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Abstract: Pregnancy is a dynamic physiological state characterized by extensive metabolic changes. The development of insulin resis-
tance later in gestation is a normal adaptation that supports fetal growth and a physiological response in pregnancy. However, if
metabolic aberrations occur above the normal insulin resistance, gestational diabetes mellitus, a form of diabetes that appears during
pregnancy, can develop. Multi-omics approaches are powerful tools to uncover the mechanisms that drive metabolic changes in differ-
ent physiological and pathological states. A recent multi-omics mouse study collected pregnancy-specific physiological and metabolic
profiles, 16S rRNA microbiome, and plasma untargeted LC-MS metabolome data from 3 genetically diverse strains of mice (C57BL/6J,
CD1, and NIH-Swiss) over 6 timepoints: gestational days 0, 10, 15, and 19, and postpartum days 3 and 20, totaling 60 samples for each
strain. To facilitate the utilization of these impactful data by other researchers, we developed Multi-omics Metabolic & Microbiome
Profiling of Mouse Pregnancy (MOMMI-MP), a database that provides an easy-to-use platform to browse and search differentially
abundant microbial taxa, metabolites, metabolic pathways, and predicted micro-metabolite interactions using an array of state-of-the-
art statistical and machine learning models. Our analysis revealed a previously unrecognized gut microbial–host metabolic pathway
involving indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine, which plays a crucial role in mediating pregnancy-related metabolic
adaptations, as well as other significant microbiome and metabolic changes. The computational results are presented in various tables
and plots, organized in MOMMI-MP, to empower exploratory analyses by other researchers. Representing a significant new resource,
MOMMI-MP provides a tool for researchers to facilitate the investigation of novel mechanisms governing metabolic changes during
pregnancy.
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1. Introduction

Gestational diabetes mellitus (GDM) is a prevalent metabolic
disorder during pregnancy, affecting approximately 5–9% of preg-
nancies annually in the United States, with incidence increasing
with maternal age [1, 2]. Notably, up to 60% of women with
GDM have an increased risk of developing type 2 diabetes later
in life [3]. GDM is characterized by impaired glucose tolerance
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and insulin resistance, resulting in reduced glucose uptake and
utilization [4]. Interestingly, a certain degree of insulin resistance
is a normal physiological adaptation in later stages of pregnancy
[5, 6]. Recent studies have shown that altered metabolic pro-
files during pregnancy are associated with compositional changes
in the gut microbiome [7]. During pregnancy, hormone levels,
along with other host factors, influence the gut microbiome [6].
In the third trimester, these microbiome changes are associated
with increased inflammatory markers resembling dysbiosis found
in metabolic syndrome [6]. Studying the multifactorial nature of
gut microbiome and metabolomics and their contribution to the
development of insulin resistance in normal pregnancy is impor-
tant to elucidate a clearer understanding of the mechanism and
development of GDM.
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To investigate these multifactorial changes, we employed a
systems biology approach to collect metabolic health, gut micro-
bial, and metabolomic profiles from three genetically diverse
mouse strains (C57BL/6J, CD1, and NIH-Swiss) during both the
gestational and postpartum periods. The data analysis uncovered
a previously unknown gut microbial–host metabolic pathway,
including indoleamine-2,3 dioxygenase 1 and kynurenine, which
is crucial in mediating pregnancy-related metabolic adaptations
[5]. This multi-omics study provided a wealth of information
encompassing pregnancy-specific physiological and metabolic
responses, the composition of the gut microbiome, and the plasma
metabolome generated from 6 timepoints—gestational days 0, 10,
15, and 19 and postpartum days 3 and 20—totaling 60 sam-
ples for each mouse strain. Given the complex nature of insulin
resistance in normal pregnancy, the datasets obtained from this
highly controlled study hold immense potential to yield valu-
able insights into the intricate interactions between metabolic
responses, gut microbes, and the specific metabolites that mediate
these effects. However, reanalyzing the publicly available multi-
omics data presents significant challenges for individuals who
need more bioinformatics expertise.

Our study aims, therefore, are designed to address these needs
by developing MOMMI-MP (Multi-omics Metabolic & Micro-
biome Profiling of Mouse Pregnancy), ensuring the database is
user-friendly and highly accessible to facilitate the investigation
of microbiome and metabolic alterations during pregnancy. This
comprehensive database offers results from the in-depth anal-
ysis of the data for each mouse strain across gestation and
postpartum time points, including strain-specific (1) differen-
tially abundant (DA) microbial taxa and metabolites, as well
as the metabolic pathways enriched for these metabolites, (2)
microbes and metabolites significantly correlated with metabolic
health characteristics, and (3) significantly correlated microbe and
metabolite pairs. The database also contains a list of metabolites
whose abundance is predicted from significant microbial abun-
dances, a microbe–metabolite module interaction network, and
a detailed list of involved microbes and metabolites with their
significant statistical interactions in all strains predicted using
MiMeNet, a neural network model [8]. The results included in
MOMMI-MP were generated using uniform preprocessing proce-
dures and the most reputable bioinformatic and statistical analysis
tools (Figure 1). With access to the information in MOMMI-MP
(https://mommi-mp.github.io/Plots/), researchers from diverse sci-
entific backgrounds can easily access and harness the power of
this resource to advance their investigations in related research
areas.

2. Methods and Materials

2.1. Datasets and preprocessing

The published multi-omics datasets consist of mouse
metabolic health characteristics, microbiome, and metabolomic
profiles measured at 4 time points during gestation (day 0, 10,
15, and 19) and 2 time points postpartum (PP3, and PP20) from
3 mouse strains, C57BL/6J (Jackson Laboratory), CD-1 (Charles
River Labs), and NIH-Swiss (Envigo), with 10 mice at each time
point per strain starting at 10 weeks old [5]. Pregnancy in female
C57 (Jackson Laboratory), CD-1 (Charles River Labs), and NIH-
Swiss mice with strain-specific males was confirmed, and samples
were collected and stored at −80 °C [5]. The metabolic health char-
acteristics comprise blood glucose and insulin levels, body weight,

Figure 1 The structural outline of MOMMI-MP

and changes in the weights of different adipose depots (subcuta-
neous and visceral) at each pregnancy time point. The detailed
experimental protocols for data collection and quantification pro-
cedures for microbiome and metabolomic features can be found
in the earlier publication [5].

2.2. Untargeted LC-MS/MS metabolomics

Plasma at each timepoint was assayed for untargeted
metabolomics via liquid chromatography with tandem mass spec-
troscopy (LC-MS/MS) (Agilent 1290 Infinity LC System coupled
to an Agilent 6545 Accurate mass quadrupole time-of-flight (Q-
TOF) with a dual Agilent Jet Stream source) [5, 9]. Additional
details are in the supplementary methods section.

2.3. Microbiome 16S rRNA sequencing

To generate the microbiome profiles, the bacterial 16S rRNA
was extracted from stool samples, and the V4 region (515F-806R)
was amplified and sequenced on the Illumina MiSeq (Argonne
National Laboratory Core) following standard protocols from the
Earth Microbiome Project (earthmicrobiome.org/emp-standard-
protocols/its/). Additional details are in the supplementary
methods section.
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2.4. Alpha diversity and beta diversity of microbiomes

Alpha diversity was obtained by rarifying the dataset
by the even depth method and functions such as “ggplot,”
“plot_richness,” and “estimate richness” in the Phyloseq package
[13]. The “Strain” attribute of the dataset was used to perform the
analysis. Two methods, “Observed” and “Shannon,” were used to
display the results of the same. The dataset was rarefied, and the
Binary Jaccard metric was used to perform the Non-metric Mul-
tidimensional Scaling (NMDS) analysis using the “metaMDS”
function from the “vegan” library [14], whereas the Bray–Curtis
distance was used in principal coordinate analysis (PCoA).

2.5. Differential analysis of microbiome data

This analysis aimed to identify taxa (microbial features)
whose absolute abundances differed significantly at different time
points during pregnancy compared to the starting point “G0”
(Gestation Day 0). Analysis of Composition of Microbiomes with
Bias Correction (ANCOM-BC) [15] was chosen over multiple
available tools because it is specifically designed to handle compo-
sitional data and can correct the bias induced by the differences
among samples. In our analysis, the data over the pregnancy
period were imported at once into the Bioconductor package
“ANCOM-BC.” The time points were defined by the “Day” fac-
tor, with G0 as the reference point. By comparing each time
point individually to the reference point G0, the analysis detects
microbial taxa that are DA at G10, G15, and G19 during ges-
tation and at PP3 and PP20 during postpartum, compared to
day G0, respectively. The results were summarized in a table with
the names of the DA microbes and the adjusted p-values using
a threshold of 𝛼=0.05 for controlling false discovery rate (FDR).
The differential analysis was performed at each taxonomic level
except “Kingdom” and “Phylum” for each strain.

2.6. Differential analysis of metabolomes

PERMANOVA [16] analysis was performed on two groups
of samples: one group comprised samples collected at gestational
time points G15 and G19, and the other group consisted of
samples from all the remaining time points. This grouping was
determined based on the previous results that indicated distin-
guishable metabolomic profiles at G15 and G19 compared to
the other time points [5]. PERMANOVA assesses the statisti-
cal significance of separating these two groups by evaluating
the overall dissimilarity or distance between the samples within
and between the groups. It uses a permutation-based procedure
to generate a distribution of possible test statistic values under
the null hypothesis of no group differences. By comparing the
observed test statistic to the null distribution, an empirical p-value
can be obtained. The PERMANOVA analysis results in a list of
DA metabolite features and their adjusted p-values between the
two groups. These metabolite features are potentially associated
with pregnancy-induced insulin resistance, as G15 and G19 are
considered the period when peak insulin resistance is observed.
The threshold of 0.05 was applied to the adjusted p-values for
controlling FDR.

2.7. Mapping metabolite features to annotated
compounds

The Mummichog algorithm implemented in the online tool
MetaboAnalyst [17] was used to identify the KEGG pathways

and the compound hits from the DA metabolite features identified
from the differential analysis. Mummichog takes advantage of the
organization of metabolic networks to predict functional activity
directly from metabolite feature tables, circumventing ambigu-
ity in metabolite identification. The input to Mummichog was
the table of DA metabolite features and their adjusted p-values
obtained from the PERMANOVA analysis. The parameters used
were as follows: mass tolerance was set to 10 ppm, and retention
time was set to “seconds.” The tool’s output includes a visual rep-
resentation of the pathways and multiple tables, which give the
mapped compound IDs and significant hits for every pathway.
The compound IDs and the adjusted p-value table were used in
KEGG-Rest [18] to identify the compound names, which were
later used to replace the unique metabolite feature ID and filter
out the significant features that are not linked to any compounds.
The abundance table of the mapped DA metabolites was then used
to perform correlation analysis with the identified DA microbes.

2.8. Correlation analysis

Three types of correlation analysis were performed: (1) the
DA microbes identified using ANCOM-BC and the metabolic
health characteristics of the mice, (2) the DA metabolites and the
metabolic health characteristics, and (3) the DA metabolites and
DA microbes. Pearson’s correlations were calculated. The analysis
was performed at each taxonomic level for each strain.

2.9. Pathway analysis

The Mummichog algorithm in MetaboAnalyst [17] lever-
ages the power of statistical enrichment analysis to determine
whether certain pathways were overrepresented by the annotated
compounds. The significance of pathways is indicated by the
gamma value, representing the adjusted p-values obtained from
the enrichment analysis. The p-value table of all metabolite fea-
tures obtained from the PERMANOVA analysis was used as the
input to the Mummichog algorithm (with a threshold of 0.05).
The Mus musculus (mouse) KEGG pathway library was used
to map the pathways. The resulting table contains the enriched
pathways along with their respective gamma values.

2.10. Integrative analysis of microbiomes and
metabolomes using MiMeNet

MiMeNet is a powerful neural network framework to
uncover the intricate interactions between the gut microbiome and
metabolome [8]. The input to MiMeNet is the relative abundances
of microbial taxa, capturing the microbial composition, while its
output is the predicted abundance of metabolite features. When
the model is well-trained, it generates a list of metabolite features
whose abundance can be well-predicted from the microbial taxa
abundance. MiMeNet also provides a post-analysis procedure
to identify microbe–metabolite pairs with significant interaction
scores, from which members of microbes and metabolite features
with similar interaction patterns can be grouped into modules of
microbes and metabolite features, respectively.

For each microbial module, the naming convention was
based on the upper taxonomical level (Family) of the microbes
present in each module. For each metabolite module, annotated
metabolites were used as inputs for the online tool MetaboAna-
lyst to identify metabolite sets. The analysis employed the library
of “Chemical Structures” sub-chemical class metabolite sets pro-
vided by MetaboAnalyst. The resulting metabolite sets obtained
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from the tool were assigned as the module name. Finally, an inter-
action network was constructed between microbe and metabolite
modules by linking the interacting microbe–metabolite modules
following the procedure of MiMeNet.

Since the neural network model requires large samples, all
three strains at the genus-level microbiome profiles were combined
to train models. For the metabolomes, metabolite features exhibit-
ing zero abundance in 90% or more of the samples were removed.
Following these steps, the dataset was preprocessed, resulting in
a set of 91 genus-level taxa and a set of 7428 metabolite features
for MiMeNet model training. To ensure the robustness of the pre-
dictions, a 10-fold cross-validation procedure was implemented in
network model training. The data were randomly shuffled to cre-
ate a null distribution of correlations between the predicted and
observed metabolites to evaluate the significance of the predic-
tion following the procedures of MiMeNet (https://github.com/
YDaiLab/MiMeNet). The MiMeNet model was trained with the
following parameters: a batch size of 1024, a learning rate of
0.001, L1 regularization of 0, L2 regularization of 0.0001, two
layers with 512 nodes each, and a dropout rate of 0.5.

3. Results

The results were organized on an online server as a database
website MOMMI-MP (Supplementary Figure 1A). The website’s

home screen has a visual representation of the basic structure
of the database. Users can also explore the results of individual
data types by clicking the menu bar at the top of the website.
The “Structure” connects to a page that presents the flowchart
of analysis performed in the database (Supplementary Figure
1B). Other tabs, such as “Metabolic Profiles,” “Microbiome,” and
“Metabolome,” include links to the respective analysis results.
Here, we describe major findings included in MOMMI-MP.

3.1. Changes in metabolic profiles

Subcutaneous fat in grams tends to increase over preg-
nancy, especially at G15 and G19, and decreases back to baseline
after pregnancy (PP3 and PP20) for the three mouse strains
(Figure 2A–C). The details of other metabolic features can
be accessed at “Metabolic Profiles” on the MOMMI-MP
website.

3.2. Changes in microbiome

Alpha diversity over all strains exhibits an increase over the
course of pregnancy through PP20 (Figure 3A). By individual
mouse strain, this increasing trend holds with only outliers after
the birth at PP3 for C57BL/6J and CD1 and recovers to lev-
els from G20 by PP20 (Figure 3B–D). During pregnancy and

Figure 2 Metabolic profiles. The plots represent the variation in subcutaneous fat (one of the mouse health characteristics) in all three
strains. (A) C57BL/6J; (B) CD1; (C) NIH-Swiss
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Figure 3 Alpha (Shannon) diversity. (D) All Strains; (E) C57BL/6J; (F) CD1; (G) NIH-Swiss. Beta diversity. (H) PCoA (all strains);
(I) NMDS (all strains)

postpartum, Beta diversity is significantly different between
mouse strains (Figure 3E–F). The microbiome composition was
different between mouse strains, with Bacteriodota, Clostridia,
and Bacilli comprising the majority of taxonomic classes in
C57BL/6J (Supplementary Figure 2A–C).

The ANCOM-BC analysis identified DA taxa at each taxo-
nomic level of Class, Order, Family, Genus, and Species (Table 1).
For each mouse strain, there are unique DA taxa. For exam-
ple, Clostridium in C57BL/6J at the Genus level (Figure 4A) and
Coriobacteriaceae in C57BL/6J at the Family level (Figure 4B)
increase in abundance at G15, G19, and PP3 but decrease back
to baseline at PP20. Prevotella in NIH-Swiss at the Genus

level decreases at G15 and G19 and increases again in PP3
(Figure 4C).

On the MOMMI-MP website, the “Microbiome” tab pro-
vides the results of differential analysis for all taxa. A table of
the adjusted p-values can be viewed for the detected DA microbes
from another linked webpage. Users can interact with the table
by sorting it or searching for any specific microbe. Each microbe
in the table is linked to the respective boxplots of abundance as
shown in Figure 4. The webpage also provides a link redirecting
the users to another webpage with results of correlation analy-
ses of microbe–microbe, microbe–metabolic health characteristics,
and microbe–metabolite, which are described later.
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Table 1 The number of DA taxa obtained from ANCOM-BC for each rank in each strain

Class Order Family Genus Species

C57BL/6J 9 10 14 6 6
CD1 8 10 17 5 7
NIH-Swiss 4 6 8 6 8

Figure 4 Examples of differentially abundant microbes. (A) Clostridium (C57BL/6J – Genus level); (B) Coriobacteriaceae (C57BL/6J
– Family level); (C) Prevotella (NIH-Swiss –Genus level). Differentially abundant compounds. (D) Bilirubin; (C57BL/6J) (E) Estradiol-
17β-3-glucuronide; (C57BL/6J) (F) Vitamin D3; (NIH-Swiss) (G) Vitamin K1 epoxide (C57BL/6J)
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3.3. Changes in metabolites and pathway prediction

The webpage “Metabolome” provides results from the
metabolome data analysis. The NMDS plots using the metabolite
features after preprocessing indicate that the mice were grouped
according to gestational stages, a pattern not observed in the
microbiomes (Supplementary Figure 3). Since mouse models
demonstrate changes to the gut microbiome and metabolome at
G15 and G19 linked to insulin resistance and GDM [5], DA
metabolites were initially assessed over pregnancy and postpartum.
Bilirubin, estradiol-17β 3-glucuronide, vitamin D3, and vitamin
K1 epoxide were identified as key metabolites that change over
pregnancy and postpartum in these strains (Figure 4). Bilirubin,
estradiol-17β 3-glucuronide, and vitamin K1 epoxide decreased
over pregnancy, increasing to baseline in PP3 and PP20 (Figure
4D–F). The variance of vitamin D3 levels increased at G15
and G19, decreasing to baseline at PP3 and PP20 (Figure 4G).
The patterns of DA metabolite features identified from the

PERMANOVAanalysis can be viewedon thewebpage “Heatmap”
(Supplementary Figure 4). These plots suggest that the differential
analysis for metabolome data can be performed between G15/G19
and the rest of the time points. Further, the database can be used
to investigate key microbial and metabolic changes associated with
GDM.

Pathway analysis allowed us to gain insights into the bio-
logical significance and functional implications of the identified
compounds within the context of pregnancy and GDM. It
enables us to move beyond individual compound identification
and explore how these compounds may be interconnected within
specific biological processes or metabolic pathways. Using the
procedures described in the Methods, we obtained the KEGG
pathways significantly enriched for the DA metabolite features
and the compounds identified for each strain. In our C57BL/6J
mouse model, involvement of the tryptophan metabolism pathway
and L-tryptophan in GDM has been indicated (Figure 5A–B) [5].
The detailed results can be viewed by clicking the “Metabolome”

Figure 5 Pathway analysis for C57BL/6J. (A) Enriched pathways and (B) the metabolites and their gamma values obtained from the
Mummichog algorithm
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Table 2 Number of differentially abundant metabolite features

Strain # Features # Features mapped to known compounds

C57BL/6J 4784 837
CD1 3340 645
NIH-Swiss 3137 529

tab at the MOMMI-MP website. Overall, the total number of
significant metabolite features and the mapped compounds for
all strains are summarized in Table 2. All DA compound names
can be viewed under the “Differential Abundance Analysis” tab.
Users can interact with the table by sorting or searching for any
specific compound name and clicking a compound name to view
the respective boxplots of the abundance over the time points, as
shown in Figure 4. The details of pathway analysis can be viewed
under the “Pathway Analysis” tab.

3.4. Correlation of metabolites and microbes

In MOMMI-MP, the results of univariate correlation anal-
ysis were provided as follows: (1) correlations between pairs of
metabolic health characteristics, (2) correlations between pairs
of DA microbes and metabolic health characteristics, (3) corre-
lations between pairs of the DA microbes, and (4) correlations
between pairs of DA metabolites, and (5) correlations between
pairs of the DA microbes and DA metabolites. These analyses aim
to uncover microbes and metabolites associated with metabolic
health characteristics (e.g., insulin resistance) during pregnancy.
The analysis can also reveal the potential co-occurrence of micro-
bial taxa that may have a mutually beneficial or competitive
relationship and interactions during pregnancy and association
with GDM (Figure 6A–C). The detailed correlation coefficients at
each taxonomic level for each strain can be viewed by clicking the
corresponding tab of “Metabolic Characteristics,” “Microbiome,”
and “Metabolome” at the MOMMI-MP website.

3.5. Integrative analysis using MiMeNet

The objective of using MiMeNet is to unravel the intricate
interplay between the gut microbiome and metabolites that are
undetectable from the univariate correlation analysis. Employing
the 10-fold cross-validation procedure, we first trained a robust
predictive model for metabolite abundances. The model-generated
performance, indicating the correlation between the predicted
and observed metabolites, was 0.317, which is comparable to the
results reported in the original MiMeNet paper [8]. At FDR
of 0.05, we identified 88 well-predicted metabolites; the top 20
metabolites are shown in Figure 6D. All the microbes and well-
predicted metabolites per module are listed in Tables 3 and 4,
respectively.

To generate a holistic view of the interrelationships between
microbes and metabolites, we clustered microbes and metabolites
into modules using interaction scores (Figure 6E) and plotted a
bipartite graph connecting microbe modules and metabolite mod-
ules with absolute average interaction scores greater than 0.3 and
less than −0.3 (Figure 6F). The edges could be either negative or
positive. A negative interaction indicates that the average abun-
dance of the microbes in a module was inversely related to the
average abundance of a metabolite module. Conversely, a posi-
tive interaction suggests that the average abundance of a microbe
module is positively associated with the average abundance of a
metabolite module. The visualization shows at the module level

the complex network of interactions between the gut microbiome
and metabolites during pregnancy.

In the MOMMI-MP database, an in-depth table was created
to showcase the interactions of pairs of microbes and metabolites
connected in the module interaction network and the microbes
and metabolites that are differentially abundant, for at least one
mouse strain during the pregnancy (Supplementary Figure 5).
This table displays the score between each microbe and metabo-
lite, allowing for a detailed examination of their relationships.
Furthermore, the table includes the adjusted p-values for the DA
microbes and metabolites, highlighting their relevance to preg-
nancy. To aid interpretation, the microbes and metabolites were
denoted with upward and downward arrows at each pregnancy
timepoint, representing the change in their abundance compared
to the initial time point, G0 (Supplementary Figure 6). From these
tables, the user can explore dynamic changes in the individual
microbes and metabolites during pregnancy and their potential
relevance to insulin resistance. The predicted interacting modules
of microbes and metabolites from the MiMeNet analysis can be
accessed at the “Integrative Analysis” tab at the MOMMI-MP
website.

4. Discussion

We have developed the MOMMI-MP database to host
the results of comprehensive analyses of microbiome and
metabolomics time course data observed at 6 time points—
gestational days 0, 10, 15, and 19 and postpartum days 3 and
20—from three mouse strains. MOMMI-MP provides results
ranging from standard statistical analyses, such as differential
abundance and correlation analyses, to integrative analysis of
microbiome and metabolome using MiMeNet, a neural network
model. The module-based integrative analysis from MiMeNet
revealed potential novel relationships between microbes and
metabolites during GDM.

Key metabolites that changed by gestational phase across
strains included bilirubin, vitamin K, vitamin D3, and estradiol-
17β 3-glucuronide. Lower bilirubin levels were observed in
C57BL/6J at G15 and G19, the time points associated with
heightened insulin resistance in mouse pregnancy (Figure 4D).
Historically known as a waste product, bilirubin has only recently
been recognized as a potent antioxidant, immunosuppressant,
and metabolic hormone affecting cell signaling [19]. Lower biliru-
bin levels are associated with metabolic dysfunction, obesity, and
inflammation [20]. How bilirubin affects the physiological state
of pregnancy is unknown. Few correlational studies show hypo-
bilirubinemia to be associated with an increased risk of GDM
in humans [21–24]. Levels of vitamin K were observed to be
reduced during the insulin resistance phase of mouse pregnancy
(at one or both of the time points, G15 and G19) and increased
during the postpartum period (PP3 and PP20) (Figure 4G). Vita-
min K supplementation has been suggested to lower the risk of
developing diabetes, possibly through improving insulin sensitiv-
ity [25, 26]. Estradiol-17β 3-glucuronide was found relatively lower
at G15 and G19 and higher at PP3 and PP20 in C57BL/6J and
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NIH-Swiss mice (Figure 4E). Of relevance, estradiol-17β 3-
glucuronide is thought to stabilize and prevent deterioration of
the metabolic state of prediabetic mice via increasing glucose-
stimulated insulin secretion and improving hepatic glucose
utilization [27, 28].

Other metabolites are identified as significant through mod-
ules with significant microbes in the network analysis including

lipid metabolism in Module 1 (Figure 6). Lipid metabolism
changes significantly during pregnancy, and its disruption is
associated with GDM [29–31]. The modules of microbes and
metabolites from our analysis may provide additional insights into
their relationship to metabolic alterations during pregnancy.

The microbe and metabolite interplay (Supplementary
Figures 5 and 6) is interconnected in the module interaction
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Figure 6 Results of correlation analysis for C57BL/6J. (A) correlations between microbe–microbe pairs (class level); (B) correlations
between microbe (class level)–metabolic characteristic pairs; (C) correlations between metabolite–microbe pairs. Prediction of metabo-
lites’ abundance from MiMeNet. (D) The top 20 predicted metabolites. (E) Clustering of microbes (row) and metabolites (column)
based on the feature attribution scores. Row and column colors represent assigned modules. (F) Network connecting microbial mod-
ules with metabolomic modules. The name of each microbe module indicates the microbes’ upper taxonomical level, and the name of
each metabolite module indicates the metabolite set obtained from the Mummichog algorithm. The colors represent different modules
for microbes and metabolites. Red edges represent negative interaction, and green edges represent positive interaction. The width of the
edges represents the strength of the interaction. Thin edges represent low interaction, and wide edges represent strong interaction
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Table 3 Microbes per module

Microbes Module

Akkermansia
Anaerostipes

Bacteroides
Clostridium
Unclassified Coriobacteriaceae
Unclassified Peptostreptococcaceae

[Prevotella]

1

Adlercreutzia 2
Odoribacter
Prevotella
Unclassified Bacteroidales

3

Bifidobacterium
Lactobacillus
Roseburia
Unclassified Rikenellaceae

4

Anaeroplasma

Turicibacter
5

Candidatus Arthromitus
Corynebacterium

Jeotgalicoccus

Parabacteroides
Staphylococcus

Unclassified Enterobacteriaceae
Unclassified mitochondria
rc4-4

6

network (Figure 6), providing additional insights. Interestingly,
several interactions were observed between bilirubin and specific
gut microbial genera (Figure 6). Coriobacteriaceae and Clostrid-
ium interacted negatively with bilirubin and were highly abundant
at G19 and PP3 (Figure 4B). Clostridium has been shown to
reduce bilirubin [20], and members of the Coriobacteriaceae fam-
ily facilitate important metabolic functions in the conversion of
bile acids, steroids, or phytoestrogens [24]. Similar interactions
were noted with several gut bacteria for fat-soluble vitamins:
vitamin K in C57BL/6J and vitamin D in NIH-Swiss. The gut
microbiome is a primary source of vitamin K [26]. Clostridium
(Module 1) interacts negatively with vitamin K and was found to
be higher at G19 and PP3 (Figure 4A). Members of Clostridiales
cannot synthesize vitamin K and flourish under micronutrient
deficiency [26]. Further, persistent Clostridium difficile infection
has been shown to be associated with vitamin K deficiency. Thus,
the role of this increased abundance as a consequence or contribu-
tor to altered metabolism in pregnancy needs research. It has also
been suggested that vitamin D deficiency is a potential risk factor
for Clostridium difficile infection [32], and the administration of
vitamin D (calcitriol) may enhance insulin sensitivity and improve
glucose tolerance during pregnancy [33]. Staphylococcus (Module
6) interacts negatively with estradiol-17β 3-glucuronide; however,
its abundance levels do not show significant changes in our data.
Another taxon with positive interaction with estradiol-17β 3-
glucuronide is Prevotella (Module 3). Its abundance in NIH-Swiss
mice was found to be significantly reduced after G15 (Figure 4C).
Prevotella is involved in a wide range of functions through its
main fermentation byproduct propionate [34]. However, there is

no documented research on the relationship between Prevotella
and estradiol-17β 3-glucuronide. Whether these interactions are
meaningful in the context of pregnancy, and if these are the cause
or consequence of pregnancy-insulin resistance, requires experi-
mental validation. Nonetheless, these findings from the literature
imply the potential of MOMMI-MP to generate novel hypothe-
ses related to mechanisms underlying metabolic alterations during
pregnancy.

No currently available dedicated databases report a compre-
hensive analysis from well-designed multi-omics studies during
human or mouse pregnancy. The Vaginal Microbiome Consor-
tium conducted the Multi-Omic Microbiome Study: Pregnancy
Initiative (MOMS-PI) to better understand the dynamics of vagi-
nal microbiome and host profiles during pregnancy and the
establishment of the nascent microbiome in neonates, with sam-
ples collected from 1594 women and their neonates throughout
pregnancy, at delivery, and postpartum. However, no compre-
hensive platform analysis of the results was provided. Another
database, iMOMdb, provides the first blood-based multi-omics
analysis of Asian pregnant women [35]. It collected high-
resolution genotyping (N =1079), DNA methylation (N =915),
and transcriptome profiling (N =238). The integrative omics
analysis presented in iMOMdb identified pathways involved in
lipid metabolism, the adaptive immune system, and carbohydrate
metabolism through ethnicity-specific quantitative traits hotspots,
indicating significant lipid differences among Chinese, Malay, and
Indian women. Nonetheless, we should note that our database
may be limited in its power to detect more subtle effects, as we
have a smaller sample size. Further, our study focused on mouse
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Table 4 Well-predicted metabolites per module

Metabolites Modules Metabolites Modules

1-Nitro-5,6-dihydroxy-dihydronaphthalene L-Cysteate

11β,17𝛼,21-Trihydroxypregnenolon L-Glutamate 5-semialdehyde

11β,21-Dihydroxy-3,20-oxo-5β-pregnan-18-a L-Metanephrin

11β-Hydroxyprogesterone L-Palmitoylcarnitin

1a,11b-Dihydro-4,9-dimethylbenz[a]anthra[3,4-
b]oxiren

Leukotriene A4

20𝛼-Hydroxy-4-pregnen-3-one Octadecanoic acid

20𝛼-Hydroxycholesterol Pregnenolone

22(R)-Hydroxycholesterol S-Adenosyl-L-homocysteine

24-epi-Campestero Sphingosine

25-Hydroxycholesterol Testosterone glucuronide

3-Dehydrosphinganine Vitamin K1 epoxide

3𝛼,7𝛼,12𝛼-Trihydroxy-5β-cholestan-26-a Xylito

3𝛼,7𝛼,12𝛼-Trihydroxy-5β-cholestane cis-4-Hydroxy-D-prolin

3𝛼,7𝛼,26-Trihydroxy-5β-cholestane

1

trans-3-Hydroxy-L-proline

1

3𝛼,7𝛼-Dihydroxy-5β-cholestanate (24S)-Cholest-5-ene-3β,7𝛼,24-triol
3β-Hydroxy-5-cholestenoate 1-Nitronaphthalen

4-(2-Aminophenyl)-2,4-dioxobutanoat 17𝛼,20𝛼-Dihydroxycholestero

4-Cholesten-7𝛼,12𝛼-diol-3-one 20𝛼,22β-Dihydroxycholesterol

5-Amino-2-oxopentanoic acid 3-Carbamoyl-2-phenylpropionaldehyd

5-Aminolevulinate 3𝛼,7𝛼-Dihydroxy-5β-cholestan-26-a
5𝛼-Pregnane-3,20-dione 3β,7𝛼-Dihydroxy-5-cholestenoate

5β-Pregnane-3,20-dion 4-Hydroxy-5-phenyltetrahydro-1,3-oxazin-
2-on

7,12-Dimethylbenz[a]anthracene 5-Hydroxy-L-tryptophan

7,12-Dimethylbenz[a]anthracene 5,6-oxide 5-Hydroxyindoleacetat

7-Hydroxymethyl-12-methylbenz[a]anthracene 5-Phenyl-1,3-oxazinane-2,4-dion

7𝛼,24-Dihydroxy-4-cholesten-3-on 5𝛼-Cholesta-7,24-dien-3β-o
7𝛼,25-Dihydroxy-4-cholesten-3-on 5𝛼-Pregnan-20𝛼-ol-3-one
7𝛼,27-Dihydroxycholesterol 7-Dehydrocholesterol

7𝛼-Hydroxy-5β-cholestan-3-one 7𝛼,12𝛼-Dihydroxy-5β-cholestan-3-one
7𝛼-Hydroxycholesterol 7𝛼,26-Dihydroxy-4-cholesten-3-on

Benzo[a]pyrene

1

7𝛼-Hydroxycholest-4-en-3-on

2

Bilirubin Allopregnanolone

Calcitriol Calcidiol
Campestero Calcitetrol

Cerebrosterol Desmosterol
Cholest-5-ene-3β,26-diol Linoleate

Cholest-5-ene-3β,7𝛼,25-triol Phenylacetylglycin

Cholic acid Secalciferol
Didemethylcitalopra Vitamin D3

2

Dihydrocortisol Zymosterol 2

Dimethylallyl diphosphate (5Z,8Z,11Z,14Z,17Z)-Icosapentaenoic acid 4

Hydroxyproline 2-Phenyl-1,3-propanediol monocarbamate 5

Isopentenyl diphosphate 5-Fluorouridin

L-Arabitol

1

Estradiol-17β 3-glucuronide 6
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samples. For example, in our recent publication, we have used
these data to identify that kynurenine has a role in metabolic
changes during pregnancy, and in this report, we have used
human fecal samples to translate these effects [5]. In contrast, our
database, MOMMI-MP, is the first to provide a comprehensive
analysis of physiological and metabolic responses, gut micro-
biome, and plasma metabolome from our three mouse strains
during pregnancy.

5. Conclusion

The MOMMI-MP database provides comprehensive analysis
results of the metabolic health characteristics, microbiome, and
metabolome data obtained from three genetically distinct strains
of mice (C57BL/6J, CD1, and NIH-Swiss) during the gestational
and postpartum stages. In a form accessible to researchers with
limited access to bioinformatics tools, MOMMI-MP is an easy-to-
use platform that enables exploration of the results of the analysis.
MOMMI-MP may facilitate the identification of novel metabolite-
or microbiome-based therapeutic targets to mitigate the risk of
developing type 2 diabetes later in life.
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