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Abstract: Coastal ecosystems are becoming increasingly susceptible to anthropogenic impact and the process of infrastructure construction, 
particularly within fast-urbanizing zones. This study examines the spatiotemporal processes of coastal fence growth and surface water loss during 
2010–2015 in Victoria Island, Lagos. Landsat imagery was employed in extracting the Normalized Difference Water Index (NDWI) and the 
Normalized Difference Built-up Index (NDBI), the former being the prime indicator of hydrological alteration, while the latter being the key 
indicator of urban growth. NDWI loss areas coincide with NDBI gain areas to identify areas where natural water bodies are substituted by artificial 
structures in the guise of coastal fences. Supervised machine learning–based classification was employed for improved change detection and spatial 
precision. This study introduces a new application of NDWI–NDBI overlay and supervised machine learning to coastal fencing identification in 
Lagos, Nigeria, and the approach provides a reproducible model for monitoring structural change in coastal communities that have limited data. 
The result clearly demonstrates that the reduction in the extent of surface water has a strong correlation with the expansion of built-up land, 
particularly along the coasts, where coastal fences have been extended seaward. This study demonstrates the application of fused spectral indices 
and machine learning to monitor coastal change and offers a reproducible technique for sustainable coastal zone management.
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1. Introduction
The coastline is an interface where three basic natural systems 

converge: the atmosphere, land ecosystems, and bodies of water, 
and it is made up of diverse ecosystem services that are increasingly 
susceptible to both natural processes and human activities, particularly 
those related to climate change [1]. Coastal ecosystems are some of the 
most dynamic and biologically productive environments on our planet, 
where the terrestrial and marine worlds overlap and act as interfaces 
[2]. The coastal zones are densely endowed with diverse ecosystems 
and are the locations of key economic activities while being exposed 
to increased vulnerability through urbanization, human settlements, 
and global phenomena such as sea level rise and beach erosion [3]. 
In all developing nations such as Nigeria, human activities such as the 
building of seawalls, groins, and fencing walls have altered the natural 
process of the coast [4].

Coastal cities are aggressively being redeveloped by natural 
and human forces like population expansion, economic growth, and 
climatically induced environmental modification. Nowhere is such 
change more acute than in the world’s megacities, like Lagos, Nigeria, 
where coastal reclamations and uncontrolled urban sprawl have diverted 
natural hydrologic flows and coastlines.

Victoria Island, one of the most rapidly developing Lagos coastal 
suburbs in Nigeria, is a good example situated in the Atlantic Ocean 
and driven by its economic opportunities; the suburb has undergone 
extensive land reclamation, infrastructural development, and shoreline 
modification, such as the construction of coastal fences [5]. 

This study utilizes Landsat 7 ETM+ imagery (2010–2015) due 
to its optimal compromise between spatial resolution (30m), temporal 
continuity, and free-access availability during the study period. 
Although the more recent imagery like Sentinel-2 (10m) or MODIS is 
ideal, their availability started after 2015, so Landsat 7 was selected due 
to (1) the archive fully spanning our period of study (available before 
the start of Sentinel-2 in 2015), (2) the 30m resolution being adequate 
for distinguishing coastal fencing regimes while permitting practical 
multi-year processing, and (3) the properly calibrated ETM+ sensor 
generating standard surface reflectance data of greatest usefulness in 
inferring incremental shoreline change. That homogeneity is required 
for tracking human-induced fine-scale changes within data-scarce 
regions. Although fences are typically constructed for flood protection 
or marking land boundaries, they have extensive environmental and 
spatial ramifications on the coastal environment.

Satellite remote sensing has proven to be a vital tool for monitoring 
such change with temporal continuity and over broad spatial extents. 
There are several different classification methods used for satellite land 
use/land cover change detection. These include supervised machine 
learning classifiers (Support Vector Machine, Random Forest [RF]), 
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unsupervised classification (K-means clustering), object-based image 
analysis, and index-based threshold classification. While supervised 
classification methods are more precise when ground truth information 
is provided, threshold-based classification methods are simpler to 
interpret, computationally faster, and suitable for index-specific studies.

In this study, the term “fence” refers to man-made physical 
barriers or obstructions such as solid walls, embankments, or enclosures 
that are constructed along a seashore or in water bodies for the sake of 
land marking, reclamation, or development control. These fences most 
commonly lead to urbanization of developed land intruding coastal or 
water areas, typically replacing natural water surface with impervious 
cover. While locally referred to as “coastal fences,” these are also 
regarded as illegal land reclamation or unofficial shoreline hardening in 
international coastal terminology [6].

This study follows two spectral indices: Normalized Difference 
Water Index (NDWI) and Normalized Difference Built-up Index (NDBI), 
for monitoring coastal dynamics and mapping fencing-induced change in 
Victoria Island in 2010–2015. NDWI, based on green and near-infrared 
(NIR) reflectance, was demonstrated to be suitable for monitoring 
vegetation and surface water change [7], while NDBI, based on the short-
wave infrared (SWIR) and NIR bands, was widely applied to estimate 
urban growth and built-up density. The use of these indices together 
enables the assessment of natural (water-induced) and anthropogenic 
(urban development) changes in the coastal zone at the same time.

This study utilizes a thresholding technique of NDWI (to identify 
water loss) and NDBI (to identify built-up growth) and meshes their 
opposing strengths to identify coastal fencing encroachment. While 
“NDWI=” “ Green - NIR” /”Green + NIR” identifies changes in 
surface water, “NDBI=”  “ SWIR - NIR” /”SWIR + NIR” clearly maps 
urbanization patterns. Their intersection indicates water loss augmented 
with built-up gain a characteristic of coastal fencing. This two-index 
approach, which was verified by supervised machine learning (RF), 
addresses a fundamental knowledge deficit of West African urban 
coastal surveillance whereby such structural change is incremental but 
ecologically meaningful [8]. This study offers an extensible method for 
the detection of change in urbanizing coastlines and is aimed at filling 
this gap by leveraging multitemporal Landsat imagery and cloud-based 
geospatial processing platforms such as Google Earth Engine (GEE) 
and Google Colab to (1) quantify NDWI-based surface water change, 
(2) recognize NDBI-based structural development, and (3) establish 
spatial coincidences of possible coastal fencing.

The objective of this research is to examine the spreading of 
coastal fences in Victoria Island, Lagos, Nigeria, in 2010–2015. Through 
the application of threshold values of NDWI and NDBI on Landsat 
data, we identify water loss patches with an attendant increase in built-
up land, an indication of reclamation or structural fencing. The result 
will inform evidence-based policymaking and coastal management for 
risky urban coasts.

2. Literature Review
Shoreline land cover change monitoring requires discrimination 

indices between urbanized and hydrological features. NDWI has 
also been highly applied in the identification of surface water bodies 
and changes, especially for areas that have shoreline recession or 
anthropogenic alteration [9]. NDWI is also highly useful in the 
identification of moisture content and water versus vegetation and soil 
and therefore highly useful in the identification of water loss trends 
and encroachment in the coastal region, or NDBI can often be utilized 
to extract built-up features using SWIR to NIR spectral contrast [10]. 
NDBI can effectively demarcate the extent of impervious cover and 

infrastructure development, especially where human construction such 
as coastal fences or embankments is undertaken to reclaim land or to 
mitigate erosion in areas of the coastline that are prone to urbanization 
of the coast [11].

The integrated NDWI–NDBI overlay technique has recently 
been used to analyze anthropogenic stress on coastal regions. For 
instance, multi-index remote sensing applied with the intention of 
monitoring shoreline change and building intrusions along the affected 
coastal stretches by overlaying loss in NDWI and gain in NDBI has 
successfully found locations where natural water systems are being 
substituted by development and this method has been of invaluable use 
in the detection of illicit developments like coastal fencing, which is 
prone to intruding into intertidal or riparian zones [12].

Geospatially, Dike et al. [13] conducted a comparative analysis of 
shoreline demarcation in Nigeria with Landsat-8, Sentinel-2, and Planet 
Scope imagery and concluded that NDWI always outcompeted all other 
hydrological change mapping indices of coastal barriers. Likewise, 
it highlighted the importance of composite remote sensing indices in 
semi-arid tropical regions with increased utilization of high-spatial 
resolution, free-access imagery in successful land water interaction 
observation.

Despite progress, many studies have analyzed either hydrological 
or urban indices in isolation. Fewer have analyzed the spatial interaction 
between NDWI loss and NDBI gain in terms of coastal fencing and 
policy enforcement. This study tries to fill the gap by using multi-year 
Landsat imagery to detect coastal fence expansion in Victoria Island, 
Lagos, by applying NDWI and NDBI overlays to spatially depict the 
spatiotemporal interaction between built-up expansion and hydrological 
degradation.

3. Research Methodology

3.1. Study area
The Victoria Island was analyzed in a Lagos coastline as shown 

in Figure 1, geographically situated in the Atlantic Ocean in the south 
and the Lagos Lagoon to the north, and it is located between 6.412°N 
and 6.438°N latitude and 3.410°E and 3.450°E longitude [14]. Victoria 
Island is a fast-developing urban city consisting of business high-rise 
buildings, residential housing estates, and a huge seaside reclaimed 
area [15]. Its strategic and economic value has caused it to become a 
focus for coastal infrastructural investment, generally at the expense of 
natural habitats.

For performing the geospatial analysis, Victoria Island spatial 
extent was delineated from a high-resolution satellite image polygon 
shapefile and loaded as an asset in GEE to enable homogenous spatial 
filtering, masking, and visualization. 

3.2. Data acquisition
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) surface 

reflectance data were downloaded from the USGS Earth Explorer 
and GEE data archive, and data between 2010 and 2015 were used as 
shown in Figure 2. To prevent inconsistencies and less atmospheric 
deformation, images with coverage less than 30% were used separately 
and the median reducer was used to create yearly composites to mosaic 
cloud-free appearance yearly [16].

Table 1 presents NDWI (green and NIR bands) and NDBI 
(SWIR1 and NIR bands) analysis from Landsat 7 ETM+ imagery at 
30m resolution, ensuring consistent water and built-up area assessment 
in 2010–2015.
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3.3. NDWI and NDBI computation
For successful observation and study of surface and built-up 

water flow patterns over the decades, two remote sensing indices were 
computed every year and the indices are of extremely important use in 
land use and hydrological trend studies, particularly for nations with 
rapid urbanization [17].

NDWI is one of the most popular indices utilized in surface 
water body detection and monitoring; the index utilizes the distinction 
between NIR and green satellite image bands in emphasizing water 
objects and the index differentiates best between water and other land 
classes and is hence reliable to measure the extent of surface water with 
time [18].

At the same time, the NDBI tries to distinguish built-up features 
from the difference between the subtraction of the SWIR and NIR bands. 
It is applied in the distinction of the urban development pattern and 
built-up expansion, and it is utilized in the management and planning 
of cities [19].

With its annual submission, researchers can monitor urban land 
and surface water patterns and observe how hydrological processes are 
impacted by urbanization and it allows them to investigate inter-annual 
fluctuation and long-term trend, a value that is of unthinkably crucial 
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Figure 1
Map of the study area

Figure 2
Coastal fence detection workflow

Year Satellite Sensor
Bands

for NDWI
Bands

for NDBI
Spatial 

resolution Remarks
2010 Landsat 7 ETM+ Green (SR_B2), NIR (SR_B4) SWIR1 (SR_B5), NIR (SR_B4) 30m Minimal cloud cover
2011 Landsat 7 ETM+ Green (SR_B2), NIR (SR_B4) SWIR1 (SR_B5), NIR (SR_B4) 30m Stable data availability
2012 Landsat 7 ETM+ Green (SR_B2), NIR (SR_B4) SWIR1 (SR_B5), NIR (SR_B4) 30m Consistent quality
2013 Landsat 7 ETM+ Green (SR_B2), NIR (SR_B4) SWIR1 (SR_B5), NIR (SR_B4) 30m Used for change detection
2014 Landsat 7 ETM+ Green (SR_B2), NIR (SR_B4) SWIR1 (SR_B5), NIR (SR_B4) 30m Pre-fence expansion period
2015 Landsat 7 ETM+ Green (SR_B2), NIR (SR_B4) SWIR1 (SR_B5), NIR (SR_B4) 30m End of study period

Table 1
NDWI–NDBI analysis using Landsat data (2010–2015)
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significance in the sustainable development and resource management 
of the affected area. Both were computed as follows:

This index enhances open water features while suppressing built-
up and vegetation areas [20].

This index highlights impervious surfaces and built-up structures 
[21].

Both indices were computed for each year from 2010 to 2015, 
and change detection was performed by calculating differences between 
consecutive years such as 2010–2011 and 2011–2012.

3.4. Threshold-based classification technique
For hydrological and urbanized change area mapping, we used 

threshold-based classification on the NDWI and NDBI indices. This 
was due to simplicity, readability, and where thematic classes are 
distinctly separated with discrete index values. Thresholding was also 
a computationally more efficient substitute for supervised classification 
methods based on tagged training samples. Thresholding can be simply 
replicated across time series satellite images [22].

NDWI was calculated from the NIR and green bands of the 
Landsat data, and NDBI was calculated from the SWIR and NIR bands. 
Based on literature and empirical verification, pixels with NDWI less 
than –0.1 were classified as water loss and pixels with NDBI higher 
than 0.1 were classified as built-up or new development [10]. These 
threshold values were established through iterative visual verification 
and validation using high-resolution Google Earth imagery by year.

These function-based thresholds perform optimally in coastal 
towns where surface water and impervious surface modification are 
spatially discrete and temporally rapid. Applying these thresholds to 
multitemporal 2010–2015 Landsat imagery, we generated binary layers 
of NDWI loss and NDBI gain, which were Spatially correlated for 
mapping patches of artificial fencing and coastal encroachment.

Thresholding, while not a machine learning method, was used 
as a baseline due to its simplicity, transparency, and computational 
efficiency. It involves applying fixed rule–based thresholds (NDWI 
< –0.1) to classify pixels and was evaluated against a RF model for 
comparative validation under data-limited conditions.

3.5. NDWI–NDBI overlay for detection of fencing
To find the locations where fencing or coastal reclamation was 

done, we created an overlay of the 2010 NDWI loss map and 2015 
NDBI gain map. In this analysis, it identifies where water surfaces were 
lost (NDWI < –0.1) and replaced by man-made cover (NDBI > 0.1) at 
the same location between 2010 and 2015 satellite images. This overlap 
of these two binary maps (NDWI loss ∩ NDBI gain) was employed to 
map structural change that is claimed to result from the construction of 
artificial fences or land reclamation.

Overlay was achieved using raster computations in GEE. Spatial 
intersection technique delivers high-confidence techniques of separating 
true structural change because it eliminates patches of natural cover or 
seasonal water variation. The overlay map obtained had appropriately 
demarcated polygons that represent possible areas of fence extension.

To enable easy interpretation, visual cross-matching against high-
resolution Google Earth imagery and manual digitization of readily 
discernible fence lines were conducted to further validate accuracy and 
thematic integrity of the overlay product.

3.6. Threshold classification
Threshold values were applied in this study to identify significant 

changes:
i.	 NDWI decrease: <−0.1
ii.	 NDWI increase: >0.1
iii.	NDBI increase: >0.1

Systematic literature search and visual observation were 
employed to select threshold values through a procedure to attain 
maximum discrimination between stable and altered classes of land 
cover, and that was through the study of a range of remote sensing 
indices and capability of differentiation between various land cover 
classes [23]. By combining empirical observation in previous research 
work with visual interpretation from satellite images, researchers 
determined precise threshold values which would maximize 
classification accuracy; not only does this enhance the accuracy of land 
cover mapping but also allows for environmental and coastal  change 
to be detected over time more successfully, and the combination of the 
qualitative and quantitative method is such that the thresholds are not 
only strong but also applicable across landscapes, to inform better land 
use and conservation policy [24].

3.7. Ground truth accuracy assessment and validation 
map

To assess the accuracy of NDWI–NDBI overlay classification, 
ground truth points were manually digitized from Google Earth high-
resolution imagery. Points were selected to represent areas of known 
fence growth, water, and no-change areas for the study years (2010–
2015).

A confusion matrix was generated by comparing the classified 
overlay results with the reference points. Overall accuracy, 
user’s accuracy, producer’s accuracy, and the kappa coefficient 
performance measures were calculated. A validation map was also 
generated to illustrate the spatial distribution of correct and incorrect 
classifications.

This validation technique helped confirm the correctness of the 
overlay approach and indicated the most significant locations where 
misclassification may have occurred due to shadowing, seasonal 
change, or resolution limitations.

3.8. Comparative machine learning test
The RF classifier was implemented with the ee.Classifier.

smileRandomForest() algorithm in GEE. The classifier was 
subsequently trained on a total of 500 stratified and hand-labeled 
sample points as four land cover categories: water, vegetation, built-up, 
and bare ground. Around 125 points were allocated to each category. 
These training samples were hand digitized from high-resolution 2015 
Google Earth imagery for adequate class representation. The classifier 
took the full suite of Landsat 7 spectral bands (SR_B1 to SR_B7) as 
input features, in addition to NDWI and NDBI indices. The ensemble 
involved 100 decision trees, and default GEE settings were used for the 
number of variables per split and bootstrapping sampling. Classification 
was used on the 2015 composite image and tested on an independent 
test set of 300 points that were in a spatially independent position 
from the training set. The techniques employed to determine accuracy 
were overall accuracy (91.5%), producer’s accuracy, user’s accuracy, 
and Cohen’s kappa coefficient, all computed from a confusion matrix 
comparison of the predicted and reference labels. This was a decent 
test of supervised classification performance and offered a baseline with 
which the thresholding-based NDWI–NDBI overlay technique could be 
compared.
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3.9. Coastal fence detection
Coastal fence growth and extension were always determined by 

overlaying NDWI loss areas over their corresponding NDBI gain areas, 
and NDWI is best suited to distinguish between surface water loss 
and vegetation moisture change and is therefore best suited to identify 
change in the coastal environment [25]. Conversely, the NDBI has 
turned out to be a handy indicator for following built-up area growth, 
especially in regions where urbanization takes place at a fast pace along 
the coastal areas [26]. Through their intersection of NDBI increases and 
NDWI decreases, in this study, areas undergoing hydrologic retreat and 
anthropogenic encroachment are classic cases of man-made enclosure 
by fencing and filling and illegal settlement and expansion [27]. The 
composite approach using the index enables effective detection of 
fencing-induced changes and evidence-based tracking of urban stress 
on sensitive coastal ecosystems like Victoria Island.

3.10. Methodological workflow for coastal fence 
detection

The coastal fence detection approach employed a systematic 
seven-step process. Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) Surface Reflectance data (2010–2015) were downloaded 
from GEE with annual cloud-free composite images generated using 
median reducers to minimize atmospheric interference. Two spectral 
indices were determined: the Normalized Difference Water Index 
NDWI=( Green-NIR)/(Green+NIR)  to detect water body changes 
and the Normalized Difference Built-up Index NDBI=( SWIR-NIR)/
(SWIR+NIR) to map built-up expansion. Empirical threshold values 
(NDWI < −0.1 for water gain; NDBI > 0.1 for built-up loss) were 
employed to categorize the pixels, which were subsequently cross-
checked with high-resolution Google Earth images. Spatiotemporal 
dynamics were investigated by analyzing annual NDWI differential 
maps (loss of water), NDBI differential maps (expansion of urban), 
and their spatial overlay marking coincident gain/loss features. Validity 
was tested over 3,200 stratified ground points with resulting confusion 
matrices for >87% total accuracy and robust kappa coefficients (>0.85). 
Results were validated with historical Google Earth imageries, city 
municipal planning reports, and previous field surveys. These potential 
errors from failure of Landsat 7 scan line corrector, seasonality of water, 
and mixed pixel effect were reduced by spatial filtering and by manual 
verification of marginal cases.

3.11. Accuracy assessment
To evaluate the accuracy of NDWI-based classification, binary 

change masks (1 = loss, 0 = no change) were compared against ground 
truth validation masks. The following metrics were computed using 
the scikit-learn Python package: confusion matrix, overall accuracy, 
precision, recall, F1 score, and Cohen’s kappa coefficient to assess 
agreement beyond chance [28]. Validation was performed in Google 
Colab using Rasterio for data I/O and scikit-learn for classification 
metrics.

4. Results and Discussion

4.1. NDWI-based surface water change detection
Figure 3 indicates that the NDWI change imagery captures the 

spatial and temporal patterns of Victoria Island, Lagos, surface water 
content and wetness condition from 2010 to 2015. Annual color change, 
dark-red indicating loss of water and light-green indicating gain of water, 

is the cumulative effect of seasonal change and anthropogenic landscape 
change. The early phase (2010–2012) is marked by NDWI reduction, 
particularly along coasts and centers that are typical of initial land 
reclamation, construction stages, and climatic aridity induced thereby.

The maps indicate more NDWI loss in 2012–2014 with 
maximum loss cover observed between 2013 and 2014, particularly 
along urbanized coastal fringes presumably because of enormous fence 
construction and urbanization. By 2014–2015, there is a faint sign of 
NDWI recovery in some northern and eastern areas, perhaps due to the 
recovery of vegetation or decreased development activity. Red areas in 
the majority, nevertheless, represent irreversible change of hydrological 
character of the island, as attested by growing anthropogenic pressure 
upon the coast ecosystems.

4.2. NDWI gain and loss methods in Victoria Island 
(2010–2015)

The NDWI gain and loss map is a binary classification of surface 
water dynamics highlighting regions of significant hydrological change 
for 5 years. The left-hand classified product map shows regions of gain 
(green) and regions of relative stability or loss (cream/light-yellow). 
Spatial changes show continued anthropogenic activity such as land 
reclamation, development, or deforestation in Victoria Island areas.

The line graph shown in Figure 4, on the right, shows NDWI gain 
and loss over time. It indicates that loss of water was always greater 
than gain during the study period, with the highest values in 2010–2011 
and 2013–2014. Yet 2013–2014 had the highest NDWI gain as well, 
and this can be accounted for by temporary ecological recovery or plant 
recovery followed by further loss in 2014–2015. This confirms that 
while some of the recovery occurs, it is generally dominated by larger-
scale hydrological perturbations due to development pressures.

4.3. NDWI changes in Victoria Island (2010–2015)
Table 2 shows a general overview of the spatiotemporal change 

of NDWI in Victoria Island annually for 2010–2015. Change was 
most pronounced in 2010–2011 (580.59 ha), while maximum changes 
occurred in 2013–2014 (326.52 ha), indicating dynamic surface water 
fluctuation. In general, the trend indicates variable periods of moisture 
loss and regeneration through natural and anthropogenic mechanisms.

4.4. Binary maps of NDWI increase and decrease 
across Victoria Island 

Figure 5 shows the 2010–2015 categorical NDWI loss and gain 
maps which show trends of change in Victoria Island, Lagos, surface 
water. Red hues in the left column signify losses in NDWI (loss), and 
green hues in the right column signify gains in NDWI (gain). The 
binary coding facilitates easy visual identification of areas where the 
amount of surface water or moisture has reduced or increased over 
time.

There is a usual acceleration of intensifying loss of NDWI, 
particularly over central and southern coastal sections coinciding 
with built-up area expansion and reclamation, in 2010 to 2012. Worth 
highlighting is that the most clustered points of loss in 2013–2014 
coincide with built-up expansion. On the other hand, green gain 
areas signify isolated vegetation or water recovery, where 2014–2015 
saw a relatively larger NDWI increase duration, particularly over 
the eastern regions of the island. The use of this two-panel figure 
allows for straightforward spatiotemporal comparison of hydrologic 
condition change and easier detection of areas most affected by 
human activities.
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4.5. Annual NDWI–NDBI fence overlay maps across 
Victoria Island from 2010 to 2015

As revealed in Figure 6, NDWI–NDBI overlay maps of Victoria 
Island from 2010 to 2015 present the areal distribution of potential 
coastal fencing activity. Dark-blue pixels represent areas where surface 

water was eliminated (NDWI < −0.1) and replaced by built land (NDBI 
> 0.1), showing anthropogenic intrusion, and from 2010 to 2013, the 
fencing witnessed remained relatively low but spatially growing. Grey 
areas indicate no detectable change. Maps reveal a progressive increase 
in structural encroachment, especially along the southern and western 
coastal margins. The fastest development was in 2013–2014 with the 

6

Figure 3
Spatiotemporal NDWI change maps for Victoria Island, Lagos
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southwestern and southeastern peripheries of the island being the 
epicenters, simultaneously with the years of maximum urban growth. 
The map of 2014–2015 depicts a scattered, weakened trend, which may 
be the consequence of saturation in growth or adjustment in policy. 
These spatial trends are comparable to the trends developing through 
analyzing NDWI loss and NDBI gain.

4.6. Mean annual change in NDBI values (2010–2015) 
over Victoria Island, Lagos

Figure 7 shows the annual average change in the NDBI of Victoria 
Island, Lagos, for 5 consecutive years between 2010 and 2015. NDBI 
is a spectral index of a satellite image and has the capability to estimate 
accurately the surface impervious density and thus has the potential to 
be an effective proxy for urban development. Positive values of NDBI 
are indicative of net growth in the urban area, and negative values 
indicate stabilization or decrease in construction intensity. In the period 
from 2010 to 2012, the upward trend in NDBI indicates the process 
of acceleration of land reclamation and infrastructure construction, 
especially in coastal high-value land with urbanization intensity.

There is clearly an inflection point after 2012, as indicated by 
the continuously decreasing value of NDBI and the sharply negative 
trend in the years 2014–2015. This autumn is a sign of decelerating 

growth that could be caused by spatial saturation, policy action, or 
environmental restriction.

4.7. Estimated coastal fence area by year (2010–2015)
Figure 8 shows the trend in space–time of fencing along the 

Victoria Island coast, Lagos, between 2010 and 2015. The rising 
trend of 2012–2013 to 2013–2014 is important with the maximum 
area fenced of over 100 hectares, attributed to the large-scale land 
development activities and likely land reclamation activities. On the 
other hand, 2014–2015 shows a sudden decline in fenced land either 
due to the saturation of available coastal land for fencing or because 
of shifts in the management and control of coastal policy. Any such 
trend over time is in line with the shifts in NDWI and NDBI and trends 
toward the verification of the correlation of anthropogenic pressure and 
coastal transformation.

4.8. Accuracy metrics for coastal fence detection from 
2010 to 2015

Table 3 shows around 3,200 validation points that were digitized 
manually from Google Earth high-resolution imagery and applied to 
verify Victoria Island coastal fence growth binary overlay classification. 
Validation points were stratified to provide a representative proportion of 
positive samples (fence growth: NDWI gain ∩ NDBI loss) and negative 
samples (stable or unchanged). 600 to 700 points were distributed to 
every yearly interval between 2010 and 2015 to yield sufficient space 
allocation island wide and reduce spatial bias. The sample size meets 
default accuracy assessment guidelines of thumb requirements for 
medium-resolution imagery binary land cover mapping.

The stratification gave constantly high false-free producer’s 
accuracy (1.000) for each year; virtually all the actual instances of fence 
growth in ground truth data were identified correctly using the overlay 
detection method. The user’s accuracy varied and plunged sharply in 
the year 2014–2015 to 0.377, reflecting widespread high frequency of 
false positives. This decrease is also supported by the decrease in the 
Kappa coefficient to 0.539, indicating decreased agreement between 
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 Figure 4
Spatiotemporal analysis of NDWI gain and loss in Victoria Island, Lagos

Interval
NDWI

 Decrease (ha)
NDWI 

Increase (ha)
0 2010 → 2011 580.59 91.44
1 2011 → 2012 513.72 203.22
2 2012 → 2013 220.05 113.76
3 2013 → 2014 491.85 326.52
4 2014 → 2015 182.25 194.58

Table 2
Spatiotemporal NDWI changes over Victoria Island (2010–2015)
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 Figure 5
Spatiotemporal NDWI change maps for Victoria Island, Lagos
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 Figure 6
Annual NDWI–NDBI fence overlay maps for Victoria Island, Lagos
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reference data and classified results. The explanations may include 
misidentification of temporary surfaces (bare ground or clearing) as 
urbanized, seasonal effects on index sensitivity. Specifically, 2010–
2011 and 2013–2014 were most stable with an overall accuracy above 
0.98, user’s accuracy above 0.87, and Kappa coefficient higher than 
0.92, indicating excellent agreement and classification consistency for 
these years.

5. Conclusion and Recommendations
Conclusions highlight the need for tighter regulation and spatial 

monitoring of coastal development. Future research needs to lengthen 
the temporal scope, use higher-resolution satellite imagery (Sentinel-2 
or Planet Scope), and analyze the socio-legal drivers of unregulated 
coastal fencing. The methodology presented here provides an exportable 
model for coastal change detection in other rapidly developing littoral 
regions. These findings support existing studies showing extensive 
hydrological change due to urbanization in the coastal regions from the 
NDWI and NDBI [12, 13], with the exception that this contribution 
builds on these investigations by, for the first time, directly relating 
the indices to coastal fence expansion using a composite overlay and 
machine learning approach.

This study represents an effort in applying NDWI–NDBI 
overlay analysis as the primary method for detecting coastal fence 
encroachment, with supervised machine learning used as a comparative 
validation approach in an urban West African context. Through the 
application of multitemporal Landsat data and ground truth validation, 
the article depicts a replicable geospatial framework to track structural 
encroachment in data-scarce coastal environments. Its incorporation 
offers a novel and scalable answer for coastal zone administration in 
rapidly developing environments such as Victoria Island and Lagos. 
Despite NDWI–NDBI overlay and machine learning accuracy in 
structural encroachment identification, method efficacy is compromised 
by factors such as Landsat imagery resolution, seasonality fluctuation of 
the spectral data, and bare ground or transition surface misclassifications. 
Thus, despite this method being operational in Victoria Island, it can be 
extended to other locales following calibration in other coastal regions 
with varying environmental dynamics or development patterns.

These findings have implications for practical coast management 
and urban planning in rapidly developing territories like Victoria Island. 
The closely related link between sprawl of development and loss of 
surface water implies the imperative of stricter regulatory regulation of 
reclamation of the coast and fencing. Composite NDWI–NDBI maps 
could be employed by the environmental and local planning commissions 
to serve as an early warning for illegal development area detection 
and activation of coastal buffers. In addition to this, employment of 
threshold remote sensing analysis in repeated monitoring would be 
useful to data-driven policy zoning, improve compliance monitoring, 
and reduce environmental degradation from uncontrolled urbanization. 
Geospatial intelligence needs to be integrated into coastal development 
planning to balance economic growth and ecosystem preservation in 
risk-prone littoral systems.

The study recommends integration of remote sensing into 
coast management and regulation of urban expansion in exposed 
coastal environments. The future studies must utilize socio-political 
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 Figure 7
Average NDBI change over years (2010–2015) in Victoria Island, 

Lagos

 Figure 8
Estimated coastal fence area by year (2010–2015)

Interval TP TN FP FN
Overall 

accuracy
Producer’s 
accuracy User’s accuracy Kappa

2010–2011 2892 19487 391 0 0.983 1.000 0.881 0.927
2011–2012 1139 21200 431 0 0.981 1.000 0.725 0.831
2012–2013 1554 20782 434 0 0.981 1.000 0.782 0.867
2013–2014 2819 19544 407 0 0.982 1.000 0.874 0.922
2014–2015 277 22035 458 0 0.980 1.000 0.377 0.539

Note: TP, True Positive; TN, True Negative; FN, False Positive; FN, False Negative.

Table 3
Accuracy assessment of coastal fence detection (2010–2015)
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information and high-resolution images to further comprehend the 
determinants and effects of fencing along coastal areas in developing 
settings such as Lagos.
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