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Abstract: Breast cancer (BC) is a very common type of cancer in women, and it occurs due to the abnormal growth of breast cells to produce
malignant tumors. The early detection of BC is challenging in clinical standards to reduce the fatality rate caused by this disease. Artificial
intelligence is helpful in early and automated detection of BC and provides a cost-effective way to assist radiologists in providing better
diagnostic decisions. The artificial intelligence (AI) model integrated with the Internet of Things (IoT) provides the framework for real-
time analysis of patient data and tele-healthcare monitoring for detecting BC. This paper proposes a novel IoT-enabled deep learning-
based approach implemented on an Android device to detect BC using thermal images. A deep convolutional neural network (CNN)
architecture with five blocks of cascaded convolutions followed by max-pooling after each block and cascaded dense layers is
formulated and trained using the Google Cloud central processing unit. The post-training quantization (PTQ) of deep CNN (DPCNN) is
performed using floating-point 16-bit (FP16) and integer 8-bit (INT 8)-based quantization techniques. The reduced-size DPCNN model
is deployed on a cloud framework and an Android device for real-time detection of BC using thermal images. The DPCNN model
deployed on the Android device provides a portable framework for low latency, enhanced privacy, and offline processing compared to
the cloud-based framework for detecting BC using thermal images. The experimental results obtained using a public database reveal that
the proposed DPCNN has obtained the accuracy values of 99.63% and 99.27% for FP16 and INT8 cases to detect BC. The proposed
DPCNN model has fewer parameters and higher classification performance than transfer learning and existing methods in detecting BC
using thermal images.
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1. Introduction

Breast cancer (BC) is a lethal disease that arises from abnormal
cell growth within the breast tissue, leading to the formation of
malignant tumors [1]. According to the World Health Organization
data, more than 2.3 million women globally are diagnosed with
BC [2]. In India, the number of BC cases is significantly increasing
each year [3]. Detecting BC in the early stage is essential for
effective treatment and improved chances of recovery [4]. Different
imaging methods, such as thermography, mammography, and
ultrasonography, are used to diagnose BC [1, 5]. Thermography is
particularly advantageous because it is a non-contact imaging test
that can detect BC based on changes in temperature patterns. It is
well-suited for dense breast tissue and does not expose patients to
ionizing radiations like in mammography [6]. The advances of the
Internet of Things (IoT) and deep learning (DL) [7] enable the
development and implementation of smart healthcare systems for the

automated identification of BC using thermal images. Such a system
benefits remote monitoring and telemedicine applications. The on-
device implementation of DL models helps reduce the dependency
on cloud services and maintains the privacy and security of patient
data and offline accessibility [7]. The Android application provides
a user-friendly interface for real-time detection of BC using thermal
images. Developing a novel and lightweight DL model and its
real-time implementation on cloud framework and android-based
edge devices is interesting for smart healthcare applications to detect
BC using thermal images.

In the last decade, various techniques based on machine learning
(ML) and DL have been utilized to automatically identify BC using
thermal images [1]. Acharya et al. [8] have used the texture features
of thermal images and the support vector machine (SVM) classifier
to detect BC. Milosevic et al. [9] extracted the gray-level
co-occurrence matrices-based features from the thermal images and
used the K-nearest neighbor classifier to detect BC. Similarly,
Francis et al. [10] have evaluated the statistical features in the
curvelet transform domain of thermal images and used the SVM
classifier for detecting BC. In another study, Pramanik et al. [11]
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computed the discretewavelet transform domain features from thermal
images and used a multi-layer feed-forward neural network to detect
BC. Similarly, EtehadTavakol et al. [12] used the higher-order spectral
invariant features of thermal images and the AdaBoost classifier to
detect BC. The classification performance of the ML-based methods
to detect BC is heavily dependent on the extraction of raw features
such as statistical, texture, and shape from thermal images. The
ML-based methods also require the feature selection stage to choose
the relevant features of thermal images for detecting BC. Similarly,
Gade et al. [1] have investigated different transfer learning (TL)
models to identify BC using thermal images recorded from different
subjects. They found that the ResNet101 network demonstrated
higher classification accuracy than other TL models in identifying
BC using thermal images. Zuluaga-Gomez et al. [13] have
developed a CNN architecture with Bayesian optimization-based
selection of hyperparameters to detect BC using thermal images.
Similarly, in [1], authors have formulated the multiscale image
decomposition domain DL approach to detect BC using thermal
images. They have demonstrated higher classification performance
than Bayesian optimization-based DPCNN and various TL models
in detecting BC. Nissar et al. [14] have used sharpened cosine
similarity, CNN, and squeeze and excitation blocks-based DL
architecture to detect BC using thermal images. Similarly,
Chi et al. [15] used a ResNet34-based pre-trained block to extract
features from thermal images and an SVM classifier to detect BC.
The TL, multiscale-based DL, and Bayesian optimization-based
DPCNN models have higher parameters in the inference phase in
detecting BC using thermal images [1, 13]. The existing ML and
DL-based models have not been implemented or deployed on edge
devices for real-time detection of BC. Therefore, it is challenging to
develop novel DL-based methods for accurate and real-time
detection of BC using thermal images.

In recent years, lightweight DL models and their implementation
on edge computing devices such as Android, microcontrollers, and field
programmable gate arrays have been explored for different biomedical
applications [7]. These models require fewer floating-point operations,
reduced memory footprints, low latency, reduced power consumption,
privacy, and security for edge computing applications [7]. The
quantization and pruning operations are helpful in further reducing
the size of the DL models for implementing these models on edge
devices [7, 16]. The lightweight DL models have not been explored
for detecting BC on Android-based edge devices using thermal
images. The novelty of this work is to develop a novel DPCNN
model architecture with fewer parameters than the existing DL
techniques for detecting BC with input as thermal images. The
important contributions of this work are as follows:

1) A novel DPCNN architecture based on triple convolution max-
pooling drop-out batch normalization (TCMPDBN) blocks is
proposed for the detection of BC using thermal images.

2) The Performance of the DPCNN model is evaluated for
subject-dependent and subject-independent validation strategies.

3) The Quantization of the weight parameters and activation
functions of DPCNN is performed using FP16 and INT
8-based quantization techniques.

4) The reduced-size quantized DPCNN model is deployed on an
Android device for real-time detection of BC using thermal
images from different subjects.

The remaining sections of this paper are arranged as follows. In
Section 2, we describe the details of the database containing thermal
images. The proposed DLmodel architecture and the details regarding
the implementation of this model on Android devices are written in
Section 3. The results and discussion parts are written in Section 4.
The conclusions of this letter are given in Section 5.

2. Thermal Image Database

This work has used the thermal images from a public database [17]
to assess the performance of the proposed DPCNNmodel for detecting
BC. This database includes 1520 thermal images from 56 subjects.

From each subject, 20 thermal images have been recorded
sequentially within an interval of 15 s [17]. The thermal images
are recorded using a FLIR thermal camera with temperature and
sensitivity ranges of [−40°C, 500°C], and< 0.04°C, respectively
[17]. In the database, the dimension of each thermal image is
given as 640 × 480. The 760 thermal images (380 left breast and
380 right breast thermal images) from 19 subjects have been
given for the healthy or normal class. Similarly, the 720 thermal
images from 36 subjects are specified for the cancerous class. In
the database, 40 thermal images are given for one subject of
cancerous class. In this work, 1520 thermal images are used to
develop and evaluate the suggested DPCNN model to identify BC.

3. Proposed Method

The structural representation of the proposed method to detect
BC using thermal images is depicted in Figure 1. Initially, the image
resizing is performed to reduce the size of the original thermal image
into 64 × 64. Larger size-based thermal images can increase the
number of parameters of the DPCNN model o detect BC. We
have also considered the thermal images of sizes as 256 × 256
and 128 × 128 to estimate the classification results of the DPCNN
model for detecting BC. The optimal size of the thermal image is
determined using the accuracy of the DPCNN model.

3.1. Proposed DPCNN model

The architecture of the proposed DPCNN model for identifying
BC using thermal images is depicted in Figure 2(a). The DPCNN
model contains five TCMPDBN blocks and four dense or fully

Figure 1
Block diagram of the proposed approach for detecting BC using the thermal image
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connected layers. A drop-out layer is added after the first two dense
layers of the presented DPCNN model architecture. The output
layer consists of two neurons (softmax activation) with the encoded
vectors as [1, 0] for the normal class and [0, 1] for the cancerous
class, respectively. The architecture of each TCMPDBN block is
depicted in shown in Figure 2(b). Each TCMPDBN block
comprises three convolution layers followed by max-pooling, drop-
out, and batch normalization layers. In the convolution layers, the
“tanh” activation function is used. Similarly, for dense layers,
the rectified linear unit activation function has been employed. The
kth feature map produced after the lth two-dimensional (2D)
convolution layer is presented as follows [18]:

Fk;l
c;d ¼ f

P
I�1
i¼0

PJ�1
j¼0

P
M
m¼1 K

k
i;j;mX

l�1ð Þ
c:sþi; d:sþj;m þ bk

� �
(1)

where X l�1ð Þ
i; j;m is themth feature map in the l− 1 th layer. The Kk

i;j;m and
bk are the kernel matrix and bias values for kth feature map. s is the
stride along the height and width direction of the image or feature

map. Similarly, in the max-pooling layer, kth feature map, eFk;l
c;d is

evaluated as follows [18]:

eFk;l
c;d ¼ maxkh�1

i¼0 maxkw�1
i¼0 Fk;l

c:sþi;d:sþj

h i
(2)

where s is the stride of the pooling operation. kh and kw are the

height and width of the pooling window. Fk;l
c:sþi;d:sþj is the input

feature map given to the 2D max-pooling layer. In this work, the
kh and kw are considered as 2. The drop-out and batch normalization
are also used in the TCMPDBN block. The drop-out factor of 0.3 is
considered. This means that 30% of neurons are randomly set as

zero during the training of the proposed DPCNN for the detection
of BC. In the batch normalization layer, the activation values are
normalized based on the batch size to improve training stability
[19]. The hold-out validation, leave-one-out subject-independent
CV (LOOSICV), and 5-fold cross-validation (CV) strategies are
utilized to choose the training and test instances (thermal images)
of the proposed DPCNN model [1]. For the LOOSICV case, the
thermal images of one subject are used to test the DPCNN model,
whereas the remaining subject’s thermal images are utilized in the
training phase of the model. The same procedure is repeated for
each subject in the LOOSICV case, and the accuracy measure of
the DPCNN model is evaluated for each subject. The training
hyperparameters of the proposed DPCNN model are cost function
as categorical cross entropy, optimizer as “Adam” (initial learning
rate equal to 0.0005), number of epochs as 400 (early stopping with
patience as 50 epochs), and batch size as 64, respectively. These
hyperparameters are obtained using the grid-search to maximize
the accuracy of the validation thermal images for detecting BC
[1, 19]. The classification measures such as precision, F1-score,
recall, and accuracy are evaluated for the DPCNN model with
5-fold CV and hold-out validation strategies for detecting BC using
thermal images. Furthermore, we have compared the classification
results obtained using the suggested DPCNN with different
TL models such as MobileNetV2 [20], EfficientNetV2B3 [21],
VGG19 [22], and ResNet101 [23] for detecting BC using thermal
images. The last layer of these pre-trained models is removed, and
the new layer containing two neurons is connected at the output of
each model [1]. In the fine-tuning phase, only the last layer
weight and bias parameters of each TL model are updated using
the backpropagation algorithm. For each TL model, the number
of epochs and initial learning rate values as 100 (early stopping with

Figure 2
Architecture of the suggested DPCNN for detecting BC using thermal images

Smart Wearable Technology Vol. 00 Iss. 00 2025

03



patience as 20 epochs) and 0.001 are used [1]. The proposed DPCNN
and the existing TL models are implemented using the Python frame-
work with the TensorFlow (Keras) package [24].with different TL
models such as MobileNetV2 [20], EfficientNetV2B3 [21],

3.2. Deployment of DPCNN

The proposed DPCNNmodel has been deployed in an Android
device to identify BC using thermal images. Similarly, we have also
deployed the suggested DPCNN model on a web application
(WAPP) for the IoT-enabled automated identification of BC using
thermal images. The streamlit-cloud-based framework is utilized
for deploying the Python code and the parameters of the proposed
DPCNN model files to prepare the WAPP [7]. The Android
studio-based framework is utilized to create the mobile application
(MAAP) to test the DPCNN model detecting BC using thermal
images. The TensorFlow Lite is integrated with Android Studio
using Java or Kotlin, which enables the creation of MAAP for
real-time detection of BC using thermal images.

The PTQ is applied to reduce the model size so that the DPCNN
model can be deployed on the Android device. The FP16 and
INT8-based quantization cases [25] are used to obtain reduced
precision representations of weight parameters and activation functions
of the DPCNN model. The accuracy values of the suggested DPCNN
model are evaluated for FP16 and INT8-based quantization cases.

4. Results and Discussion

The results of the DPCNN model to detect BC using different
validation cases (hold-out and 5-fold CV) are depicted in Table 1. It
is observed that for both validation cases, the DPCNN model has
produced classification accuracy values of more than 99% to
detect BC using thermal images. Similar variations are also
observed in other performance measures of the DPCNN model.
The confusion matrix of the DPCNN for the hold-out validation
case is displayed in Table 2. The true positives for normal and
cancerous classes are 136 and 137, respectively. Only one false
positive is obtained using the DPCNN model to identify BC using
thermal images. The saliency maps of the presented DPCNN
model evaluated using the thermal images for normal and
cancerous classes are displayed in Figure 3(a) and (b),
respectively. It is noted that the morphologies of saliency maps
are dissimilar for cancerous and normal classes, respectively.
Hence, the proposed DPCNN model learns to produce different
feature maps for cancerous and normal classes using input as
thermal images. We have also calculated the classification
accuracy of the suggested DPCNN model by considering the
thermal images with sizes 128 × 128 and 256 × 256 for detecting
BC. The accuracy values of DPCNN for thermal images of
sizes 128 × 128 and 256 × 256 are obtained as 98.54% and
98.17%, respectively. The DPCNN model has produced higher
classification accuracy using thermal images with sizes 64 × 64.
The accuracy value of each subject evaluated using the DPCNN

model with LOO subject-independent CV is depicted in Figure 4.
It is noted that the DPCNN model has delivered the accuracy
values of 100% for 42 subjects. The mean accuracy value of
the DPCNN model for LOO subject-independent CV is 92.85%.

Table 1
Performance of DPCNN to identify BC

for different validation cases

Validation
Accuracy

(%)
Precision

(%) Recall (%)
F1-score

(%)

Hold-out 99.45 ± 0.18 99.27 ± 0.73 99.64 ± 0.36 99.45 ± 0.19
5-fold CV 99.53 ± 0.26 99.47 ± 0.49 99.60 ± 0.52 99.53 ± 0.26

Table 2
Confusion matrix evaluated using DPCNN to detect BC

Actual

Normal Cancerous Total

Predicted Normal 136 0 136
Cancerous 1 137 138
Total 137 137

Figure 3
(a) Saliency map computed using DPCNN model for
normal class and (b) saliency map computed using

DPCNN model for the cancerous class

Figure 4
Variations of accuracy values of DPCNN with number of

subjects for detection of BC using LOO subject-independent
cross-validation strategy
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We have computed the accuracy of the DPCNN model using INT8
and FP16-based PTQ cases, and these results are displayed in Table 3
for hold-out validation. It is noted that the DPCNN with INT8-based
quantization case has delivered an accuracy value of 99.27%. The
DPCNN model size has been reduced from 159.68KB to
62.56KB when the INT8 quantization case is used. The INT8-
based quantized version of the DPCNN model has been deployed
on an Android device and a WAPP for real-time detection of BC.
The inferences of the Android-based implementation of DPCNN
models for normal and cancerous classes are depicted in
Figure 5(a) and (b), respectively. Similarly, we have shown the
inferences of the WAPP-based DPCNN models for normal and
cancerous classes in Figure 6(a) and (b), respectively. The
DPCNN model has successfully detected the normal and
cancerous classes on Android-based edge devices and IoT-enabled
WAPP using breast thermal images.

The accuracy of the proposed DPCNN model has been compared
with existing TL andDL-based techniques in Table 4 to detect BC using
thermal images. It is observed that the VGG19 [22],MobileNetV2 [20],
ResNet101 [23], and EfficientNetV2B3 [21]-based TL models have
obtained accuracy values of less than 80% to detect BC. The total
parameters of each TL model in the inference phase are more than 3
Million. The multiscale image decomposition domain DL method
has an accuracy value of 99.54% to detect BC using thermal images [1].
However, this model has more than three times the total parameters of
the proposed DPCNN model for detecting BC. Thus, the presented
approach has obtained higher classification accuracy and has fewer
parameters than all the TL and multiscale DL-based models to detect
BC. The advantages of WAPP-based inference of the proposed
DPCNN are cross-platform-based accessibility, real-time disease
diagnosis, and telemonitoring [15]. Internet connectivity is required
for the WAPP-based real-time inference of the DPCNN model to
detect BC. The WAPP will not run without an internet connection in
the computer or Android device. The MAPP-based inference of the
proposed DPCNN model provides the edge device-based platform
for the automated identification of BC using thermal images.
Similarly, the advantages of MAPP-based inference of the DPCNN

Table 3
Performance of DPCNN model with different
quantization cases for weight parameters

Quantization case Accuracy(%) Model size

FP32 99.63 159.68KB
FP16 99.63 95.24KB
INT8 99.27 62.56KB

Figure 5
(a) Deployment of DPCNN model on an Android device for the

detection of normal class using thermal image and (b)
deployment of DPCNN model on an Android device to detect

cancerous class using thermal image

Figure 6
(a) Deployment of DPCNN model on a web application to detect normal class using thermal image and
(b) deployment of DPCNN model on a web application to detect cancerous class using thermal image
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model are offline access, portability, and privacy of patient data (thermal
images) [15]. Developing an integrated framework (integrating thermal
camera with edge device) for real-time monitoring and inference of the
DPCNN model to detect BC is very challenging. Regular weight
updates in different layers of DPCNN using new patients’ thermal
image data help obtain optimal model parameters for detecting
BC [26]. Weight updates or re-training using new patients’ thermal
image data can be performed in the cloud. The proposed IoT-enabled
Android-based DPCNN system does not require the MAPP update,
as the updated DPCNN model can be transferred from the cloud to
the Android device. Federated learning (FDL) has the advantage of
creating privacy-preserving AI models using sensor data from
multiple locations [27]. The performance of the proposed DPCNN
model can be evaluated using the thermal images recorded from
patients from different locations or hospitals in an FDL environment
for automated detection of BC.

5. Conclusion

A novel DPCNNmodel architecture using TCMPDBN blocks has
been introduced in this paper to identify BC using thermal images
automatically. This model has demonstrated an accuracy value of
more than 99% in recognizing BC using thermal images. The
accuracy value of the model has been reduced to 99.27% when the
INT8-based PTQ has been performed. The DPCNN model has been
deployed on the cloud-based framework for IoT-enabled real-time
detection of BC using thermal images. The INT8-based reduced
precision-based representation of the suggested DPCNN model is
deployed on an Android device and WAPP for real-time
identification of BC using thermal images. The DPCNN model has
obtained higher accuracy for detecting BC using thermal images. The
suggested DL model has fewer parameters in the inference phase than
different TL architectures to identify BC. Future work can include
testing the DPCNN model with diverse datasets containing thermal
images for detecting BC.
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