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Abstract: Ocean-based economic activity, known as the “blue economy”, has become increasingly important in recent years to resource managers 
and government policy-makers. One challenge in understanding the blue economy is tracking how it changes relative to government policies, 
industry decisions, societal trends, extreme weather events, and environmental catastrophes and better understanding potential links will assist 
making the blue economy sustainable. Time series analysis can meet this challenge but suitable data is not yet commonplace. Remotely observed 
marine night light has emerged as a robust proxy for industrial marine economic activity and its repetitive nature, independence, and objectivity 
can help fill this gap. A previously developed method was modified to create multiple quarterly time series using data collected since 2012 by the 
Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi National Polar-orbiting Partnership Satellite. The data comprises 
absolute night-time radiance measurements after stray light correction. Patterns in marine night light at regional and global scales were analyzed 
using time series restricted to International Hydrographic Organization (IHO) defined seas and oceans and masking light from land-based sources. 
Bespoke data extraction code included transformations and analytical settings previously tuned and validated using a time series developed using 
traditional economic accounting data for Australia and found to also equate to similar data from multiple nations. In this study which used IHO seas 
to analyze night light data, the global time series for both total and marine-only night light grew over time, except during major events like the 2015 
global economic slowdown and the COVID-19 pandemic. Marine and global night light intensities followed parallel trends until the COVID-19 
pandemic when marine night light decreased far more sharply than global night light. Until the pandemic, marine night light contributed 2.5–2.7% 
of global night light, a proportion similar to traditional estimates of the global blue economy scale. Time series from individual seas and oceans 
varied significantly, likely due to local factors, but cross-correlation pattern analysis revealed correlated changes over time in some geographically 
connected seas. Combining correlated time series into supra-regional datasets revealed distinct patterns ranging from high volatility in the Indo-
Australian Archipelago versus stability in the Middle Eastern seas. Between 2013 and 2024, percentage contributions by different regions to global 
marine night light changed significantly with the seas of the Indo-Australia Archipelago, Japan, China, South Korea, the Mediterranean, and the 
Middle East becoming more important. These increases were offset by significant night light declines elsewhere, notably in the North Sea region 
and the Gulf of Guinea. Being able to remotely sense change over time of industrial marine economic activities at different scales and geographies 
can enhance blue economic analysis and subsequent policy- and decision-making.
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1. Introduction
Remotely observing the blue economy has emerged in recent 

years as an independent and subjective method for monitoring economic 
activity in the marine domain [1–3]. Data from earth observing 
satellites also allow generation of time series which are not yet common 
in blue economy research. Time series empower economic analysis 
through detecting change which might be linked to natural and societal 
events as well as policy changes or implementation [4]. The existing 
blue economy time series are usually created by adapting or mining 
existing economic data that are not specific to marine or ocean sectors 
and industries [5]. Unlike dedicated efforts such as the recent marine 
economy satellite account by the US Bureau of Economic Analysis [6] 
and the European Union Blue Economy Observatory [7], these are not 
specifically designed for marine or ocean analysis. As an example, in 
Australia’s Index of Marine Industry, marine tourism is calculated by 
combining data from national statistics and tourism survey data [5]. 

This scarcity of blue economic time series has prompted efforts to build 
global capacity in ocean accounting, particularly at the national level 
[8], which can facilitate international collaboration to better manage 
blue economies [9]. However, economic accounting can be expensive 
and requires well developed skills and economic data infrastructure 
and it is well known that existing economic data is of varied quality 
throughout the world [10]. In addition, ocean accounting is still 
maturing as a discipline including how it can be integrated with tools 
like marine spatial planning to enhance its power [11]. Time series also 
need to attain a sufficient duration and temporal resolution to become 
meaningful and useful [12] so initiatives to build economic statistical 
capability will take some years to yield benefits for many countries. 
This has prompted recent efforts to explore the utility of satellite data 
for blue economy research because the data is made freely available, 
often covers the globe, is uniform, and released frequently [13] with 
missions sometimes lasting decades. If these efforts are successful, blue 
economy analysis would benefit as these properties would allow time 
series construction with an additional benefit of employing a single 
method to produce global and regional datasets in a consistent and 
transparent manner.
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Night light intensity is a remotely observed parameter that has 
long been used as a proxy for economic activity [14, 15] although 
there are limitations in how it can be applied [16]. Restricting night 
light analysis to the marine domain is also starting to prove fruitful 
for measuring the marine economy at multiple scales [1, 17]. While 
night light does not detect all blue economy activity, and usually only 
that activity that occurs on the sea surface, they capture a substantial 
portion including offshore oil and gas operations, construction and 
maintenance of marine infrastructure, shipping and ports, dense fishing 
activity, offshore aquaculture, and intensity of coastal development; in 
other words, a large proportion of the industrial component of the blue 
economy or more simply, the industrial blue economy [18]. Despite 
night light intensity not capturing all marine economic activity, it 
has been shown to return measures equivalent to those derived using 
traditional accounting techniques which can vary for the same nation 
depending on the organization undertaking the analysis and their 
preferred method [1]. Consequently, remotely observed night light has 
the potential to create time series of sufficient resolution to explore 
changes in marine economic activity attributable to natural events or 
societal decisions to understand sensitivity and resilience of sectors of 
the industrial blue economy. To this end, a previous and novel method 
[1] was modified to increase the temporal resolution from annual to 
quarterly to create time series from the start of 2013 until the end 
of 2024. It leveraged data from the Suomi National Polar-orbiting 
Partnership Satellite which has been delivering data since 2012. This 
data was accessed through the Google Earth Engine environment and 
its capability to integrate data within spatially defined regions enabled 
analysis of the dynamics of night light intensity within individual seas 
and oceans as defined by the International Hydrographic Organization 
(IHO) [19]. The resulting database of at-sea economic activity at a 
regional scale could then be summed to create a global marine night 
light time series revealing changes at both regional and global scales. 
This approach to spatial segregation has the advantage of producing 
data independent of individual national policies and activities although 
they may influence changes in night light intensity. The resulting 
database would also allow mining for linkages between regions and 
any shared responses, or not, to events likely to have regional and 
world-wide impacts.

Several large-scale events that are quite distinct in nature and 
known to have impacted global and regional economies have occurred 
since 2012 [20, 21], the year data from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) sensor became available. These can prove to 
be valuable natural experiments [22] for economic analysis at different 
scales [23]. Time series that capture marine economic activity with 
adequate temporal resolution and duration, particularly across periods 
marked by significant disruptive events, offer significant promise for 
blue economy analysis by capitalizing upon these natural experiments. 
This study therefore embarked on determining whether time series could 
be developed and applied to understanding blue economy dynamics and 
interconnections, and whether natural experiments applied elsewhere in 
economic analysis could also reveal responsiveness and resilience of 
marine economies to different types of impactful events.

2. Research Methodology

2.1. Time series creation
Google Earth Engine (GEE) is an open coding environment that 

allows users to customize remote sensing products. It has previously 
been used to develop a method for estimating the size of blue economies 
using night light data from marine regions only [1]. This was achieved 
by employing masks to exclude night light from land areas when 
performing calculations within different national jurisdictions. Night 
light measures offshore oil and gas activities, fishing, aquaculture, 

shipping including anchorages and associated port activities, and light 
spill from coastal development, but not daytime activities like many 
tourism activities. This method was modified here in two ways. Firstly, 
by restricting data extraction to marine regions by using a set of marine 
specific shapefiles produced by the International Hydrographic Office, 
and secondly, recoding so that it calculated the moving 12-month median 
in quarterly increments since the start of the available data (April, 2012) 
until December 2024 giving twelve years of quarterly data.

The night light dataset housed in GEE is from the VIIRS (Day/
Night Band) on the Suomi Satellite that measures light from around 
the globe and then filtered by aggregation at the monthly level after 
excluding light from natural sources. The data is made freely available 
by the Earth Observation Group, NOAA National Geophysical Data 
Center [24] in the Google Earth Engine environment. Data processing 
involves excluding data near the edges of the swath, removing lightning, 
moon, and cloud-cover effects but not light from aurora, fires, boats, and 
other temporal lights [25]. Details about the data product and processing 
can be found at https://eogdata.mines.edu/products/vnl/#monthly. 
Despite accommodating for cloud-cover in the data processing, data 
quality may still be affected in those areas that experience extensive 
and repeated cloud cover during a month [26]. Likewise, despite the 
VIIRS sensor being superior to its predecessor by having a much larger 
dynamic range, extremely bright events may saturate the sensor but 
only for some and not all of the bands [27].

Details for processing this night light data and refining it to 
measuring marine economies can be found in the original method [1], 
but in summary:

1)  Data for each month was called by the code and scaled to 1000 m2 
pixels.

2)  Medians were calculated from the twelve-monthly values from 
every 12-month period for each pixel as it has been shown that the 
12-month median removes high and low radiance outliers [26]. 
Confidence intervals for the medians were not calculated as it 
would require a very large number of calculations given the number 
of pixel medians per analyzed region, development of a bespoke 
function and access to the raw data. Moreover, the dataset within 
Google Earth Engine was derived after a number of processing steps 
including removal of outliers based upon the standard deviation of 
the original values [25].

3)  Noise was reduced by eliminating values <1 so that data could be 
log10 transformed to remove the influence of occasional extreme 
light emissions and low values would not be converted into a 
negative value after log transformation.

4)  Light emitted from land-based sources, which may still be 
contributed from larger islands within sea regions, was removed by 
masking data using a MODIS derived dataset (MOD44W.006 Terra 
Land Water Mask Derived from MODIS and SRTM Yearly Global 
250 m) [28].

5)  Retained data was then summed over the area of interest using 
shapefiles created as described below.

6)  Time series were created by incrementing each calculation by 
quarter years.

Polygons for each sea were created by subsetting a global 
shapefile from the International Hydrographic Office [19]. New 
shapefiles were created for individual seas after extraction and 
exporting using QGIS (Quantum GIS, version 3.1.4, 2020). It should 
be noted that, in some instances, this would exclude activities distant 
from the coast such as within port supply chains which might be 
included in national blue economy accounts. Nevertheless, the 
shapefiles for seas and oceans adjacent to land closely traced the 
coastline, effectively capturing nearly all port, anchorage, and urban 
nearshore activities. This would result in a slight underestimate 
that would be minor given the resolution at which this analysis was 
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undertaken and the focus on global and regional scale trends. These 
shapefiles were then imported into GEE using the standard GEE 
protocol. The global time series was constructed by summing all the 
data for each sea within the IHO dataset. Time series for intermediate 
regions (e.g., the Mediterranean Sea) were developed by summing all 
the individual seas (e.g., Adriatic, Aegean, Alboran, and Tyrrhenian 
Seas plus six others for the Mediterranean). The time series for total 
global night light (that is marine plus land) was created using the 
approach above but extracting all night light without any subsetting. 
The code is located in a Github repository along with a summary of 
the approach to data extraction and subsequent treatment in the form 
of a detailed flow chart with a simpler version shown in Figure 1.

Differences between time periods were analyzed on a case-by-
case basis to identify areas where changes in night light intensity could 
influence observed patterns. Differencing is a transformation used with 
time series to remove the effects of auto-correlation between subsequent 
data points and is achieved by sequential subtraction of data within a 
time series. For example, a time series t1, t2, t3, t4 becomes t2 − t1, 
t3 − t2, and t4 − t3. More detail is provided in the next section and 
Supplementary Figure S1.

2.2. Trend and pattern analysis
Various packages within the R statistical environment [29] 

were used to analyze the developed collection of time series for trends 
and then potential relationships and interdependencies. This included 
changepoint analysis [30] and determining basic time series properties 
including how prevalent seasonality was within the developed time 
series [31] and whether they exhibited linearity, monotonicity or other 
trends [32].

After this analysis, common or divergent behavior of time 
series between the different seas and oceans was tested by cross-
correlation analysis using the Pearson correlation coefficient (see 
Supplementary Table S1). Cross-correlation analysis between time 
series can be confounded if they include seasonal cycles or other 
trends as correlation requires the two tested variables to be random. 
The previous analysis therefore served a dual purpose of identifying 
seasonal cycles or linear trends that would need to be removed to ensure 
valid cross-correlation analyses. Prior to cross-correlation analysis, 
time series were differenced by a single lag to make them stationary 
[33], a prerequisite for making statistically valid correlations between 
time series, and to eliminate any autocorrelation which may invalidate 
correlation analysis due to lack of randomness. The value of lagging is 
exemplified in Supplementary Figure S1a and S1b using two time series 
from this study. Supplementary Figure S1c demonstrates the results of 
differencing to remove auto-correlation.

3. Results

3.1. Global scale time series
Time series were generated for every sea within the IHO dataset 

(n = 105). Aggregating all these time series provides the total amount 
of night light emitted from the world’s marine territories independent 
of jurisdictional boundaries (Figure 2) which shows changes coincident 
with global economic events. Both global and marine night light grew 
from the start of the data series until Q2/Q3 of 2015 (Figure 2a). Likewise, 
global GDP [34] (Figure 2a inset) grew between 2013 and 2014 before 
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Figure 1
Simplified flow chart describing the logic flow and data handling 
executed by the code which can be found in a Github repository 

and a more detailed flowchart

Figure 2
Patterns within global and marine night light

Note: (A) Night light for the globe by quarter (Q) since Q1, 2013 un-
til Q4 of 2023, overlaid with the total night light aggregated from all 
of the world’s oceans as classified by the International Hydrographic 
Office [19]. The inset in A shows global annual GDP [34]. (B) Ma-
rine night light as a proportion of global night light. Night light data 
in both Panels A and B show data on a quarterly basis with the X-axis 
depicting the result of summing all of the data for each pixel after an-
nual median values in nanoWatts/cm2/sr had been log10 transformed. 
(C) Standard deviation at each time point from the database of time 
series after they had been normalized to the maximum and minimum 
for each time series. The arrows indicate the top 8 changepoints detect-
ed when using a variance changepoint analysis [38] with the numbers 
indicating order of appearance as conditions were made less stringent 
(cpt.var test in R package “changepoint” using the BinSeg method and 
minimum segment length of 2, and the penalty set manually at 0.05 
level and the “normal” test statistic). In all graphs, the grey rectangles 
and lines depict macroscale events: 1) the year 2015, when a global 
slowdown occurred [35]; 2) the final quarter of 2018, when economic 
growth slowed in China and the Euro area [36], and 3) late March, 2020 
when COVID-19 was declared a global pandemic by the World Health 
Organization [37]. For the inset depicting global GDP figures, these 
lines align with the relevant year.
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decreasing in 2015 as a result of a global economic slowdown [35]. 
Global GDP, marine, and global night light then recommenced growing 
until a dip in early 2018 for night light, and World Bank GDP figures 
plateauing between 2018 and 2019. This corresponded with another 
wide-spread slowing down of economic activity late in 2018, but at 
a lesser scale than 2015, with China and the Euro region experiencing 
weakened economic growth married with trade protectionism [36]. 
The COVID-19 global pandemic was declared in early 2020 [37], 
dramatically affecting global economic activity, as seen in the World 
Bank’s GDP values, and both marine and global night light decreased 
at the same time. However, marine night light intensity decreased more 
significantly relative to global levels during the COVID-19 pandemic 
than previous decreases. This is further evident from Figure 2b where 
marine night light as a per cent of global night light dropped from a 
long-term average of ~2.5% to below 2.3%, returning to near historic 
levels in late 2023 and plateauing until the end of 2024. This long-term 
average of ~2.5% prior to 2020 is equal to estimates of the contribution 
of ocean-based industries to global gross value add in 2010 [38].

Patterns within multiple time series can also be visualized by 
analyzing variance on a point-wise basis [30]. After normalizing 
each time series to its minimum and maximum, the standard 
deviation was calculated for all of the data points from each time 
series for each time period (Figure 2c). This shows the diversity of 
the time series decreased at the same times as the global economy 
experienced shocks due to economic slowdowns in 2015 and 2018 
and the onset of the COVID-19 pandemic. However, about 18 months 
after the pandemic was declared, the standard deviation increased 
again but went well past historic levels and was continuing to 
increase at the end of 2024. Most of these changes were also detected 
using changepoint analysis [39] (Figure 2c), which detects change in 
both directions.

3.2. Time series for individual seas and oceans
Figure 3 shows the top 10 IHO seas and oceans ranked in order 

of night light intensity at the start of 2013. These 10 seas comprise 
67–72% of global marine night light depending on the year and quarter. 
The Persian Gulf is the most intense region at the start of 2013 emitting 
4–7 times as much night light as the 10th ranked region (Caribbean 
Sea) at the same times. This is partly due to the difference in size of 
the region included in the data integration, but this does not completely 
explain this marked difference as the Persian Gulf is 1/12 the size of 
the Caribbean Sea. The remaining difference is due to the contrast 
between the two regions in the intensity, number of locations, and 
spatial coverage of night light emitting activities. Growth in night light 
between the top- and bottom-ranked regions in 2013 until 2024 also 
differed substantially with the amount of night light emitted from the 
Persian Gulf increasing approximately 50% over these twelve years, 
keeping it as the most intense region of marine night light in the world, 
whereas the Caribbean Sea stayed relatively unchanged the whole time 
period.

Another notable increase in night light intensity was in the South 
China Sea where it almost doubled between 2013 and 2024 driven 
by increases along the Vietnamese and southern Chinese coastline, 
particularly around ports; fishing grounds north-west of Hainan Island; 
offshore oil and gas producing regions off south Vietnam, and the 
coastlines of the east Malaysian Peninsula, Sabah, and Sarawak. The 
Eastern China Sea also doubled in intensity in this time period driven 
by intensified night light in the Shanghai and Ningbo regions and off 
the southern coast of the Island of Jeju in South Korea. In contrast, 
there was a long-term decline in night light in the Gulf of Guinea 
corresponding with a period of decreasing oil and gas production [40] 
and increased maritime insecurity [41].

3.3. Between time series pattern analysis
The potential to up- or downscale analyses using this approach 

[1] prompted an analysis of whether any of the seas as defined by the 
IHO behaved in similar manners allowing them to be aggregated into 
intermediate groupings for regional scale analysis. Correlation analyses 
between time series can be complicated by high autocorrelation within 
individual time series (i.e., correlation between a time series and itself 
when lagged by the chosen time unit). This phenomenon can be seen 
in Supplementary Figure S1a and S1b which show the autocorrelation 
between the time series from the Eastern China and Yellow Seas and 
themselves when lagged by an increasing number of quarters. The 
effect of differencing on cross-correlation between two time series 
can also be seen in Supplementary Figure S1c which shows the cross-
correlation between the undifferenced and differenced time series 
for the Eastern China and Yellow Seas. The correlation between the 
undifferenced time series is very high (nearly 1.0) and remains high 
and significant for numerous time lags whereas for the differenced time 
series, the correlation remains high and significant for the unlagged time 
series only and four quarters later where there was a much smaller but 
significant negative correlation. Auto-correlation was high and common 
within all of the time series created for each sea and so differencing was 
applied to all time series subjected to cross-correlation analysis to make 
it more statistically robust [42].

Cross-correlation analysis focused upon seas where the average 
light levels for the whole time series was at least 50 units after summing 
median values across a region after each pixel (in nanoWatts/cm2/sr) had 
been log10 transformed. The selection of this cutoff was based upon the 
observation that many of the time series below that level were for very 
small seas and often well below 50, nearing zero and contributing little 
to the total amount of night light around the world. This resulted in the 
analysis focusing on the top 43 seas or oceans from the 105 for which 
time series were initially generated. Prior to differencing for cross-
correlation analysis, tests were undertaken for linearity, monotonicity 
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 Figure 3
The full time series for the top 10 IHO seas in terms of emitted 
night light arranged in descending order of intensity in the first 

quarter of 2013 as are the entries in the legend

Note: Data for each time series was generated within each sea defined 
using shapefiles based on the International Hydrographic Organization 
definitions of the world’s seas and oceans with data shown on a quarter-
ly basis with the X-axis depicting the result of summing all of the data 
for each pixel after calculating annual median values in nanoWatts/cm2/
sr had been log10 transformed.
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or other trends and of the 43 subjected to cross-correlation analysis, 
only a few exhibited statistically significant (p < 0.05) trends (details 
in Supplementary Table S1). Tests for seasonality did not detect any 
statistically significant (p < 0.05) cyclical behavior (data not shown 
because the test returns a simply true/false Boolean result). Given the 
absence of seasonality and paucity of trends, detrending or seasonal 
adjustment was not undertaken prior to pattern analysis because it 
would be straightforward to determine if any detected correlation would 
be invalid for those time series affected.

Figure 4 depicts the resulting correlogram for the analyzed seas 
and oceans and ordered so that they are as geographically near each 
other as possible. This reveals several groups of high and significant 

correlations even after differencing. One is the seas within and 
surrounding the Indo-Australian Archipelago, extending to the South 
China Sea in the east and the Andaman Sea to the west. Neighboring 
this region was the Eastern China and Yellow Seas plus the small Seto 
Naikai which were highly correlated but not with many of the Indo-
Australian Archipelago seas. The Sea of Japan was highly correlated 
to the Seto Naikai but not the Eastern China and Yellow Seas. Given 
that the Sea of Japan was not correlated to other seas or oceans, it 
was considered as being able to be grouped with the other three seas. 
The Philippines Sea was equally correlated to this small grouping and 
the Indo-Australian Archipelago seas and could be included in either 
grouping. However, its inclusion in either grouping made no difference 
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 Figure 4
Correlogram showing strength of correlations between time series from IHO defined seas

Note: The matrix below depicts the Pearson correlations between IHO seas and oceans, which have been grouped geographically, after quarterly 
night light intensity time series had been differenced by a single lag. Color indicates a statistically significant correlation (p < 0.05) with white 
meaning no significant correlation. The intensity of the blue and red reflects the strength of the positive or negative correlation, respectively. Only 
time series where the average for the whole time series for a sea area was greater than 50 after the data for each pixel in a region in nanoWatts/
cm2/sr had been summed across a region and log10 transformed. The rectangles depict some of the groups that are highly positively correlated and 
geographically near each other. While the Japan Sea was not correlated with the Eastern China and Yellow Seas, it was included with these and the 
Seto Naikai by virtue of the high positive correlation with the Seto Naikai. The rectangle for the Coral and Tasman Seas also highlights correlations 
with seas in the Middle East and the Indo-Australian Archipelago.
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to the observed aggregated time series of either supra-region like that 
shown in Figure 5 and described further below, and so was grouped 
with the seas of the Indo-Australian Archipelago. Another grouping was 
in the Middle East, dominated by the Persian Gulf but extending to the 
Red Sea and its connected gulfs (Gulfs of Aqaba and Aden) through the 
Arabian Sea across to the Laccadive Sea. Smaller groupings were also 
evident like 1) the North Sea, Kattegat, Skaggerak, Irish Sea and Inner 
Seas of the West Coast of Scotland, Baltic Sea, English Channel, and 
Bay of Biscay; 2) the South Atlantic Ocean and Caribbean Sea, and 3) 
the Tasman and Coral Seas. Correlations between groups geographically 
distant from each other were also observed such as between the seas 
of the Middle East and Indo-Australian Archipelago. The Coral and 
Tasman Seas were highly correlated to each other but also to many seas 
within the Indo-Australian Archipelago and the Middle East. 

3.4. Behavior of regional groupings from 
cross-correlation analysis

Figure 5 depicts supra-regional time series for the larger groupings 
detected in Figure 4 by combining data from the above identified groups 
of seas: the Indo-Australian Archipelago, Middle Eastern region, the 
North Sea and near neighbors, and finally, the Seto Naikai plus the 
Eastern China, Yellow, and Japan Seas. Together, these areas emitted 
43% of global marine night light in 2013 increasing to 50–51% in 2024. 
All four regions exhibited markedly different patterns through time with 
Figure 5 showing the aggregated time series (Figure 5a) highlighted 
further by depicting the absolute variance of each data point around 
the mean for each time series in Figure 5b. The Middle East group 
grew almost continuously apart from plateauing during the 2015 global 
economic slowdown into 2016 and a year-long dip immediately after 
the COVID-19 pandemic. Likewise, night light from the Seto Naikai, 
Eastern China, Yellow, and Japan Seas grouping grew almost linearly 
between 2013 and 2024 with minor decreases during the 2015 and 2018 
economic and trade slowdowns and a brief plateau at the start of the 
COVID-19 pandemic. In strong contrast, marine night light in the Indo-
Australian Archipelago and South China Sea group was highly volatile, 
dropping markedly after the 2015 global slowdown and an extremely 
substantial decrease immediately after the COVID-19 global pandemic 
declaration [37] and did not start to increase in intensity again until mid-
2023. Night light from the North Sea region, which included the North 
Sea, Kattegat, Skaggerak, Irish Sea and Inner Seas of the West Coast 
of Scotland, Baltic Sea, English Channel, and Bay of Biscay, remained 
relatively stable and linear apart from some minor decreases coinciding 
with the 2015 and 2018 global slowdowns. There was no discernible 
change upon declaration of the COVID-19 pandemic. A minor decrease 
occurred for a year from mid-2021, followed by a slight recovery and 
then a gradual and continual decline throughout 2023.

4. Discussion
Night light has often been used as a proxy for economic activity 

[15, 43] but only recently adapted to marine economic analysis [1, 17]. 
While the method described in Llewellyn [1], and adapted here, was 
arrived at using validation with marine economy measures based on 
traditional accounting methods, the resulting data from total global 
night (Figure 2a) also mimicked trends within global GDP (Figure 2a 
inset). Night light continually trended upwards between 2013 and 2024 
except for periods when economic activity was impacted at the global 
scale. This included trade slowdowns at the global scale in 2015 [35] 
and another in 2018 mostly felt in the Euro region and China [36], 
and the COVID pandemic in 2020 [37]. Trade slowdowns impact 
commodity movements around the globe through ports and shipping 
as well as demand for energy from oil and gas producing regions, both 
activities whose activity would be reflected in night light intensity.

Restricting analysis to just marine night light shows that it 
contributed between 2.5 and 2.7% of global night light until the first 
quarter of 2020, when the COVID-19 pandemic was declared [37], 
after which it trended down, dropping 0.3% as a share of global night 
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 Figure 5
Patterns in night light intensity over time for supra-regions identi-

fied in Figure 4

Note: (A) Time series of night light from 2013 Q1 to the end of 2024 
for regions comprising: (1) seas of the Indo-Australian Archipelago 
(Andaman Sea, Bali Sea, Banda Sea, Celebes Sea, Ceram Sea, Flores 
Sea, Gulf of Boni, Gulf of Thailand, Gulf of Tomini, Java Sea, Makassar 
Strait, Malacca Strait, Molucca Sea, Philippines Sea, Singapore Strait, 
South China Sea, and Sulu Sea); (2) Seto Naikai plus the Yellow, 
Eastern China, and Japan Seas; (3) the Middle East (Persian Gulf, 
Gulf of Oman, Red Sea, Gulf of Aqaba, Gulf of Aden, and Arabian 
Sea) plus the Laccadive Sea; and (4) the North Sea and near neighbors 
(North Sea, Kattegat, Skaggerak, Irish Sea and Inner Seas of the West 
Coast of Scotland, Baltic Sea, English Channel, and Bay of Biscay). 
The grey rectangles depict macroscale events the same as in Figure 2. 
Night light data is shown on a quarterly basis with the X-axis depicting 
the result of summing all of the data for each pixel after annual median 
values in nanoWatts/cm2/sr had been log10 transformed. (B) Data in 
Panel A transformed into absolute variance around the average for the 
length of the time series. (C) World map depicting the IHO seas with the 
supra-regions identified in Figure 4 highlighted using the same colors 
used for the time series shown in Panel A.
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light over the ensuing five quarters before starting to recover and trend 
upwards (Figure 2b). The decrease in marine night light relative to 
global night light after the COVID-19 pandemic is far more pronounced 
than previous global economic events suggesting that different factors 
were at play during the pandemic within the industrial blue economy 
relative to the broader global economy. The levels of marine night light 
prior to the COVID pandemic also closely agrees with estimates of how 
much the blue economy contributes to the global economy (2.5% [38] 
and 3.2% [44]). Combining figures for the size of the global economy 
from the International Monetary Fund [34] and the marine night light 
percentage values from this study suggests that the global industrial 
blue economy was at least US$2.0 trillion in 2013, increasing to US$2.7 
trillion in 2024 noting that this remote sensing method does not detect 
all marine industries [1]. The value from 2013 is equivalent to the oft-
cited value of at least US$1.5 trillion from 2010 [38], after conversion 
to 2013 dollars, which was acknowledged as “very conservative” and 
so likely an underestimate. Likewise, trade in ocean-based goods and 
services in 2018 was estimated to be worth at least $2.5 trillion per year 
[45] or “about 3% of global GDP in 2020” [46]. These equivalencies 
support the use of the marine night light as a proxy for the industrial 
blue economy.

The point-wise diversity analysis in Figure 2c shows that the 
responses to the global economic events experienced over the past 
decade resulted in different responses. Prior to the pandemic, the 
standard deviation of normalized time series was nearly 0.3, but then 
decreasing at the same time as the economic slowdowns in 2015 and 
2018. After the pandemic was declared, like the previous two events, 
diversity between time series also reduced but after recovering increased 
beyond historic levels. More specificity can be obtained regards these 
changes using changepoint analysis (Figure 2c) enabling exploration 
of links between policies and other events with changes in marine 
economic activity demonstrating the value of time series analysis to 
blue economic analysis as is the case for general economic research [4]. 
These changes may reflect the vast diversity in policies between nations 
in terms of how they responded to the pandemic, both at the start and 
as it started to wane [47]. It remains to be seen whether this increased 
diversity will remain in the longer term.

Downscaling this analysis to seas and oceans reveals diverse 
changes in marine night light over time in different locations. Figure 3 
shows the top 10 locations in terms of marine light from 2013 to 
2024. Night light from most seas and oceans grew over time, apart 
from fluctuations, some of which coincided with known events. The 
East Asian seas grew more rapidly than most with the South China, 
Yellow, and Eastern China Seas essentially doubling between 2013 
and 2024 and increasing their combined contribution to global 
marine night light from 14.4% to 20.4%. The Persian Gulf was the 
most intense area in terms of marine night light, contributing 11.6% 
and 14.4% of the globe’s marine night light in 2013 and 2024, 
respectively. This is an area of extensive offshore oil and gas activity, 
with significant coastal activity in all nations surrounding the Gulf 
like shipping, ports, and other services that support this sector and 
catalyzes general coastal development. The Mediterranean Sea is 
also one of the most intense areas of marine night light and grew 
since 2013. A highly diversified blue economy, with 22 dependent 
nations, the region accounts for about 30% of global tourism and 
15% of global maritime traffic [48]. Between 2013 and 2024, the total 
amount of night light grew 53% with growth happening throughout 
the Mediterranean but more so along the north African coastline. The 
trajectory for the Mediterranean was also relatively stable, despite 
changes in global conditions.

Running counter to the growth trajectories was the South Atlantic 
Ocean and the Gulf of Guinea (Figure 3). Night light intensity within 
the Gulf of Guinea declined 44% between 2013 and 2024 reducing it 

from being one of the most luminous seas in 2013 to a mid-tier region. 
The South Atlantic Ocean is bordered by the south-west coast of Africa, 
which like the Gulf of Guinea is an area of large-scale off-shore oil 
and gas extraction and the west coast of South America, dominated 
by Brazil and Argentina and home to substantial and emerging blue 
economies built on large coastal cities, commodity ports, and some 
offshore oil and gas production [49–51]. The North Sea also decreased 
over this period with light intensity more than halving between 2013 
and 2024, albeit with most of that decrease occurring in recent years. 
The North Sea is experiencing substantial change with the North Sea 
Transition Authority established to actively manage the diversification 
of energy production methods as oil and gas production declines and to 
capitalize on carbon abatement potential within the United Kingdom 
continental shelf [52]. 

Accounting for the area covered by the seas within the IHO 
database, the Singapore Strait is the most intensely lit region per square 
kilometer (data not shown) followed by the Sea of Marmara and then 
the Persian Gulf and the Seto Naikai. The Singapore Strait is about 
4.5 to 6.6 times more intense than the Persin Gulf depending on the 
year. Other notable seas within the top 10 based on intensity of light 
relative to sea surface area were the Gulf of Suez, Rio de la Plata, Gulf 
of Guinea, and the Yellow Sea. This is unsurprising as these are all areas 
of intense industrialization and coastal development.

Visual inspection of the numerous time series revealed many 
similarities but also sufficient differences to prompt pursuit of robust 
methods of analyzing time series for potential patterns in regional scale 
behavior of night light intensity. A common pattern analysis strategy 
is to undertake multiple correlation analyses between pairs of time 
series after accommodating for any underlying trends which might 
compromise their statistical validity [42]. After determining that night 
light time series exhibited no seasonality and the occurrence of trends 
was minor, pattern analysis was undertaken with those seas containing 
an average of 50 units after median night light values had been log10 
transformed from nanoWatts/cm2/sr and summed across the sea of 
interest. All time series were differenced to make them stationary prior 
to the cross-correlation analysis resulting in the correlogram depicted in 
Figure 4. The sea regions analyzed were ordered in the correlogram in 
a manner that maximized geographic proximity. This revealed several 
aggregations of highly positively correlated time series separated from 
other groups by low or insignificant correlations (Figure 4). Data from 
these significantly correlated seas and ocean were combined and further 
analyzed as “supra-regions” to reveal regional changes of night light 
intensity in response to macroscale events (Figure 5).

The supra-region containing the North Sea and adjacent seas 
(Kattegat, Skaggerak, Baltic Sea, Irish Sea, Inner Seas of the West 
Coast of Scotland, the English Channel, and Bay of Biscay) was 
relatively stable (Figure 5) and essentially linear except for some 
minor decreases coinciding with global slowdowns in 2015 and late 
2018 and approximately a year after the pandemic, until starting a 
continuous decline until 2024. The North Sea is the most luminous 
of the seas within this group and an area of intense, but declining, oil 
and gas production [53]. However, the North Sea and its neighbors 
are more than oil and gas and are areas of intense, and multiple uses 
including growing amounts of offshore renewable energy production 
[54] and substantial fisheries [55] intermingled with networks of 
marine protected areas [56]. Oil and gas production is declining in 
the North Sea itself [53] but numerous industries operate within this 
and the neighboring seas which are bordered by fifteen nations, highly 
complicating co-management of environmental and socioeconomic 
values which are often interdependent [57–59].

Slightly more volatile was the region including the Yellow, Eastern 
China, and Japan Seas plus Seto Naikai, which grew in a relatively 
stable manner, with short plateaus in 2015 through to mid-2016 and 
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again when the COVID-19 pandemic was declared. This region is 
home to a highly diverse array of marine industrial activity with intense 
shipping and port activity, fishing, aquaculture, and offshore oil and gas 
production. It is also home to well over a billion people [60]. It also 
contains several of the world’s megacities, that is urban agglomerations 
with more than 10 million residents, located on the coast such as Osaka, 
Seoul, and Shanghai [61]. This stability can be seen elsewhere with 
cargo throughput of ports like Busan, Incheon, Shanghai, Ningbo, 
and Tianjin showing almost uninterrupted growth between 2013 and 
2023 [62]. It is also an area of strong trade connections [63] and high 
dependence on the ocean for food [64].

The Middle Eastern Seas group was also relatively stable 
exhibiting continuous growth from 2013 apart from a decrease at the 
same time as when the COVID-19 pandemic was declared with growth 
re-starting a year later (Figure 5a). Industry within the Middle Eastern 
seas is dominated by offshore oil and gas and onshore industries to 
support the offshore production. For example, oil and gas production 
account for 40% of GDP for four of the six Gulf Cooperation Council 
member countries, added to by construction and transport activity to 
service this sector [65]. This lack of diversity has been recognized by 
the nations within this region who are pursuing policies to diversify the 

industrial blue economies within these areas, particularly away from the 
oil and gas sector [66, 67]. Saudi Arabia, which has coast-line in both 
the Red Sea and Persian Gulf appears to have the most ambitious plans 
for proactive marine economic development and diversification away 
from oil and gas under their Saudi Arabia 2030 Vision [67]. The oil and 
gas sector within this region is also unusual in that most of the oil and 
gas companies operating here are state-owned [68] blurring the lines 
between the public and private sectors. 

In strong contrast, intensity of night light from the seas surrounding 
the Indo-Australian Archipelago Sea including the South China Sea 
was highly volatile, dropping markedly after the 2015 global slowdown 
and severely at the start of the COVID-19 pandemic and remaining low 
until mid-2023 before increasing in intensity. The collapse of marine 
night light in 2020 reduced it to levels as low as they were in 2013 and 
by the end of 2024, had not yet returned to what existed immediately 
prior to the pandemic. The main drivers of the dramatic changes in the 
Indo-Australian Archipelago in 2020 were reduced light intensity from:

1)  the numerous coastal ports and associated anchorages throughout the 
region but particularly so for major hubs like Singapore (Figure 6a) 
and those that service offshore oil and gas fields like Labuan on 
Sabah Island and Da Nang on the east coast of Vietnam;
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 Figure 6
Examples of change within seas neighboring Indo-Australian Archipelago nations and near neighbors between immediately prior to the 

COVID-19 pandemic (Q1, 2020) and the least intense quarter post the pandemic (Q3, 2022)

Note: (A) Singapore and surrounding area; (B) off the east coast of the Malaysian Peninsula; (C) the southern coast of Vietnam; and (D) Hainan 
Island and surrounding area. Panels B and C include insets to highlight the specific locations. Stronger redness indicates a decrease in night light 
between the two time points and green pixels represent an increase. Circles highlight locations that are examples of activities that run counter to 
the trend (i.e., intense green whereas the majority of the area is red) and are mentioned in the Discussion. Note that the changes range between 
−1 and 1 but are dimensionless as they result from differencing between the data generated using this method which is log10 nanoWatts/cm2/sr).
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2)  oil and gas fields off the east coast of Malaysia (Figure 6b), southern 
coast of Vietnam (Figure 6c), and western coasts of Brunei, Sarawak, 
and Sabah;

3)  major offshore fishing grounds northwest of Hainan Island 
(Figure 6d), throughout the Java Sea and those intermingled with 
the oil and gas fields mentioned above [69]; and 

4)  fields of aquaculture farms off southern Vietnam.

However, night light did not universally decrease in these areas 
as there were some instances where night light increased such as two 
locations highlighted in panels A and C of Figure 6 which coincided 
with commissioning of a new oil production platform and an area of 
intense port activity, respectively. Regarding the latter, reduction in 
shipping movement can result in an increase in night light emissions 
as vessels spend more time at anchor in ports, anchorages, or receiving 
maintenance [17]. As night light intensity recovered during 2023, in the 
main it was simply a reintensification of night light at the same sites that 
had experienced a decline.

This supra-region corresponds with one of the few regional, 
rather than national, blue economy strategies, the Blue Economy 
Framework produced by the ASEAN nations [70]. The Indo-Australian 
Archipelago is recognized as one of the world’s most important 
centers of biodiversity [71, 72]. This convergence between volatile 
industrial marine economic activity and environmental and biodiversity 
considerations will require sophisticated policies that transcends 
jurisdictional boundaries, and multiple uses.

While the long-term global trend seen in Figure 2 for marine night 
light shows that the proportion of global night light from marine sources 
ranged from 2.3 to 2.7%, depending on global events, the contribution 
to the total marine night light by different regions has changed over time 
(Figure 7). The seas surrounding China, Korea, Japan, and the Indo-
Australian Archipelago increased from contributing just over 20% of 
global marine night light at the start of 2013 to almost 30% by the end of 
2024. Other areas which showed an increase in this time period was the 
Mediterranean Sea which increased its global night light contribution 
by about 2%, and from the Persian Gulf, Red Sea, and neighboring 
gulfs growing from 17% to almost 20% of global marine night light. 
Conversely, the contributions from the North Sea and its connecting 
seas, along with the Gulf of Guinea, more than halved between 2013 
and 2024. The total contribution from the seas comprising the Atlantic 

Ocean decreased several per cent during the same time period. Quah 
[73] identified a global economic center of gravity in the mid-Atlantic 
in the 1980s and forecast that it would shift to between India and China 
by 2050. A similar shift appears to be happening in industrial marine 
economic activity away from the Atlantic Ocean and neighboring 
regions to potentially two centers with one in the Indo-Australian 
Archipelago and East Asia and the other in the Mediterranean and 
Middle Eastern Seas which are connected by the Suez Canal.

As noted above, not all industrial marine activity is effectively 
detected by this method. Emerging industries like marine biotechnology 
can operate distant from the sea itself and offshore renewable energy 
may emit little night light. Likewise, sub-sea activity associated with 
undersea telecommunication cables, seafloor infrastructure for the 
offshore oil and gas industry, and deep-sea mining will not be quantified. 
Some, but not all, tourism activity will be detected, specifically activities 
that occur over multiple days and generate light at nighttime such as 
accommodation and other offshore infrastructure as well as multi-
day ship and boat activities. Development of some of these industries 
is being actively promoted by multiple countries, growing their 
contribution to the overall blue economy [74]. The original method was 
calibrated using a dataset derived from country-based macroeconomic 
data and only for a single nation, although it was found to provide 
data similar to that produced using more traditional methods for many 
countries around the world [1]. There is the potential for the underlying 
phenomenon to vary between different regions and regionally specific 
calibrations may be required for more detailed analysis in certain 
locations, but this is hampered by the availability of appropriate data for 
such calibrations especially for spatial analyses which are not nation-
based and direct information collected about surface-based activities 
may need to be drawn upon. Despite these limitations, the values 
derived are equivalent to traditional macroeconomic data and exhibit 
similar variation in trends caused by large scale events.

5. Conclusion
Global interest in developing the blue economy is rapidly 

increasing as nations aim to diversify their economies or achieve 
significant new growth [75]. As a result, policymakers are increasingly 
focused on identifying effective strategies to support this growth in a 
sustainable and well-managed way. Economic time series are valuable 
tools for this purpose, offering insights into trends and potential causal 
relationships. However, there are currently only a limited number of 
reliable time series specific to the blue economy due to the challenges 
of implementing national accounting specific to the ocean.

As an alternative, this study built upon a previously validated 
method [1] to generate high resolution time series of marine economic 
activity by tracking changes in night light intensity from 2013 to 2024. 
The time series were spatially restricted to seas and oceans as defined 
by the International Hydrographic Office, enabling the identification of 
regional patterns and the construction of a global time series. These 
time series overlapped with significant events known to have affected 
the global economy allowing for detection of varied regional responses. 
At the global scale, the results aligned with accounting-based estimates 
of the global ocean economy with marine night light accounting for 
2.5–2.7% of global night light until early 2020, when it dropped 0.3% 
during the COVID-19 pandemic before beginning to recover in 2023.

Cross-correlation analysis revealed clusters of neighboring 
seas—termed “supra-regions”—that exhibited similar behavior, 
particularly in response to global events. For instance, Middle Eastern 
seas showed steady growth throughout the study period, with only a 
minor dip during the COVID-19 pandemic. In contrast, the Indo-
Australian Archipelago displayed high volatility, with repeated declines 
during global disruptions and a varied delays in the time taken to 
return to growth. Over the study period, the center of marine economic 
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 Figure 7
Changes in proportion contribution by different regional group-

ings of IHO seas

Note: The graph shows the per cent contribution to global marine night 
light from the four regions shown in Figure 5 (highlighted in the legend 
with asterisks) and other major seas and oceans (which combine data 
from several seas) which comprise almost the entirety of marine night 
light. The grey bars on the top of the graph depict the same global scale 
economic events shown in Figures 2, 3, and 5.
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activity, as indicated by night light, shifted from the Atlantic to East 
Asia and the Indo-Australian Archipelago, mirroring broader economic 
forecasts of a shift toward Asia.

Although emerging sectors within the blue economy may not emit 
detectable night light, the sectors that do are significant contributors and 
their dynamics will continue to shape the broader blue economy for 
years to come. Integrating this data with spatial analysis also enables 
examination of how different regions respond to the same large-scale 
events. Ultimately, spatiotemporal analysis using consistent, quality-
assured remote sensing data offers a powerful new tool for informed 
policy and decision-making in the blue economy. As this dataset grows, 
it will increasingly capture key events and reveal patterns across scales 
from sub-regional to global. Integration with additional and relevant 
remote sensing datasets like synthetic aperture radar and Automatic 
Identification Systems data, as has happened elsewhere [3] will further 
empower this approach and fill gaps in the economic activity not 
detected by this method.
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IHO Sea Region Linearity Monotonicity
Non-monotonic 

trend
Andaman Sea 0.58 0.89 0.01
Arabian Sea 0.49 0.51 0.75
Baltic Sea 0.25 0.77 0.82
Bay of Bengal 0.61 0.52 0.01
Bay of Biscay 0.08 0.09 0.51
Black Sea 0.72 0.59 0.54
Caribbean Sea 0.26 0.27 0.13
Coral Sea 0.76 0.99 0.03
Eastern China Sea 0.24 0.19 0.36
English Channel 0.08 0.09 0.84
Great Lakes 0.70 0.72 0.15
Gulf of Finland 0.57 0.43 0.72
Gulf of Guinea 0.31 0.43 0.23

Table S1
p values from trend tests

 Figure S1
Impact of differencing upon time series autocorrelation and 

cross-correlation between time series

Note: Autocorrelation in the time series for Eastern China (A) and Yel-
low (B) Seas before (grey bars) and after differencing (black circles) by 
subtraction of consecutive values at different lags. C) Cross-correlation 
between the time series for the Eastern China and Yellow Seas before 
(grey bars) and after differencing of the two time series by a single 
lag (full black symbols). Panel C shows that the correlation between 
undifferenced time series was close to 1.0 and time shifting one series 
against the other incrementally decreases the correlation and remains 
statistically significant for a substantial number of lags. After the time 
series have been differenced by a single lag, the correlation between the 
lagged time series remained over 0.6 and was statistically significant 
whereas any other correlations were lower and insignificant except for 
a negative correlation after four lags between the two time series in one 
direction. In all graphs, the dashed and dotted lines represent the 95% 
and 99% significance level, respectively.

IHO Sea Region Linearity Monotonicity
Non-monotonic 

trend
Gulf of Oman 0.02 0.22 0.90
Gulf of St 
Lawrence

0.30 0.20 0.05

Gulf of Suez 0.02 0.02 0.03
Gulf of Thailand 0.86 0.89 0.63
Irish Sea 0.95 0.79 0.93
Java Sea 0.74 0.87 0.63
Laccadive Sea 0.01 0.01 0.01
Malacca Strait 0.95 0.97 0.51
Mozambique 
Channel

0.66 0.57 0.96

North Sea 0.19 0.41 1.00
Persian Gulf 0.23 0.23 0.97
Philippines Sea 0.95 0.85 0.45
Red Sea 0.63 0.70 0.11
Rio de la Plata 0.90 0.95 0.64
Japan Sea 0.62 0.47 0.31
Sea of Marmara 0.37 0.71 0.82
Seto Naikai 0.79 0.97 0.23
Singapore Strait 0.72 0.82 0.58
South China Sea 0.59 0.81 0.48
Sulu Sea 0.93 0.89 0.02
Tasman Sea 0.76 0.44 0.02
Coastal Waters 
of SE Alaska & 
British Columbia

0.07 0.22 0.05

Yellow Sea 0.43 0.29 0.79
Mediterranean Sea 0.69 0.90 0.28
Gulf of Mexico 0.97 0.99 0.30
Indian Ocean 0.79 0.79 0.28
South Atlantic 
Ocean

0.84 0.98 0.62

North Atlantic 
Ocean

0.51 0.69 0.61

South Pacific 
Ocean

1.00 0.91 0.09

North Pacific 
Ocean

1.00 0.98 0.56

Note: Test were undertaken using the “notrend” test in the “funtimes” 
package within R [31]. Tests included linearity (Student’s t-test 
statistic), monotonicity (Mann–Kendall statistic) or the possibility 
of a non-monotonic trend [76]. Tests were conducted only on those 
time series where the average over the whole time series was greater 
than 100 after the data in nanoWatts/cm2/sr had been summed across 
a region and log10 transformed for each pixel within a region. Note 
that the data for the Mediterranean Sea was a composite of its smaller 
seas (e.g., Aegean, Alboran etc.). p values equal to or less than 0.05 are 
highlighted.

Table S1
Continued


