, and performance.

Utilization of optimal placement could expedite the generation
of more efficient and comfortable wearable devices that give more
attention to human body parts characteristics while maintaining
the satisfactory accuracy required by the application.

Furthermore, this study will highlight any knowledge gap and
different perspectives between experts from different professions
(e.g., engineering, medicine, nursing, chemistry, biology, and
business management) regarding medical wearables and propose a
coordinated and unified wearables manufacturing strategy.

Despite the rapid miniaturization of wearable technologies,
which has enabled seamless integration with the human body, a
persistent paradox remains: smaller does not necessarily mean
better when it comes to sensor placement. These devices’ comfort,
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accuracy, and usability are still highly dependent on where and how
they are worn. This study challenges that paradox directly by
empirically examining expert insights on optimal placement
across various sensor types, revealing that even the most
sophisticated sensors are constrained by fundamental human-
centered design considerations. This study defined comfort and
simplicity as subjective constructs evaluated through expert
judgment. Comfort refers to perceived ease of long-term wear,
including friction, sensor movement, and expected skin irritation.
Simplicity relates to ease of donning and doffing, placement
visibility, and expected user compliance. Furthermore, accuracy
refers to the closeness of the measurements to clinical-grade
performance, as judged by experts.

This research uses an expert opinion questionnaire to determine
the optimal human body part for medical wearable sensor placement.
The study will address four main wearable sensor categories: heart
and blood vessel disease monitoring, nervous system disease
monitoring, gait disorders, and body biofluids and microfluidics,
and will take into consideration three main placement criteria:
comfort, accuracy (closeness to the true value), and simplicity. All
participants had published research on the design, development,
and manufacturing of medical wearables.

2. Methods

2.1. Ethics and informed consent

This study used an online self-administered questionnaire in the
English language. The data was collected between August 2023 and
September 2023. Individuals who have published research in
medical wearables were targeted. The participants gave electronic
consent at the beginning of the survey. The survey started by
briefly describing the research and its purposes, indicating that
participation is completely voluntary, their responses are
completely anonymous, and they can skip any questions.
Moreover, to protect your privacy, they should avoid using shared
devices and make sure to close their browser after survey
completion. Researchers’ contact information for questions and
eligibility criteria to participate were also presented within the
survey. The institutional review board of Iowa State University
approved the study protocol as an exemption research where the
individuals’ identities were not ascertained directly or through
identifiers linked to the subjects.

2.2. Instruments

The survey was developed to cover the main wearable sensors
categories: heart and blood vessel diseases monitoring, nervous
system diseases monitoring, body biofluids, and gait disorders,
addressing, at the same time, three main placement criteria:
comfort, reliability, accuracy, and simplicity. Recruitment emails
attached with the online questionnaire and a Qualtrics survey link
were sent to the potential responders. Participants were selected
based on their expertise in the development, clinical use, or
research of wearable medical technologies. Inclusion criteria
required participants to have a recent publications on this field
and had to declare themselves as an expert in at least one of the
following areas: cardiovascular diseases (heart and blood vessel
diseases), neurological disorders (nervous system diseases), body
biofluids (blood and sweat), and gait disorders (walking and
balance problems); then, the responder can voluntarily answer
specific questions depending on their areas of expertise. Finally,
their response was recorded automatically. The final version of

the survey consisted of four sections. The first section collected
demographic and general information about gender, age,
education level, profession, and areas of expertise. The second
section showed the responders the human body parts’ figure,
which gave them the flexibility of choosing the appropriate level
of specification while determining the proper body placement of
each wearable sensor according to each placement criterion. The
third part was determined for each responder based on their
previous answer for the area of expertise question in section one.
For example, if the responder’s answer to the area of expertise
question was cardiovascular diseases (heart and blood vessel
diseases), the third section was related only to the placement of
the related cardiovascular diseases’ sensors. Figure 1 and Table 1
show the human body parts in the survey and the demographic
characteristics of the participants, respectively. The participants
answered specific questions related to each wearable sensor as
follows:
1) Which human body parts do you associate with sensing heart rate

in terms of comfort?

Figure 1
Human body parts
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2) Which human body parts do you associate with sensing heart rate
in terms of accuracy?

3) Which human body parts do you associate with sensing heart rate
in terms of simplicity?

Moreover, to give the participants more flexibility, they can
choose the correct answer among nine main body parts (head,
neck, shoulder, armpit, back, chest, abdomen, upper limb, and
lower limb), or they can give a more specific answer based on
their expertise.

3. Results

Thirty-five respondents were included in the descriptive and
statistical analysis. The target sample size was based on common
practice in expert elicitation studies, which typically range from

10 to 50 participants, depending on topic scope and domain
access. Participants were selected from diverse fields, including
biomedical engineering, clinical medicine, human factors, and
digital health, to capture multidisciplinary insight. While this
diversity was intentional, individual priorities may have varied
by background. Basic demographic information (e.g., field, years
of experience) was collected to contextualize the responses.
About half of the respondents (48%) worked in engineering-
related fields, and 52% worked in medical-related fields,
demonstrating the importance of collaboration between engineers
and medical professionals in developing medical wearable
sensors. The focus of this study was to gather structured expert
insight rather than conduct statistical inference, given the
relatively small, domain-specific sample size and the exploratory
nature of the work.

Table 1
Demographic and general information about the participants

Demographic factor Percent

Gender Male 74.28%
Female 20%
Prefer not to say. 2.86%
Other 0.00%
NA 2.86%

Age Range 25–34 11.42%
35–44 60%
45–54 5.70%
55–64 11.40%
65 and above 2.86%
NA 8.62%

Education Level High school graduate (high school diploma or equivalent, including GED) 0%

Some college but no degree 0%

Associate’s degree in college (2 years) 0%

Bachelor’s degree in college (4 years) 22.85%

Master’s degree 42.85%

Doctoral degree 14.28%

Professional degree (JD, MD) 11.42%

NA 8.60%

Areas of Expertise Cardiovascular diseases (heart and blood vessel diseases) 34.28%

Gait disorders (walking and balance problems) 22.58%

Neurological disorders (nervous system diseases) 31.42%

Pulmonary diseases (lung diseases) 20%

Body biofluids and microfluidics (e.g., blood, sweat, saliva, and tears) 34.28%
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3.1. Wearable sensors for heart and blood vessel
disease monitoring

Figures 2–4 present the human body parts associated with
sensing heart rate in terms of comfort, accuracy, and simplicity,
respectively.

Figures 5–7 present the Human body parts associated with
sensing blood pressure in terms of comfort, accuracy, and
simplicity, respectively.

Figure 2
Human body parts are associated with sensing heart rate in

terms of comfort

Figure 5
Human body parts associated with sensing blood pressure in

terms of comfort

Figure 6
Human body parts associated with sensing pressure in terms of

accuracy
Figure 3

Human body parts are associated with sensing heart rate in
terms of accuracy

Figure 4
Human body parts are associated with sensing heart rate in

terms of simplicity

Figure 7
Human body parts are associated with sensing blood pressure in

terms of simplicity
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Figures 8–10 present the Human body parts associated with
sensing blood oxygen level in terms of comfort, accuracy, and
simplicity, respectively.

3.2. Wearable sensors for neurological disorders

Figures 11–13 present the Human body parts associated with
neuromuscular activities in terms of comfort, accuracy, and
simplicity, respectively.

Figure 11
Human body parts associated with sensing neuromuscular

activities in terms of comfort

Figure 12
Human body parts associated with sensing neuromuscular

activities in terms of accuracy

Figure 8
Human body parts are associated with sensing blood oxygen

level in terms of comfort

Figure 9
Human body parts are associated with sensing blood oxygen

level in terms of accuracy

Figure 10
Human body parts associated with sensing blood oxygen level in

terms of simplicity
Figure 13

Human body parts are associated with sensing neuromuscular
activities in terms of simplicity
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Figures 14–16 present the Human body parts associated with
neuromuscular activities in terms of comfort, accuracy, and
simplicity, respectively.

3.3. Body biofluids and microfluidics

Figures 17–20 present the Human body parts associated with
continuous glucose monitoring in terms of comfort, accuracy, and
simplicity, respectively.Figure 14

Human body parts are associated with sensing seizure disorder
in terms of comfort

Figure 15
Human body parts associated with sensing seizure disorder in

terms of accuracy

Figure 17
Human body parts associated with continuous glucose

monitoring in terms of comfort

Figure 18
Human body parts associated with continuous glucose

monitoring in terms of accuracy

Figure 19
Human body parts associated with continuous glucose

monitoring in terms of simplicity

Figure 16
Human body parts associated with sensing seizure disorder in

terms of simplicity
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Figures 20–22 present the Human body parts associated with
continuous sweat monitoring in terms of comfort, accuracy, and
simplicity, respectively.

3.4. Gait disorders (walking and balance
problems)

Figures 22–25 present the Human body parts associated with
human motion monitoring in terms of comfort, accuracy, and
simplicity, respectively.

Figure 20
Human body parts associated with continuous sweat monitoring

in terms of comfort

Figure 21
Human body parts associated with continuous sweat monitoring

in terms of accuracy

Figure 22
Human body parts associated with continuous sweat monitoring

in terms of simplicity

Figure 23
Human body parts associated with humanmotion monitoring in

terms of comfort

Figure 24
Human body parts associated with human motion monitoring in

terms of accuracy

Figure 25
Human body parts associated with human motion monitoring in

terms of simplicity
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4. Discussion

This paper aimed to determine the best location to place wearables
to continuously monitor a person’s health. Based on the consumer
market, it was hypothesized that the best placement would be the
wrist for various tasks. In most cases, this did not match expert
opinion for cardiovascular, neurological, biofluid, or gait measures.

4.1. Cardiovascular measures

Regarding heart rate monitoring, it is clear from the experts’
opinions that experts prefer wrist as body part for heart rate sensors
placement, for comfort; such opinion is driven mainly due to the
commercially available and the well-established smartwatches in the
market that are primarily using photoplethysmography (PPG) as a
noninvasive simple optical method to measure heart rate such as
Samsung Gear Sport smartwatch, compared to the traditional
accurate, and invasive electrocardiogram (ECG) monitoring
technologies, which is not suitable for home-based or long-term
monitoring [8], and this is true because many people wearing
watches for everyday use and accepted watches as a part of their
lifestyles and outfits and measuring heart rate using watches will
not disturb their everyday life activities or require them to wear an
additional tool that could make them feel uncomfortable. However,
recent studies suggested that using PPG sensors for monitoring
heart rate can give higher-quality and more accurate results if the
sensors are placed on the fingertip or earlobe [9], while the wrist is
not an ideal body placement for measuring to get accurate heart rate
results, as the PPG signals are susceptible to motion artifacts (MA)
noise attributable to hand movements and can lead to poor or even
invalid health results [10, 11]. On the other hand, recent studies
indicated that the heart rate results for most of the commercially
available wrist-worn heart rate sensors, such as Apple Watch,
Microsoft Band, Basis Peak, ePulse2, and Fitbit Surge, could report
heart rate values with acceptable error under different individuals
and normal activities [12].

From an information-theoretic perspective, the variability in
signal quality across different sensor placements can be interpreted
through the lens of Shannon entropy, which quantifies the degree of
uncertainty or disorder in a signal. While convenient, placement
such as the wrist and neck often exhibits higher entropy due to
MA, muscle contractions, and environmental exposure, factors that
introduce greater unpredictability in signal fidelity. In contrast, more
stable locations like the chest or upper arm typically generate
lower-entropy signals, offering enhanced consistency for
physiological monitoring. Although not explicitly calculated in this
study, this entropy-based framework provides a valuable theoretical
foundation for understanding placement suitability. Future work
could incorporate entropy metrics directly into placement evaluation
models, aligning physical design with both signal stability and
human-centered constraints [13, 14]. Although many sensor systems
traditionally assume Gaussian noise in modeling error distributions,
recent studies have shown that wearable sensor signals, particularly
those affected by MA and physiological variability, often exhibit
non-Gaussian characteristics, including heavy-tailed or skewed
distributions. These deviations can lead to an underestimation of
uncertainty in placement-related signal degradation. Future efforts
should consider more robust frameworks [10].

Moreover, although the chest is not the preferred place in terms
of comfort and accuracy, the result indicated that the chest is the most
accurate place to measure heart rate has been approved by many
studies in the literature as the chest is usually associated with the
most accurate ECG technology [15]; other studies indicated that

wrist-worn heart rate wearables will unlikely replace the gold
standard ECG in a severe medical problem anytime soon, as the
accuracy is more concerned with tachycardia condition, and the
reading can be misleading and potentially life-threatening [16].
On the other hand, surprisingly, the neck has been selected as the
best place to measure heart rate in terms of simplicity; such a
result could be attributed to the old and simple method of
estimating heart rate using the carotid artery in the neck. In
addition, we can see a few researchers in the literature trying to
take advantage of the neck by using a novel wearable device to
extract and identify the characteristic heart sounds and, therefore,
determine the heart rate from the acoustic recordings.

The expert’s answers regarding the placement of blood pressure
sensors highlight the conflict between comfortability and accuracy,
as the traditional and well-established invasive blood pressure
measurements based on the measurement of systolic (SBP) and
diastolic blood pressure (DBP) by auscultation or oscillometer
based on cuff occlusion is considered uncomfortable for many
patients due to the cuff inflation, in addition to the unfeasibility of
continuous blood pressure monitoring due to the requirement of
cuff inflation and deflation [17, 18]. Therefore, when comfort and
simplicity are the main criteria, we should look for another body
placement rather than the brachial artery on the upper arm. Thus,
the wrist and fingers have become popular recently, which should
be developed carefully, as SBP and DBP vary considerably in
different parts of the arterial tree, with SBP increasing and DBP
decreasing in more distal arteries [19]. However, recently, a few
watch-type wearable blood pressure monitors have been validated
for real-life daily monitoring. These can offer a comfortable,
simple, continuous blood pressure measurement tool without
sacrificing accuracy and reliability [20, 21]. However, the results
indicate that while the chest is not the most comfortable place for
heart rate monitoring, it could be considered a comfortable place
for blood pressure sensors compared to the awkward upper arm
cuff inflation traditional methods, as many recent studies
discussed the potential of chest-based sensors for continuous
blood pressure monitoring [22].

Measuring blood oxygen levels remotely via wearable sensors
has become a trendy research topic since the COVID-19 pandemic.
One of the most severe symptoms of the COVID-19 virus is a low
blood oxygen level, usually below 95%. Hence, the blood oxygen
level is essential for early diagnosis and infection monitoring.
Moreover, monitoring the blood oxygen level is limited to
COVID-19 patients. It is also crucial for patients who undergo
surgery or suffer from pulmonary disorders [23]. The standard
way to determine whether the oxygen level is sufficient is by
measuring the oxygen saturation level within the blood, termed
SpO2 [24]. The expert’s choices regarding the placement of blood
oxygen level wearable sensors were fingers and toes. The most
popular, noninvasive technique is a pulse oximeter that can be
mounted on a fingertip, toe, or earlobe. However, the sensors
must be well-mounted to get reliable and accurate measures.

This is incredibly challenging for continuous monitoring
because fingers and toes are among the main moving parts of the
human body [25]. Therefore, considering other human body
parts for blood oxygen level monitoring has been investigated
recently by many researchers. For example, Khan et al. [26]
proposed a promising wrist-worn device, PPG, for measuring
oxygen saturation.

Accordingly, the answers of experts revealed a gap between the
latest research in wearable devices and the market for cardiovascular
care, as we can see many attempts in recent research to place
wearable devices among various body locations, such as ears,

Smart Wearable Technology Vol. 00 Iss. 00 2025

08



fingers, and feet, and using several form factors such as eyeglasses,
hats, headbands, earning, bracelets, rings, sports bras, and socks
[27, 28].

However, the vast majority of these devices lack any assessment
regarding human factors and usability. Moreover, recent research in
this field is focused on improving the accuracy of ECG and PPG
signals and reducing the noise by implementing different deep
learning algorithms, such as cellular neural networks [29, 30].
Any improper placement could interrupt the sensor readings or
leave them susceptible to MA and background noise, which could
provide unreliable and misleading data and put the user at serious
health risk [31].

4.2. Neurological measures

The expert’s body part choices of the placement of the
neuromuscular activities sensors seem to be associated with the
traditional way to measure and monitor muscle function and the
related neuromuscular disorders, which is the electromyography
(EMG) signal. EMG is defined as the electrical manifestation of
neuromuscular activity related to a particular muscle’s condition
using invasive electrodes [32]. However, there are many concerns
regarding the comfort, simplicity, and accuracy of these
electrodes, as the difference in their dielectric properties in the
presence of sweat and the erosion of the dielectric material can
affect the quality of measurements in the long run. Moreover,
these metal electrodes are rigid and can slip over the patient’s
skin, causing loss of contact. Furthermore, the electrolyte gel used
could cause skin irritation and generate allergic reactions [33].
Therefore, challenges such as skin-electrode interface issues,
sweat interference, and MA delay the commercialization of
wearable sensors for neuromuscular activities in the market and
must be addressed in the early stages of design and development
[34]. At the same time, recent research efforts focus on figuring
out novel ways to overcome these challenges by introducing
textile-based wearable EMG sensors. For example, di Giminiani
et al. [35] proposed a textile-based thigh wearable EMG sensor on
the quadriceps to avoid MA. Jose et al. [36] discuss the critical
role of multi-biosensor-based wireless body area networks in
mental health monitoring, highlighting the need for
interdisciplinary research to optimize sensor placement that links
the data of ECG sensors with other biological functions such as
temperature and blood pressure.

Regarding the seizure disorders wearable sensors, the vast
majority of the experts agreed that the scalp is the appropriate
body part to measure and monitor seizure-related health
conditions in terms of accuracy and simplicity, which could be
attributed to their familiarity with the traditional technique is
electroencephalography (EEG) sensors, which plays significant
roles in monitoring the brain activity of patients through seizures
and diagnosing epilepsy [37]. However, EEG reading requires
extensive analysis and interpretation experience to detect epileptic
activity. Therefore, it is still unfeasible for home seizure
monitoring currently using traditional EEG sensors. In addition,
wearing scalp EEG for long-term monitoring is uncomfortable
[38, 39]. Conversely, detecting seizure indirectly, based on
movement and position recording using the commercially widely
available inertial measurement unit (IMU) using accelerometers,
gyroscopes, or magnetometers, can be done using wrist-worn
wearable devices such as smartwatches, which can guarantee
comfort criteria, as the results showed. Still, the accuracy and
reliability remain questionable [40]. Furthermore, due to the
unpredictability and the associated potential physical harm of

seizures, many recent research studies discussed machine learning
models and artificial neural network algorithms to estimate seizure
risk utilizing heart rate, step count, and sleep signals, in addition
to other medical records for the patient, using wearable
smartwatches. They concluded that wrist-worn wearable sensors
for seizure forecasting are feasible and approaching [41].

The experts’ answers cannot clearly envision the optimal
placement of the neuromuscular activity sensors. This can be
attributed to the importance of the application of the wearable
device. Hence, sensor placement varies drastically depending on
the application, such as muscle activation, fatigue monitoring, or
rehabilitation, in addition to the targeted muscles, as targeting
specific muscles will determine the proper placement of that
device. In addition, the transition of technology from clinical
EMG to wearable EMG still faces many challenges regarding
electrodes, the complexity and constraints of the processing,
accuracy, and real-time performance [42, 43].

4.3. Body biofluid measures

Monitoring glucose levels helps with more intensive blood
glucose control, specifically in patients with type 1 diabetes
mellitus, alongside patients with uncontrolled hypo- or
hyperglycemia [44, 45]. Choosing the proper placement for
continuous glucose monitoring requires various tradeoffs between
accuracy, simplicity, and comfort, as this type of sensor needs
frequent calibration and integrated pumps to work efficiently [46].
Although fingers are considered the most common place for
traditional glucose monitoring, the results showed that fingers
cannot be a good placement choice for continuous glucose
monitoring sensors in terms of comfort and simplicity, as it is
painful and cumbersome [47–49]. Conversely, the upper hand and
the abdomen look promising as a better placement for continuous
glucose monitoring; a recent study did not find any significant
difference between the accuracy of abdomen and arm continuous
glucose monitoring [50]. The results also clearly showed the
consensus that the abdomen is not a comfortable place for
continuous glucose monitoring. However, as many experts still
believe fingers are the preferred choice for glucose monitoring,
this could indicate that the benefits of continuous glucose
monitoring over the traditional finger-stick test are still not clear,
as many diabetes patients believe the process of continuous
glucose monitoring is pointless or unpleasant, so they decide to
avoid it [51].

Continuous sweat monitoring has many advantages compared to
other biomarkers, such as blood, saliva, and urine, as sweat is a
continuously accessible biofluid and has been an unexplored source
of physiologically relevant information [52–54]. Sweat has many
analytes that can be linked to different health conditions, such as
electrolytes (sodium (Na+), chloride (Cl−), and potassium (K+)),
trace metals (zinc, copper, and magnesium) in addition to different
organic compounds (lactate, cortisol, and ethanol), which makes the
particular application of the sweat-monitoring device significant for
deciding the wearable sensor characteristics [55]. The results
showed that clearly, experts could not agree on a clear choice for
any of the three criteria. We can see the armpit has been chosen as
the most accurate place for sweat-monitoring sensors, as the armpit
body the location has the highest rate of sweat generation.
Compared to any other body placement, this could lead to more
efficient and reliable measurements [56]. However, the armpit
cannot be the appropriate choice regarding comfort and accuracy, as
the continuous friction and the rapid hair growth could lead to
various skin health problems, such as chafing [57]. Thus, other
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body placement options, such as the back and the arm, are suggested
[58]. Moreover, the expert’s answers regarding the proper placement
of sweat sensors reveal that the technology is still immature for
commercialization, as there are many critical technical challenges
regarding the collection, sampling, and storage of sweat, in addition
to the analytical performance issues and the required memory and
power capacity of such continuous monitoring devices [59].
Addressing the previous challenges and specifying the target
analytes can lead to more precise answers regarding the best
placement of sweat-monitoring sensors.

4.4. Gait measures

Human gait and musculoskeletal function analysis has a wide
range of applications in sports and fitness, in addition to
diagnosing various age-related diseases and neurodegenerative
disorders [60, 61]. Using the commercially widely available IMU,
using one of the combinations of accelerometers, gyroscopes, or
magnetometers, is considered the most well-established, accurate,
and simplest way for human joint motion analysis [62].
Accordingly, according to the survey results, there is no
preferable placement for motion analysis in terms of accuracy and
simplicity, as the type of technology plays a more critical role
than the placement in this criterion. Moreover, the application and
the targeted joint (knee, toe, elbow, hip, ankle, neck, and
shoulder) can, in many circumstances, decide on selecting the
optimal sensor placement as mandatory rather than optional.
However, recent developments in sensor technologies have
introduced new ways for human motion analysis, such as optical
fiber sensors and textile-based goniometers for angular motion
monitoring of the joints [63–66]. This could provide greater
flexibility in selecting the placement of the wearable sensor, and
emphasize the importance of considering the human body aspects
while designing and developing such devices; while creating rigid
textile-based sensors can improve the accuracy of the
measurements, the comfort aspect will remain questionable.

Moreover, human biomechanics exhibits nonlinear and fractal-
like variability, particularly in neuromuscular activity and motion
dynamics. Sensor data such as IMU signals often reflect this self-
similar complexity. Therefore, considering fractal dimensioning
techniques as an analytical lens for evaluating sensor placement
could offer a more nuanced understanding of placement efficacy
across diverse movement profiles. Future studies could explore
how the fractal geometry of skin topology or signal patterns may
inform optimal positioning for sustained signal stability [67].

5. Conclusions

To our knowledge, this study will be the first to study the
optimal placement of medical wearables. This could open the way
for a new generation of more efficient, accurate, and comfortable
wearable devices that give more attention to human body parts.
According to the findings, there is a gap between the latest
research outcomes and the clinical use of wearables. This could
be attributed to the lack of collaboration between health tech
companies and medical professionals. Furthermore, engineers play
an essential role in developing the sensors, hardware, and
software of the wearable devices seem not to have sufficient
knowledge about the anatomy of the body and the characteristics
of each body part. Conversely, medical professionals are unaware
of the potential capabilities and enormous opportunities that can
be exploited by utilizing the latest developments in wearable
technologies, which could change the ways of diagnosis,

monitoring, or even treating many diseases and health conditions.
Accordingly, expert medical professionals’ choices regarding the
placement of wearable sensors are limited most of the time to the
placement of traditional sensors such as IMU, ECG, EMG, and
EEG in daily clinical care, without considering the flexibility of
wearable devices in terms of function and form. However,
regarding wearable sensors for heart and blood vessel disease
monitoring, experts’ answers were more consistent with the well-
established commercially available wearable devices, such as
smartwatches. Accordingly, heart rate monitoring technology
using ECG and PPG has not changed dramatically in the past two
decades, so the importance of exploring the effect of placement of
the wearables sensors among various body placements and
different forms such as eyeglasses, hats, earnings, earbuds,
headbands, shirts, sports bras, armbands, bracelets, wristbands,
rings, and socks, taking into account the different criteria, such as
the accuracy, human factors, and usability, in addition, the
manufacturing aspects, is essential to understand the user’s needs
and improve the commercialization process, alleviate the burden
on healthcare systems, and reduce the mortality rate of
cardiovascular diseases through early detection. Conversely, while
relating to the placements of wearable sensors for neurological
gait analysis, the answers were limited to the traditional diagnosis
techniques, EMG and IMU, respectively, and the application and
the target muscles, joints, or nerves will play an essential role in
the selection of the wearable sensor placement. Still, in the
process of creating new wearable sensor materials, the human
factor and usability aspects are crucial and cannot be neglected.

Furthermore, real-world deployment of wearable sensors
introduces several practical challenges that extend beyond ideal
placement. These include skin irritation, prolonged use discomfort,
and sensor adhesion issues during physical activity or perspiration.
Over time, factors like sensor degradation, battery limitations, and
environmental exposure can affect signal quality, potentially leading
to false positives or missed physiological events. Future research
should explore wearable sensors’ durability, skin compatibility, and
long-term reliability across placements, especially for continuous
monitoring use cases like blood pressure or arrhythmia detection.

The study’s limitations are the limited number of participants,
as the questionnaire only targeted the experts in medical wearables.
However, even experts in a specific medical field or wearable
technology might not have adequate knowledge of the other
research advancements and recent technologies beyond their
specialization, which highlights the urgent need for a
comprehensive human-centered framework to evaluate medical
wearables based on their performance criteria alongside their
usability and wearability criteria, supported by long-term clinical
studies, human factors assessment, and physiological data for each
potential body placement. Considering AI-driven adaptive
placement algorithms or data-driven techniques such as principal
component analysis that consider users’ lifestyles and activity
levels, current and potential health risk factors, the nonlinear
relation between criteria such as comfort and accuracy, and other
dynamic characteristics, such as skin impedance variability, sweat
accumulation, motion-induced dielectric shifts, and multi-sensor
systems (e.g., EMG, ECG system), has the potential to play a
critical role in optimizing sensor placement dynamically. Machine
learning algorithms could integrate real-time data streams such as
skin temperature, movement variability, or sweat level to adjust
signal weighting or select the most reliable active sensor. In
addition, a topological data analysis considers the geometrical
complexity of the human body. It represents a dynamic, curved
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surface rather than a flat plane, offering a potential pathway for
quantifying sensor-body interactions in such complex regions.

Technical factors like wireless transmission power requirements
and energy efficiency are essential in wearable sensor placement.
The sensor’s location on the body can significantly influence
wireless transmission power requirements due to variations in signal
path length, tissue interference, and antenna orientation. Moreover,
improving signal quality and reducing the noise-to-signal ratio by
data filtration, noise reduction techniques, and adapting placement-
aware data compression techniques can be beneficial. Such a
comprehensive approach can fill the gap between the recent research
in the field and the commercialization stage of medical wearable
devices and give users a customized recommendation for medical
wearable devices that fit their needs without affecting their lifestyles.
Furthermore, we recognize that bringing in experts from diverse
fields like engineering and medicine means there could be variation
in how they interpret or prioritize different criteria. In this study
version, we focused on collecting a broad range of perspectives
rather than measuring statistical agreement between participants. That
said, adding inter-rater reliability (e.g., Fleiss’ kappa or intraclass
correlation) would provide more insight into the consistency of
responses, and we plan to explore that in follow-up work.
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