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Abstract: Cardiovascular diseases (CVDs) are complex conditions affecting a large portion of the global population, and their early,
accurate, and timely prediction remains a significant challenge. Conventional CVD risk assessment often relies on limited parameters
and fails to capture the complex interactions among genetic, lifestyle, and environmental factors. Recent machine learning studies have
improved predictive performance; however, they often rely on small or retrospective datasets, lack real-time or external validation, and offer
limited interpretability for clinical use. This study introduces a novel stacking ensemble framework that integrates ridge regression (RR),
Theil-Sen regressor, and gradient boosting regressor. To our knowledge, this is the first application of a regression-based stacking approach
for CVD risk prediction that embeds explainable artificial intelligence as a core component, a combination rarely explored in low-resource
healthcare contexts. Using a real-world dataset of 1,529 patients from Jamalpur Medical College Hospital, Bangladesh, the proposed
model achieved 96% predictive accuracy, outperforming most existing methods. The dataset itself represents a rare contribution, as most
prior studies rely on UCI, Framingham, or other benchmark repositories rather than contemporary hospital data from underrepresented
populations. Through SHapley Additive exPlanations analysis, our model identifies BMI, diabetes, and blood pressure as the most
influential factors, aligning with established medical knowledge and providing clinically actionable insights. Unlike prior black-box models,
our framework not only improves prediction accuracy but also delivers transparent explanations that enhance trust and support public
health decision-making. This integration of accuracy, explainability, and context-specific clinical insight underscores the novelty and
practical relevance of our approach for advancing interpretable AI in CVD prediction, particularly in resource-limited healthcare settings.

Keywords: cardiovascular diseases, machine learning, ensemble model, ridge regressor, Theil-Sen regressor, gradient boosting regressor,
explainable AI

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
mortality worldwide, accounting for an enormous health and eco-
nomic burden. Among these, heart attacks and strokes represent
approximately 85% of CVD-related deaths, making them a pri-
ority concern for global health systems [1]. The significant risk
factors associated with CVD include smoking, excessive alcohol
consumption, unhealthy diets, sedentary lifestyles, and hyperten-
sion, which often occur together and increase the likelihood of
adverse outcomes [2]. Traditional treatment methods, such as med-
ications, lifestyle modifications, and surgical interventions, have
been widely employed to manage symptoms and mitigate risk [3].
In critical cases, invasive procedures like angioplasty or bypass
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surgery are performed to restore blood circulation and reduce arte-
rial blockages [4]. Additionally, growing attention has been given
to herbal remedies and plant-derived compounds for their poten-
tial cardioprotective benefits [5]. Despite these efforts, the global
statistics remain alarming, with nearly 20 million CVD-related
deaths reported in 2022 alone, representing almost one-third of
all deaths worldwide [6]. In low- and middle-income countries
(LMICs) such as Bangladesh, the burden is increasing rapidly
due to demographic aging, urbanization, and lifestyle transitions.
Recent epidemiological data indicate that hypertension, diabetes,
and obesity are rising across both rural and urban populations,
yet early risk detection and preventive interventions remain inad-
equate. The limited availability of structured, high-quality clinical
data in regional hospitals further constrains the ability to develop
reliable prediction tools tailored to local populations [7].

Machine learning (ML) methods have shown significant
promise in improving cardiovascular risk prediction through data-
driven modeling. However, several persistent challenges limit their
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clinical translation. Most prior studies have relied on bench-
mark or Western datasets (e.g., UCI, Framingham), which do not
reflect the demographic and environmental diversity of LMICs.
Moreover, while many models achieve high accuracy, they often
function as “black boxes,” providing little insight into how predic-
tions are made, an essential aspect for clinical trust and adoption.
There is also limited work exploring hybrid or ensemble-based
regression models that integrate interpretability tools to ensure
transparency in risk attribution [8, 9].

To address these limitations, the present study develops an
explainable stacking ensemble framework that integrates ridge
regression (RR), Theil-Sen regressor (TSR), and gradient boosting
regressor. Using a real-world dataset from Jamalpur Medical Col-
lege Hospital, Bangladesh, this study aims to improve prediction
accuracy while providing transparent explanations of influential
risk factors through SHAP (SHapley Additive exPlanations) anal-
ysis. This dual focus on performance and interpretability makes
the approach both technically robust and clinically meaningful.
Furthermore, by leveraging contemporary hospital data from an
underrepresented population, this work contributes novel regional
evidence to the global literature on AI-driven cardiovascular risk
prediction.

The main objectives of this study are therefore threefold:

1) To construct a comprehensive and representative dataset for
CVD risk prediction in a low-resource clinical setting

2) To develop and validate a regression-based stacking ensemble
framework that enhances predictive performance

3) To integrate explainable AI techniques to interpret model
outputs and identify the most influential risk factors

4) Together, these contributions aim to support the develop-
ment of interpretable, context-specific AI tools for preventive
cardiovascular healthcare.

2. Literature Review

To identify the research gap, we conducted a comprehen-
sive review of existing methods relevant to this study. This section
highlights the contributions, outcomes, limitations, and future
directions of prior works. Dritsas and Trigka [10] employed logis-
tic regression (LR), achieving an accuracy of 87.8% in predicting
CVD risk. Khan et al. [11] utilized random forest (RF), which
achieved the highest accuracy of 85.01% with the lowest misclas-
sification error. However, a key limitation was the absence of
real-time clinical validation; the authors recommended incorporat-
ing deep learning models to enhance accuracy. RF has been widely
used due to its robustness, but it often struggles with imbalanced
CVD datasets, where minority cases (e.g., positive diagnoses) are
underrepresented. Its reliance on bagging and majority-vote deci-
sion trees can bias predictions toward the dominant class, leading
to higher false negatives and lower sensitivity in clinical contexts.
Bhatt et al. [12] proposed an ML framework for CVD prediction,
reporting that the multilayer perceptron (MLP) achieved the

highest accuracy of 87.28% with cross-validation. Nevertheless, the
study did not consider temporal trends or genetic factors, which
are crucial for a comprehensive assessment of CVD risk. The
authors suggested that future work incorporate deep learning, such
as convolutional neural networks (CNNs), to improve predictive
performance. Chandrasekhar and Peddakrishna [13] reviewed the
use of ML in enhancing heart disease risk prediction. They used
six ML classifiers and an ensemble soft voting method (SVE).
The ensemble model achieved an accuracy of 93.44%; however,
the study used only 302 cases, which may not be sufficient for
generalizing to diverse populations. Kanagarathinam et al. [14]
employed a CatBoost ML classifier and achieved a mean accu-
racy of 94.34% which was validated via 10-fold cross-validation.
CatBoost outperformed other models due to its gradient boost-
ing (GB) framework, which is tailored to handle categorical and
heterogeneous data. Unlike RF, CatBoost uses ordered boost-
ing and efficient encoding of categorical features, enabling it to
capture complex, nonlinear interactions among risk factors (e.g.,
age, diabetes, hypertension) while minimizing overfitting on small
datasets. Islam et al. [15] developed an integrated system combin-
ing the Internet of Things (IoT) with LR to predict CVD risk
levels, achieving an F1-score of 91% for binary classification and
80.4% for ternary classification. While the prototype demonstrated
high accuracy and usability, future efforts should address hardware
limitations, data heterogeneity, and broader clinical integration to
maximize impact. Stonier et al. [16] developed a model to predict
CVD risk using RF, achieving an accuracy of 88.52%. However,
the study’s small sample size of 301 patients limits its generalizabil-
ity, indicating a need for larger datasets. Huang et al. [17] applied
five ML models to predict cardiovascular risk in middle-aged and
elderly Chinese populations. Among these, the LightGBM (LGB)
model achieved the highest accuracy of 81.7%. However, its F1-
score was relatively low at 0.509, indicating a high false-negative
rate. Future studies should prioritize improving model sensitivity
and the F1-score. Zaidi et al. [18] developed HeartEnsembleNet,
a hybrid ensemble learning approach for predicting CVD risk.
Their hybrid model HeartEnsembleNet with Hybrid Random
Forest Linear Models (HRFLM), which combined RF and k-
Nearest Neighbors, achieved the highest accuracy of 92.25%.
Despite this strong performance, the model lacks interpretabil-
ity. Incorporating explainable AI techniques such as SHAP or
Local Interpretable Model-agnostic Explanations (LIME) would
be essential to enhance clinical trust. Cheng et al. [19] evaluated
multiple ML models for predicting CVD risk in Taiwanese adults.
Among these, GB achieved the highest accuracy of 76.2% and an
F1-score of 56.7%. However, the study’s reliance on self-reported
outcomes and absence of external validation limit its immediate
clinical applicability. Future work should emphasize validation,
interpretability, and integration of diverse data sources.

Table 1 highlights significant progress in CVD risk prediction
using a wide range of ML models, including LR, RF, GB, LGB,
CatBoost, deep learning architectures such as MLP, and hybrid

Table 1. Summary of the existing methods

Author MLModel
CVD Risk
Accuracy Dataset Size Limitation Future Direction

Dritsas and Trigka [10] LR 87.8% Not specified – –

Khan et al. [11] RF 85.01% Not specified No real-time
clinical validation

Explore deep
learning models

(Continued)
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Table 1. (Continued)

Author MLModel
CVD Risk
Accuracy Dataset Size Limitation Future Direction

Bhatt et al. [12] MLP 87.28% Not specified Ignored tem-
poral/genetic
factors

Apply CNN/deep
learning

Chandrasekhar and
Peddakrishna [13]

SVE 93.44% Small (302) Limited
generalizability

Use larger datasets

Kanagarathinam et al. [14] CatBoost 94.34% Not specified – –

Islam et al. [15] IoT + LR F1: 91% (binary),
80.4% (ternary)

Prototype, het-
erogeneous
IoT data

Hardware/data
heterogeneity

Improve scalability
and integration

Stonier et al. [16] RF 88.52% Small (301) Limited
generalizability

Larger datasets

Huang et al. [17] LGB 81.7% Not specified Low F1-score
(0.509)

Improve sensitivity

Zaidi et al. [18] HRFLM 92.25% Not specified Lack of
explainability

Apply
SHAP/LIME

Cheng et al. [19] GB 76.2% Not specified Reliance on self-
reported data

Emphasize
validation

frameworks like HRFLM. Reported accuracies vary from 76.2%
to 94.34%, with ensemble and hybrid models (e.g., CatBoost, SVE,
HRFLM) generally outperforming traditional approaches. While
these results are promising, several studies reporting accuracies
above 90% have common challenges that remain.Manyworks suffer
from small sample sizes (e.g., < 310 patients), reliance on retrospec-
tive or self-reported datasets, lack of external or real-time clinical
validation, and limited consideration of diverse features such as
genetic, temporal, or longitudinal data. Furthermore, some mod-
els struggle with poor sensitivity (e.g., LGB, with an F1-score of
0.509) or lack transparency (e.g., HRFLM), which limits their clin-
ical trustworthiness. Hardware and data heterogeneity issues have
also been noted as barriers to scalability. Overall, despite progress,
most models have yet to demonstrate robust generalizability across
broader populations or real-world clinical deployment.

3. Materials and Methodology

The primary objective of this research is to predict the level of
risk associated with CVD based on patients’ information using an
ML-based approach. To achieve the aim of this research, several
regression analysis models were applied, and the best models were
utilized in a Stacking method as the primary technique. Figure 1
provides an overview of the core architecture of this research, and
Sections 3.1 to 3.7 describe the steps in detail.

The methodological design of this study was guided by two
primary objectives: (1) to construct a robust and generalizable pre-
dictive framework for CVD risk using real-world hospital data
from Bangladesh and (2) to ensure that the resulting model is
transparent and clinically interpretable. To achieve these aims, we
developed an innovative stacking ensemble that integrates RR,
TSR, and GBR, three models with complementary strengths. This
combination allows for the capture of both linear and nonlinear
relationships while maintaining resistance to outliers and reducing
overfitting.

The methodological innovation of this approach lies in the
integration of regression-based stacking with explainable artificial
intelligence (XAI) through SHAP analysis. Unlike prior works that

treat CVD prediction as a classification problem using opaque
“black-box” algorithms, our framework employs continuous risk
estimation through regression, offering finer granularity and
clinical relevance. The inclusion of SHAP interpretability further
enhances transparency by quantifying the contribution of each
risk factor, bridging the gap between data science and medical
decision-making.

3.1. Dataset

In this study, the dataset was obtained from a comprehen-
sive CVD risk assessment available on Kaggle [20]. The dataset
comprises information on 1,529 patients collected from Jamalpur
Medical College Hospital in Jamalpur, Bangladesh, between Jan-
uary 20, 2024, and January 1, 2025. The dataset consists of 22
columns, of which 21 are predictive variables and 1 is the deci-
sion variable. Both numeric and nominal data were used in this
research. The dataset is described in more detail in Table 2.

3.2. Data refining and preprocessing

In the initial preprocessing stage, missing values in the dataset
were addressed through data imputation. Data imputation is a
method used to replace missing or incomplete entries with esti-
mated values based on existing data, often through statistical or
computational approaches [21]. A total of 948 missing values were
identified, all within numerical features, and these were imputed
using the mean of the respective variables. The original blood
pressure (mmHg) column, which contained paired systolic and
diastolic readings, was removed to avoid redundancy and multi-
collinearity. Instead, these values were transformed into a single
categorical variable representing hypertension stages (e.g., normal,
stage 1, stage 2, and stage 3). This approach preserved the clini-
cal relevance of blood pressure while simplifying the dataset and
improving model interpretability.

Following this, nominal variables were converted into numer-
ical form to make them suitable for analysis. For example, in the
sex column, female entries were encoded as 1 and male entries as
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Figure 1. Outlines the core framework of the applied approach

Table 2. An in-depth description of the dataset used

Parameter Description Type

Sex Biological sex of the individual (male/female) Nominal

Age Age in years Numerical

Weight (kg) Body weight measured in kilograms Numerical

Height (m) Height measured in meters Numerical

BMI Body mass index, calculated as weight/height² Numerical

Abdominal circumference (cm) Waist circumference in centimeters Numerical

Blood pressure (mmHg) Recorded blood pressure (systolic/diastolic) Nominal

Total cholesterol (mg/dL) Total cholesterol concentration in the blood Numerical

HDL (mg/dL) High-density lipoprotein cholesterol level Numerical

Fasting blood sugar (mg/dL) Blood glucose level after fasting Numerical

Smoking status Whether the individual smokes Nominal

Diabetes status Whether the individual has diabetes Nominal
Physical activity level Level of physical activity (low/medium/high) Nominal

Family history of CVD Presence of cardiovascular disease in family history Nominal

CVD risk level Categorical risk level (low/intermediary/high) Nominal

0. Similarly, for smoking status, diabetes status, and family his-
tory of CVD, a “Yes” response was encoded as 1 and a “No”
as 0. For ordinal variables describing severity levels, numerical
values from 1 to 4 were assigned. For instance, patients with nor-
mal blood pressure were assigned a value of 1, while those with
hypertension stage 2 were assigned a value of 4. The same encod-
ing approach was applied to physical activity level and CVD risk
level.

3.3. Data visualization

This research examines various visualizations of the dataset to
understand the trends and patterns in the data. For this research,

histograms and density plots were merged and used for the data
visualization.

3.3.1. Histogram and density plot
A histogram is a statistical chart that visualizes the frequency

distribution of numeric data by dividing it into contiguous inter-
vals (bins) and representing the count of data points within each
bin as vertical bar [22]. When augmented with a density plot, a
smoothed representation of the distribution estimated using kernel
density estimation, the resulting visualization provides a compre-
hensive view of both the absolute frequencies and the underlying
probability density function [23]. In the context of CVD risk
modeling, these combined charts for features such as age, BMI,
total cholesterol, fasting blood sugar, LDL, and smoking status
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offer critical insight into data characteristics, including skewness,
modality, and dispersion. Furthermore, they allow for the visual
comparison of distributional characteristics across subgroups, such
as sex-based differences, highlighting shifts in central tendency
and variability. Figure 2 showcases these distributions, guiding
essential preprocessing decisions, informing feature engineering,
and supporting the development of predictive models that account
for demographic heterogeneity to improve predictive accuracy and
generalizability in CVD risk assessment.

3.3.2. Heatmap
Figure 3 presents a correlation matrix heatmap for the anal-

ysis of CVD risk. A heatmap provides a visual representation
of correlation coefficients between variables, using a color gra-
dient to indicate the strength and direction of relationships [24].
Warmer colors denote stronger positive correlations, while cooler
colors represent stronger negative correlations. This visualization
enables the identification of linear dependencies among variables
such as BMI, total cholesterol, blood pressure, and LDL, which
can reveal potential multicollinearity issues in predictive modeling.
Recognizing these interrelationships supports more informed fea-
ture selection and model design, ultimately improving the accuracy
and interpretability of CVD risk prediction models.

3.4. Machine learning algorithms

In this research, we applied a range of ML algorithms to
predict CVD risk and evaluated their performance using multi-
ple metrics. The models that achieved the highest accuracy were
RR [25], TSR [26], RANSAC regressor (RANSACR) [27], extra
trees regressor (ETR) [28], XGBoost regressor (XGBR) [29], and
GBR [30]. To ensure the reliability of these results, we also per-
formed 5-fold and 10-fold cross-validation, which helped identify
the models that generalized best to unseen data. Based on these
findings, we constructed an ensemble model using the stacking

method. In this approach, selected high-performing models were
used as base learners, and a final meta-model combined their pre-
dictions to produce the overall output. This strategy enabled us
to leverage the complementary strengths of different algorithms,
thereby improving prediction accuracy compared to individual
models.

3.5. Stacking ensemble model

Ensemble stacking is an ML technique that combines the
predictions of multiple base models through a secondary model,
known as a meta-learner. The base models are trained on the same
dataset, and their outputs are used as inputs to the meta-learner,
which learns how to integrate them optimally. This approach lever-
ages the complementary strengths of different algorithms, often
achieving higher predictive accuracy and robustness than any indi-
vidual model alone [31]. In this study, the stacking ensemble
combined three models: RR, TSR, and GBR. Each model was
first trained separately on the same training data, and their pre-
dictions were then combined into a final Ridge Regression model,
which learned how to optimize its outputs to make the final
prediction. To further enhance performance, the original input
features were also provided to the final model alongside the base
model predictions, giving it additional information to improve
accuracy.

3.6. Machine learning assessments

The performance of regression models is typically evalu-
ated using a variety of metrics, including mean squared error
(MSE), mean absolute error (MAE), coefficient of determination
(R²), peak signal-to-noise ratio and signal-to-noise ratio (SNR)
[32, 33]. Table 3 summarizes the results obtained across these
evaluation measures. Collectively, these metrics provide a com-
prehensive view of a model’s predictive accuracy and its ability to

Figure 2. A merge of histograms and density plots showing distribution in the following variables: (a) age, (b) BMI, (c) total cholesterol,
(d) fasting blood sugar, (e) LDL, and (f) smoking status
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Figure 3. Heatmap illustrating the correlation of CVD with health and lifestyle factors

Table 3. Complete forms of the assessing metrics along with their definitions and formulas

Metric Definition Formula

MAE Average absolute difference between
predictions and actual values.

1
n

n∑
i=1

||yi-ŷi||
MSE Average of squared differences between

predictions and actual values.

1
n
∑n

i-1
(yi-ŷi)

2

R² Proportion of variance in data explained by
the model.

1-
∑n

i=1 (ŷi-yi)
2

∑n
i=1 (yi-yi)

2

PSNR Log ratio of peak signal power to
reconstruction error power.

10 log10
MAX2

I

MSE

SNR Log ratio of signal power to noise power. 10 log10 (Psignal

Pnoise
)

generalize beyond the training data. In general, lower MSE and
MAE values indicate minor prediction errors, while higher R²,
PSNR, and SNR values reflect stronger explanatory power and
better signal fidelity. A balanced consideration of these metrics is
therefore essential, as relying on a single measure may provide a
biased or incomplete assessment of model performance. By jointly
analyzing these indicators, one can more reliably determine the
robustness and effectiveness of the regression model in practical
applications.

3.7. Final model selection

Based on the evaluation of various models under the specified
parameters, RR emerged as the most effective individual model,
consistently demonstrating superior performance. Nevertheless,
to further improve predictive accuracy and harness the comple-
mentary strengths of different algorithms, an ensemble stacking
strategy was adopted. In this framework, RR, TSR, and GBR
were combined, with RR serving as the meta-model. This design
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enabled the ensemble to maintain the stability and robustness of
RR while also benefiting from the nonlinear modeling capacity of
TSR and the variance reduction provided by GBR. As a result, the
stacked model achieved more reliable, accurate, and generalizable
predictions compared to any single model alone.

To complement the final model selection, XAI techniques
were applied to ensure transparency and interpretability of the pre-
dictions. XAI refers to a set of methods and tools designed to
make ML models understandable to humans, bridging the gap
between complex “black-box” algorithms and clinical decision-
making. Among various XAI methods, SHAP was employed in
this study, as it provides a unified and theoretically grounded
approach to quantify the contribution of each feature to the
model’s output [34]. By assigning Shapley values derived from
cooperative game theory, SHAP highlights how individual fac-
tors, such as BMI, diabetes status, and blood pressure, influence
CVD prediction both globally (across the entire dataset) and
locally (for individual patients). This integration of XAI into the
final stacked model not only improved trust and interpretability
but also aligned the results with established clinical knowledge,
making the framework more suitable for real-world healthcare
applications [35].

Overall, the methodological workflow, encompassing data
cleaning, feature transformation, model selection, and ensemble
integration, was directly aligned with the study’s objectives. By
combining robust regression models with explainable ensemble
learning, the proposed method advances CVD risk prediction
beyond accuracy toward interpretability and contextual relevance.
This design ensures that the model not only performs well sta-
tistically but also yields insights that are clinically actionable
and aligned with the broader research goals outlined in the
introduction.

4. Results and Discussion

The performance of each regression model was evaluated
using multiple statistical indicators, including MAE, MSE, and
the R². Lower MAE and MSE values represent smaller prediction
errors, while higher R² values indicate stronger model explana-
tory power. Table 4 summarizes the training results, showing that
several models such as TSR, RANSACR, and GBR achieved
near-perfect scores (MSE ≈ 0, R² ≈ 1). However, these results likely
reflect overfitting to the training data, meaning that the models
captured noise instead of generalizable patterns.

To obtain a more realistic evaluation of model performance,
5-fold and 10-fold cross-validation were performed. Ridge Regres-
sion produced stable and consistent results across folds, with an
average MAE of 0.29, MSE of 0.38, and R² of 0.93 (Table 5).
These metrics indicate that RR generalized well to unseen
data, balancing accuracy with robustness. Accuracy values across
folds ranged from approximately 89% to 96%, confirming its
reliability.

Based on these findings, we developed a stacking ensem-
ble that combined RR, TSR, and GBR. This ensemble leveraged
the complementary strengths of the three models: RR’s stabil-
ity against multicollinearity, TSR’s robustness to outliers, and
GBR’s ability to capture nonlinear interactions. Under 10-fold
cross-validation, the ensemble achieved an MAE of 0.30, MSE
of 0.29, and R² of 0.96, corresponding to a predictive accuracy
of approximately 96%. These results demonstrate that the stack-
ing framework improved generalization while maintaining strong
predictive power, outperforming individual models.

Table 5. The results of the 10-fold cross-validation
performed for RR

MAE MSE RMSE R²

0.28 0.255 0.5 0.96
0.3 0.337 0.58 0.96
0.24 0.26 0.51 0.95
0.26 0.353 0.59 0.94
0.29 0.306 0.55 0.94
0.33 0.577 0.76 0.9
0.28 0.399 0.63 0.93
0.34 0.551 0.74 0.89
0.33 0.485 0.7 0.9
0.24 0.235 0.48 0.96

To understand which factors most strongly influenced CVD
risk predictions, SHAP analysis was applied to the final ensem-
ble model (Figure 4). The SHAP plot is a visualization tool
based on cooperative game theory that explains the contribu-
tion of each feature to the predictions made by an ML model.
It quantifies how individual input variables affect the predicted
risk, thereby enhancing model transparency and interpretability in
clinical decision-making [36].

The results highlight BMI as the most important predictor,
followed by diabetes status and the categorical blood pressure
stage derived from systolic and diastolic measurements. Elevated
LDL and total cholesterol were also associated with higher CVD
risk, whereas higher HDL appeared protective. This indicates that
although the original systolic and diastolic readings were excluded
during preprocessing, their clinical significance was retained
through the encoded blood pressure categories used in the model.
The prominence of BMI over smoking in our model’s predictions
may reflect specific epidemiological patterns in Bangladesh. While
smoking is a well-established global risk factor for CVD, its rela-
tive contribution can vary depending on population-level exposure
and competing health risks. In Bangladesh, high rates of over-
weight and obesity have emerged in both urban and rural settings,
driven by dietary transitions toward calorie-dense foods, reduced
physical activity, and socioeconomic shifts. These changes have

Table 4. Performance comparison of regression models for CVD risk prediction

Models MAE MSE R² PSNR SNR

Ridge 0.5 0.17 0.99 39.16 37.60
TSR 0.00 0.00 1.00 255.99 254.43
RANSACR 0.00 0.00 1.00 267.93 266.37
GBR 0.00 0.00 1.00 97.30 95.74
XGBR 0.00 0.00 1.00 92.68 91.11
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Figure 4. SHAP plot for the stacked ensemble model

produced a rising burden of metabolic syndrome, type 2 diabetes,
and hypertension, all strongly mediated through elevated BMI. In
contrast, although smoking remains prevalent, its cardiovascular
effects may be overshadowed in this cohort by the more substan-
tial, more immediate metabolic impacts of excess body weight.
Clinically, this suggests that interventions targeting obesity, dietary
modification, and physical inactivity could yield more signifi-
cant reductions in CVD risk than focusing on smoking cessation
alone, particularly in regions where obesity-related comorbidities
are accelerating.

Table 6 compares existing studies on CVD risk prediction
with the proposed framework using standardized criteria. Previ-
ous studies report accuracies ranging from 76% to 94%, but most
lack 10-fold validation and XAI integration. Only one prior work
(CatBoost) explicitly applied 10-fold cross-validation, and none
incorporated explainability.

The proposed framework uniquely combines RR, TSR, and
GBR into a stacking ensemble, which is validated using 10-fold
cross-validation. It achieves 96% accuracy, outperforming earlier
studies, and integrates explainable AI (SHAP) to identify clinically
meaningful predictors such as BMI, diabetes, and blood pressure.
This dual emphasis on accuracy and interpretability positions it
as more robust and clinically actionable than previous black-box
approaches.

This study demonstrates the potential of ML for accurate
prediction of CVD risk using clinical and lifestyle features. Ridge

regression achieved stable performance with ~93% accuracy, while
the stacking ensemble of RR, TSR, and GBR further improved
accuracy to 96%. SHAP analysis revealed BMI, diabetes status,
and blood pressure as the most influential predictors, in agreement
with established risk factors, while cholesterol levels also played a
significant role. These findings reinforce the clinical relevance of the
proposed model. Compared with previous research, our results are
competitive and often superior. Prior works employing LR, RF,
and MLP achieved accuracies between 85% and 88%, while Cat-
Boost and SVE reached ~94%. By contrast, our stacking ensemble
achieved 96% accuracy and offered greater interpretability through
SHAP analysis. This addresses a key limitation of many earlier
studies, which prioritized accuracy at the expense of transparency,
a crucial factor for clinical adoption. Beyond simply achieving
higher accuracy, our stacking ensemble outperforms models such
as CatBoost and HRFLM because it integrates complementary
learning strategies: Ridge Regression ensures stability and resilience
against multicollinearity, Theil-Sen provides robustness to outliers,
and GB captures complex, nonlinear relationships. This synergy
yields not only better predictive power but also more consistent
generalization across varying data distributions. Importantly, the
embedded SHAP analysis delivers transparent risk attribution,
which CatBoost offers only in a limited form and HRFLM largely
lacks. As a result, our framework strikes a better balance between
predictive strength and clinical interpretability. A key limitation,
however, is that our dataset originates from a single institution,
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Table 6. Comparison of accuracy between existing studies and the present study

Existing Study MLModel Used Accuracy 10-Fold XAI

Dritsas and Trigka [7] LR 87.8% Not specified No

Khan et al. [8] RF 85.01% No No

Bhatt et al. [9] MLP 87.28% Cross-validation
(not always 10-fold)

No

Chandrasekhar and
Peddakrishna [10]

SVE 93.44% No No

Kanagarathinam et al.
[11]

CatBoost 94.34% 10-fold No

Islam et al. [12] IoT + LR F1: 91% (binary) No No

Stonier et al. [13] RF 88.52% No No

Huang et al. [14] LGB 81.7% (F1 = 0.509) No No

Zaidi et al. [15] HRFLM 92.25% No No

Cheng et al. [16] GB 76.2% (F1 = 56.7%) No No

Proposed framework
(this study)

Stacking ensemble
(RR + TSR +
GBR) + SHAP

96% (R² = 0.96) Yes (10-fold CV) Yes (SHAP
analysis)

which constrains generalizability to other populations. While the
model performed well on internal validation, future work should
incorporate transfer learning or federated learning frameworks
to adapt the model across multicenter datasets while preserving
patient privacy. Such efforts will enhance scalability and ensure
that the model remains both accurate and clinically relevant in
diverse healthcare contexts. The results highlight the promise of
ML models as decision-support tools for early CVD risk stratifi-
cation. By identifying modifiable predictors such as BMI, blood
pressure, and cholesterol, the model can inform targeted interven-
tions and preventive strategies. Despite current limitations, this
study underscores the value of ensemble ML methods in advancing
precise and interpretable CVD risk prediction.

5. Conclusion

This study developed an ML framework for predicting CVD
risk using clinical and lifestyle data, achieving up to 96% accu-
racy with a stacking ensemble of RR, TSR, and GBR. Unlike
prior approaches, our method uniquely combines regression-based
ensemble learning with explainable AI, delivering not only predic-
tive strength but also transparent, clinically relevant insights. The
integration of SHAP analysis highlighted modifiable factors such
as BMI, diabetes status, and blood pressure, offering actionable
guidance for prevention strategies and enhancing trust in model
outputs.

Beyond its technical performance, the study contributes con-
ceptually to the advancement of interpretable AI in healthcare.
By emphasizing explainability, this work bridges the gap between
data-driven prediction and clinical applicability, showing that ML
can support, not replace, expert judgment. The results demon-
strate that integrating transparency within high-performing models
can foster greater clinician trust and more responsible AI adoption
in medical decision-making. Furthermore, by using a real-world
hospital dataset from Bangladesh, this study provides rare and
valuable evidence from a low-resource healthcare setting, expand-
ing the global scope of AI research that has been dominated by
Western datasets.

The scientific value of this work lies not only in its technical
performance but also in its contribution to the advancement of

interpretable AI in clinical practice. Unlike many prior studies that
rely on opaque “black-box” algorithms or benchmark datasets,
this research demonstrates how explainable ensemble regression can
deliver clinically transparent insights using real-world, low-resource
hospital data. This enhances the validity and practical relevance of
AI-driven models by aligning predictive outcomes with medically
recognized risk factors.

The findings have important implications for public health
policy and clinical practice. In particular, they suggest that tar-
geted interventions addressing obesity, diabetes management, and
hypertension control could substantially reduce CVD risk in
similar populations. The explainable ensemble framework pro-
posed here could also be adapted for hospital-based screening
systems or telehealth platforms to assist clinicians in early risk
assessment.

While promising, the current work has limitations related to
its single-center dataset and retrospective design. Future research
should aim to validate the model using multicenter data and
explore federated or transfer learning to ensure generalizability
across different demographic and clinical contexts. Additionally,
incorporating temporal and genetic data may further improve
predictive accuracy. Nevertheless, further validation using larger,
multicenter datasets is essential to confirm generalizability across
populations. Future studies should also explore federated learn-
ing and longitudinal data integration to strengthen predictive
validity and clinical applicability. Overall, this study contributes
a scientifically grounded, interpretable, and contextually relevant
framework for advancing precision cardiovascular risk assessment
through XAI.
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