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Abstract: Brain tumors are complex and potentially life-threatening conditions that require accurate and timely diagnosis. This study proposes
NeuroBlend-3, an explainable and hybrid artificial intelligence (AI) framework for multi-class brain tumor classification using magnetic
resonance imaging scans. The framework begins with preprocessing steps, including grayscale conversion, resizing to 224 × 224 pixels,
normalization, denoising, and enhancement using Contrast Limited Adaptive Histogram Equalization. To increase data variability, five
augmented versions of each image are generated through horizontal flip, 15° rotation, zooming, Gaussian blur, and brightness adjustment.
Deep features are then extracted using six models: HRNet, VGG16, VGG19, ResNet50, ResNet101, and CNN-LSTM. These features
undergo optimization using principal component analysis and recursive feature elimination (RFE) to reduce redundancy and improve
performance. The optimized features train machine learning models, including XGBoost, AdaBoost, Bagging, and a custom Tree Selection
and Stacking Ensemble-based Random Forest (TSRF). To ensure interpretability, explainable AI techniques such as Gradient-weighted
Class Activation Mapping (Grad-CAM), Grad-CAM++, and Local Interpretable Model-Agnostic Explanations are applied to highlight the
regions influencing classification decisions. The combination of CNN-LSTM, TSRF, and RFE demonstrates superior performance across all
metrics through extensive experimentation. This best-performing combination is termed NeuroBlend-3. Neuro reflects the neurological
focus, Blend denotes the fusion of deep and traditional learning approaches, and 3 signifies the integration of CNN-LSTM, TSRF, and RFE.
NeuroBlend-3 offers a robust and interpretable solution, making it highly suitable for clinical decision-making in brain tumor diagnosis.
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1. Introduction

Brain tumors are abnormal growths of cells within the brain that
can be either benign (non-cancerous) ormalignant (cancerous). Benign
tumors grow slowly and are less likely to invade surrounding tissues,
while malignant tumors are aggressive and can disrupt normal brain
functions. Among malignant brain tumors, glioblastoma is notably
aggressive, with a median survival rate of approximately 12 months
even with treatment, and a five-year survival rate of less than 10%
[1]. Magnetic resonance imaging (MRI) is a noninvasive imaging
technique that provides detailed brain images, making it a crucial
tool for detecting and evaluating brain tumors. MRI scans help
assess the size, location, and type of tumor, which are essential in
determining the appropriate treatment strategy.

Despite advances in imaging, accurately classifying brain
tumors remains clinically challenging due to their heterogeneous
appearance, overlapping features among tumor types, and
variations in size and location. These challenges make early and

precise diagnosis difficult, yet it is critical for selecting effective
treatment strategies and improving patient outcomes. Brain tumors
and other central nervous system (CNS) cancers are significant
contributors to cancer-related mortality worldwide. In 2016, there
were approximately 227,000 deaths globally due to CNS cancers.
In the United States, an estimated 18,000 people died from brain
and other CNS tumors in 2021. In the United Kingdom, around
5,500 deaths occur annually due to brain, other CNS, and
intracranial tumors, making it the 10th most common cause of
cancer death [2]. Projections indicate that the number of deaths
from brain, other CNS, and intracranial tumors in the UK will rise
from around 5,700 deaths in 2023–2025 to approximately 6,600
deaths in 2038–2040. Furthermore, brain tumors are the leading
cause of cancer-related death among individuals under the age of
40 [3]. These statistics underscore the urgent need for more
accurate and interpretable diagnostic tools.

Recent advancements in artificial intelligence (AI) have
significantly contributed to addressing the global challenge of
brain tumor diagnosis. Researchers have developed innovative AI
models that enhance the accuracy and speed of tumor detection.
For instance, a study introduced a hybrid model combining Vision
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Transformer and Gated Recurrent Unit (GRU) architectures,
achieving precision, recall, and F1-score metrics of 97 for
classifying brain tumors from MRI scans. Another approach
utilized a deep reinforcement learning network to predict brain
tumor locations, demonstrating the potential of reinforcement
learning in medical imaging tasks [4].

In this study, we propose a comprehensive explainable AI (XAI)
framework for multi-class brain tumor classification using MRI scans.
We utilize a publicly available MRI dataset containing four classes:
glioma, meningioma, pituitary tumor, and no tumor. The
MRI images undergo extensive preprocessing, including grayscale
conversion, resizing to 224 × 224 pixels, normalization,
noise reduction, and enhancement using Contrast Limited
Adaptive Histogram Equalization (CLAHE). To improve model
generalization, data augmentation is performed by generating five
transformed versions of each image through horizontal flipping, 15°
rotation, zooming, Gaussian blurring, and brightness adjustment.
Deep features are extracted using multiple deep learning (DL)
architectures, including Long Short-Term Memory (LSTM),
VGG16, VGG19, ResNet50, and ResNet101. These features are
refined using feature optimization techniques such as principal
component analysis (PCA) and recursive feature elimination (RFE).
The optimized features are then fed into various machine learning
(ML) classifiers, including Extreme Gradient Boosting (XGBoost),
Adaptive Boosting (AdaBoost), bootstrap aggregating (Bagging),
and a custom ensemble model named Tree Selection and Stacking
Ensemble-based Random Forest (TSRF).

Model performance is evaluated using accuracy, precision, recall,
F1-score, and specificity, derived from confusion matrix (CM) analysis
across 50 training epochs. The combination of CNN-LSTM for
feature extraction and TSRF for classification yields the highest
performance across all metrics. For interpretability, XAI techniques
such as Gradient-weighted Class Activation Mapping (Grad-CAM),
Grad-CAM++, and Local Interpretable Model-Agnostic Explanations
(LIME) are employed to highlight tumor regions influencing the
model’s decision. Key contributions of this study include:

• Application of grayscale conversion, resizing, normalization,
denoising, CLAHE, and data augmentation to enhance MRI
image quality.

• Extraction of deep features using LSTM, VGG16, VGG19,
ResNet50, and ResNet101 for robust tumor pattern recognition.

• Optimization of features through PCA and RFE to reduce
dimensionality and eliminate redundancies.

• Application of a previously developed custom ensemble model,
TSRF, combining tree selection and stacking techniques.

• Evaluation of models based on accuracy, precision, recall, F1-
score, and specificity across 50 epochs.

• Incorporation of XAI methods like Grad-CAM, Grad-CAM++,
and LIME for interpretability.

• Identify LSTM and TSRF as the optimal combination for the
highest classification performance.

• Contribution to clinical support through an accurate and
interpretable AI framework for brain tumor diagnosis.

This paper is organized into five sections. Section 2 reviews the
literature, Section 3 presents the materials and methodology, Section 4
discusses the results, and Section 5 concludes the study.

2. Literature Review

Recent advancements in DL have significantly enhanced the
accuracy and efficiency of brain tumor detection and segmentation in

MRI. Several studies have introduced innovative models that
leverage hybrid architectures, attention mechanisms, and advanced
feature extraction techniques. This literature review explores these
contributions, highlighting their methodologies, performance metrics,
and clinical implications. Hosny et al. [5] proposed an ensemble
model combining DenseNet121 and InceptionV3 architectures for
brain tumor detection and classification. This hybrid approach
achieved an accuracy of 99.02, emphasizing the effectiveness of
integrating multiple DL models to enhance classification performance
while reducing computational complexity. Mugdha and Uddin [6]
introduced NeuroSight, a DL framework utilizing the VGG-16
architecture for brain tumor classification. The model demonstrated a
test accuracy of 95.52, underscoring the importance of optimizing
DL models for generalization across diverse datasets to improve
diagnostic reliability. Abraham et al. [7] developed the DC-
YOLOv8FEN model, incorporating dilated convolution techniques
with the YOLOv8 architecture for enhanced feature extraction in
brain tumor detection. Achieving an accuracy of 99.5, the study
highlights the model’s resilience in low-light conditions, making it
suitable for practical clinical applications. Joshi et al. [8] introduced a
novel approach combining a Variational Spatial Attention Graph
Convolutional Neural Network (VSA-GCNN) with bidirectional
GRU for brain tumor segmentation and classification. The model
achieved a high accuracy of 99.98, effectively handling complex
spatial interactions and addressing class imbalance issues in brain
tumor datasets. R et al. [9] proposed a multi-scale attention U-Net
model employing the EfficientNetB4 encoder for improved brain
tumor segmentation. The model achieved an accuracy of 99.79 and a
Dice coefficient of 0.9339, demonstrating the efficacy of integrating
advanced attention mechanisms to enhance segmentation performance.

In addition to the above, several newer works have further
strengthened the evidence base. Anantharajan et al. [10] proposed
a hybrid Ensemble Deep Neural Support Vector Machine
(EDN-SVM) that combined deep neural networks with SVMs
after ACEA/median-filter preprocessing, FCM segmentation, and
GLCM feature extraction; their best model achieved 97.93
accuracy (sensitivity 92, specificity 98), and their conclusion
identified limitations in using only grayscale images and called for
future work with color and 3D MRI, as well as clinical software
integration. Agarwal et al. [11] presented a two-phase system
that first enhanced contrast via ODTWCHE and then used a
modified Inception-V3–based transfer-learning classifier, yielding a
best accuracy of 98.89 on a public dataset; they noted
practical limitations related to potential bias and robustness due
to dependence on training data and highlighted future work to
optimize latency for large-scale screening, improve transparency
(e.g., XAI), and consider cloud deployment. Mathivanan et al.
[12] evaluated multiple transfer-learning backbones for multi-class
MRI classification and reported MobileNetV3 as the best model
with 99.75 accuracy (with ResNet152 also performing strongly);
their conclusion acknowledged limited real-world validation,
possible dataset bias, and unaddressed computational cost and
outlined future work to test across diverse datasets and modalities
(e.g., CT/PET/ultrasound) to strengthen generalizability. Khaliki
and Başarslan [13] compared several CNN/transfer-learning
models and found VGG16 to be the best performer at 98 accuracy
(AUC 99, precision/recall 98); no specific limitations or future
directions were stated. Finally, Asiri et al. [14] introduced a dual-
module pipeline (ICA-NN-SVM) that enhanced images (adaptive
Wiener filtering + neural networks + independent component
analysis) before SVM-based segmentation/classification; the best
configuration achieved 98.9 accuracy (sensitivity/specificity
≈0.99, Dice 0.981) with a mean processing time of 0.43 s, and
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their conclusion proposed future work to standardize classifiers for
robustness, integrate advanced deepmodels, and explore multimodal
imaging to improve generalizability.

By integrating these advanced preprocessing and feature
optimization techniques, our study aims to address the limitations
observed in previous research, thereby contributing to developing
a more robust and accurate model for brain tumor detection and
segmentation.

3. Research Methodology

This study uses an AMD-powered system with a Ryzen 9
7900X processor, 32GB of DDR5 6000 MHz RAM, and an
NVIDIA GeForce RTX 2080 Ti GPU. The system is utilized for
all stages of DL and ML workflows, including model creation,
data preprocessing, and fine-tuning. The primary objective of this
study is the transparent identification of brain tumors. Figure 1
illustrates the complete workflow of the study from start to finish,
while Sections 3.1 to 3.8 provide a concise explanation of each
step and describe how each is carried out within the context of
this research.

3.1. Dataset

We retrieve a dataset from an online source (Kaggle), namely,
PMRAM: Bangladeshi Brain Cancer – MRI Dataset, which is
collected from a number of hospitals in Bangladesh [15]. The
four main categories in this dataset are glioma, meningioma,
pituitary, and no tumor. It consists of raw as well as
pre-augmented images (1,502 raw images and 6,000 augmented
images). Nonetheless, in this work, we only consider the raw
images and use our augmentation methods instead of pre-
augmented ones. Thus, all experimentation and processing occur
on the 1,502 raw images. The sample distribution of the two
classes is shown in Table 1.

3.2. Preprocessing and augmentation

The present study makes use of multiple preprocessing steps to
improve image quality and to prepare the data for model training.
First, a grayscale transform is performed on the original images,
which can help decrease the computation cost by removing color
channels, and it concentrates on structural characteristics that are
valuable for medical imaging jobs [16]. Next, all the footprints are
resized to 224 × 224 pixels, which enables a standard input size
for the DL models across the dataset. Normalization is conducted
to standardize pixel intensity values to a certain range, for
example, from 0 to 1, which can facilitate faster convergence of
the model during training [17]. Gaussian blur is employed to
reduce noise in MRI images [18]. This smoothing reduces
additive random noise while preserving important structural
features in the image by averaging pixel values in the image with
neighboring pixels based on a Gaussian kernel. Lastly, we
increase the contrast of images using CLAHE. CLAHE enhances
local contrast and exposes subtle details present in medical images
by equalizing histogram levels in the local parts of the image in
such a way that the significant features are more distinctive to the
model [19]. The effect caused by each preprocessing method used
in this work can be visualized in Figure 2 to demonstrate the
iterative improvement of image quality.

Once the final CLAHE-enhanced images are obtained, we use
five augmentation procedures to further increase dataset variety and
model generalization. These are horizontal flip (for orientation),
15-degree rotation (to be invariant to position), scaling (to get internal
structures), Gaussian blur (to model variance of image quality), and
brightness adjustment (illumination) [20]. Every method creates 1
additional version of our data per image, which means we obtain five
augmented images per original. Figure 3 shows sample outputs.

By applying the preprocessing techniques to the 1,502 rawMRI
images, we create five augmented versions for each image and also
the last CLAHE enhancement. This amounts to 7,510 images,

Figure 1. Methodological framework for brain tumor detection
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leading to a larger and more diverse dataset. The images are divided
into training, testing, and validating sets in a 70:20:10 ratio for
balanced evaluation and model robustness.

3.3. Deep features

To search for a more powerful deep feature extractor for
brain tumor analysis, we independently evaluate five mainstream
CNN architectures and a hybrid CNN-LSTM framework by
independently feeding each of them to process the preprocessed and
augmented MRI images and judge their capability to extract
discriminative features. High-Resolution Network (HRNet) can
keep high-resolution feature maps, which can retain spatial
information and rules in medical imaging (i.e., to find out some
minor structure patterns in brain tumors), and is a powerful

cooperating first-level feature extractor for two-color image features
and also the pixel-level fusion in patches from the whole input
image [21]. A deep CNN VGG16 has a simple and uniform
architecture and captures hierarchical information from low-level
edge information to high-level discriminative classes that are
compatible with the complex MRI pattern [22]. VGG19 is similar
to VGG16 but with more convolutional layers for extracting deeper
features and potentially achieving better classification accuracy [23].
ResNet50 uses the techniques of residual learning using shortcut
connections, which allows the relative ease of training deeper
networks and learning rich and abstract features commonly used in
medical image analysis [24]. ResNet101 further extends this by
being highly deep, so that it can learn more interesting nonlinear
patterns that are useful for discriminating tumor types [25]. Finally,
the hybrid architecture of CNN-LSTM adopted the spatial feature

Figure 3. Sample outputs of the five augmentation techniques: (A) horizontal flip, (B) 15° rotation, (C) Zoom, (D) Gaussian blur,
(E) brightness adjustment

Table 1. Class-wise distribution of raw MRI images in the PMRAM dataset

Categories Total Sample Sample 1 Sample 2 Sample 3 Sample 4

Glioma 373

Meningioma 363

Pituitary 373

No Tumor 396

Figure 2. Visual impact of preprocessing techniques on MRI images: (A) original image, (B) grayscale image, (C) resized image,
(D) normalized image, (E) denoised image, (F) CLAHE-enhanced final image
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extraction of the CNN and the exploration of contextual and
temporal relations along the feature dimensions to increase the
network’s understanding of spatial dependencies and improve the
classification performance [26].

3.4. Feature optimization

We perform feature optimization to improve the performance
and the correctness of ML classifiers. The feature vectors obtained
by DL models are of high dimensionality, possibly responding to
non-informative or redundant dimensions. Such redundant
features may cause overfitting, increase the computational cost, and
weaken the generalization ability of the model. In order to deal with
this issue, we introduce the two most commonly used feature
selection and dimensionality reduction methods: PCA and RFE.

PCA is a statistical process to take the original high-
dimensional feature space and reduce it to a lower-dimensional
space by projecting data along directions that capture the
highest variance (principal components). PCA can keep the
most important and informative features but discard the noise
and redundancy within image features. This is useful for
increasing model efficiency and sometimes also for improving
accuracy [27].

In contrast, RFE is a wrapper method and is heavily based on a
wrapper feature selection method of ranking different features by
recursively removing the least important feature, based on an
estimator’s weight coefficients, like SVC or logistic regression.
When adapted to the deep pattern learned from an image, RFE
built on deep differential chooses the most useful features that
dominate the final prediction, leading to model simplification
while preserving accuracy [28].

3.5. Machine learning model construction

To evaluate the effectiveness of our approach in identifying
brain tumors, we apply a set of ML models both with and without
feature optimization. This allows us to observe how feature
optimization influences performance and helps identify the most
effective combination for accurate prediction. The models used for
classification include XGBoost [29], AdaBoost [30], Bagging
[31], and TSRF [32]. These ML models are tested on deep
features extracted from six different architectures: HRNet,
VGG16, VGG19, ResNet50, ResNet101, and CNN-LSTM. For
every deep feature set, we perform classification twice – once
using the original unoptimized features and again using the
features optimized through PCA and RFE. This comparison helps
us assess the importance of reducing feature dimensionality and
selecting the most relevant attributes for classification.

We aim to determine the most effective pipeline for brain tumor
detection by combining eachDLmodel with eachML classifier, both
with and without feature optimization. This comprehensive
evaluation ensures that we select the best arrangement regarding
accuracy and efficiency.

Table 2 presents the key hyperparameter settings used for the
ML classifiers (XGBoost, AdaBoost, Bagging, and TSRF),
providing transparency and supporting the reproducibility of our
experimental framework.

3.6. Machine learning model evaluation

To identify the best combination of DLmodel, ML classifier, and
feature optimization technique, we evaluate the performance of each
arrangement using a comprehensive set of metrics. The metrics

used in this study include accuracy, precision, recall, F1-score,
specificity, and Cohen’s kappa. These evaluation metrics provide a
balanced understanding of how well each model performs across
different aspects of classification.

All metrics are calculated based on a 4 × 4 CM, which
summarizes the prediction results by comparing the actual and
predicted classes [33]. In a multi-class setting like ours, the CM
shows how many samples from each actual class are correctly or
incorrectly classified into the four categories: glioma, meningioma,
pituitary, and no tumor.

The CM helps identify the overall correctness of a model and
where it tends to make specific errors. From this matrix, we compute
the following performance metrics by deriving the values of true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN) for each class. These values form the foundation for
metric calculations [34]. Table 3 presents the calculation process of
these performance metrics using the TP, TN, FP, and FN values for
each class in the multi-class classification setting.

After identifying the best-performing model based on
evaluation metrics, we further analyze the final models using
statistical measures to ensure the reliability of the results. The
standard deviation quantifies the amount of variation or dispersion
in the model’s performance scores, indicating how consistently
the model performs across different test samples [35]. To assess
the range within which the true performance metric is likely to
fall, we calculate the confidence interval, where the lower and
upper bounds provide the minimum and maximum values that

Table 2. Hyperparameter settings used for ML classifiers

Model Hyperparameter Value/Range

XGBoost [24] Learning Rate (η) 0.01–0.3
Max Depth 3–10
Subsample 0.6–1.0
Estimators 100–500

AdaBoost [25] Estimators 50–300
Learning Rate 0.1–1.0
Base Estimator Depth 1–5

Bagging [26] Estimators 10–200
Max Samples 0.5–1.0
Max Features 0.5–1.0

TSRF [27] Total Trees 57
Subforest Size 5–15
Max Depth 4–12

Table 3. Computation of evaluationmetrics fromCMcomponents

Metric Formula Description

Accuracy TPþ
TPþTN þ FPþ FN � 100 Correct brain tumor

predictions
Precision TP

TPþ FP � 100 Of predicted tumors

Recall TP
TPþ FN � 100 Of actual tumors

F1-Score 2� Precision�Recall
PrecisionþRecall � 100 Balance between

precision and recall
Cohen’s
Kappa

p0 ¼ TPþTN
TPþTN þ FPþ FN

Prediction match beyond
random chanceppositive ¼ TPþ FPð Þ TPþ FNð Þ

TPþTN þ FPþ FNð Þ2

pnegative ¼ FN þTNð Þ FPþTNð Þ
TPþTN þ FPþ FPð Þ2

pe ¼ ppositive þ pnegative
Ke ¼ p0 � pe

1� pe
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capture the metric with a given level of confidence [36]. In addition,
we apply the bootstrap mean, which involves repeatedly resampling
the data with replacement and calculating the mean performance
across these resamples, thereby providing a robust estimate of the
central tendency while accounting for sampling variability [37].
Together, these measures present a comprehensive statistical view
of the model’s stability and reliability.

3.7. Final model selection

After applying eachMLmodel in combinationwith theDL-based
feature extractors, we evaluate the performance of all configurations
using the selected evaluation metrics. Through this analysis, we
identify that the CNN-LSTM model, when paired with the TSRF
classifier, consistently outperforms other combinations in accuracy,
precision, recall, F1-score, specificity, and kappa.

Based on these results, we selected the CNN-LSTM + TSRF
pipeline as the best and final model for brain tumor identification
in this study. This configuration provides the most reliable and
robust performance, making it the most suitable choice for
practical implementation.

3.8. Deep features

To improve the interpretability and trustworthiness of our final
CNN-LSTM + TSRF model, we use XAI methodologies, which are
indispensable in medical tasks, such as for brain tumor detection,
in the sense that the interpretations are as important as the

accuracy [38]. To interpret the model decision, we adopt three
popular XAI methods, which are LIME, Grad-CAM, and Grad-
CAM++. LIME, a technique that is model agnostic and based on
local surrogate models, provides importance weights to features
by approximating the model locally and computing their
contribution to predictions and helps us identify which regions in
the extracted MRI features have an impact on the classification.
Our method could identify these crucial ROIs [39]. Grad-CAM
produces the heatmap by utilizing gradients derived from the last
layer of the convolutional layer to highlight those locations in the
image that are most important for a model’s decision, providing
spatial reasoning for the model. Grad-CAM [40], an enhanced
version of Grad-CAM, could offer more accurate and
detailed visual explanations by recording pixel-level contributions
and is warranted in finding small or subtle tumor regions. Such
interpretability aids confirmatory (= diagnostic) trust and
accountability for the clinician in automated diagnostic systems.

4. Results and Discussion

In this study, we evaluate a variety of DL and ML model
combinations to identify the most effective configuration for brain
tumor classification. Each combination is tested with and without
feature optimization to understand the impact of dimensionality
reduction and feature selection on model performance. The
outcomes of these experiments are summarized in Table 4, which
presents the performance metrics for all configurations and serves
as the basis for the following analysis and discussion.

Table 4. Comprehensive performance comparison of DL-ML model combinations with and without feature optimization

DL Model ML Model Accuracy Precision Recall F1 Score Kappa

No Feature Optimization HRNet XGBoost 75.80 79.88 79.95 76.88 0.74
AdaBoost 74.13 76.63 76.80 78.53 0.23
Bagging 74.79 75.66 75.22 76.47 0.52
TSRF 77.02 76.30 79.17 79.46 0.47

VGG 16 XGBoost 76.17 77.50 77.76 78.54 0.62
AdaBoost 76.24 75.60 75.65 74.36 0.49
Bagging 77.09 79.00 78.65 79.40 0.61
TSRF 79.33 76.58 79.81 75.88 0.70

VGG 19 XGBoost 78.43 77.91 76.78 76.52 0.18
AdaBoost 75.88 75.43 66.47 75.33 0.51
Bagging 75.72 77.77 78.60 75.09 0.09
TSRF 77.59 78.18 78.10 75.05 0.51

ResNet50 XGBoost 75.24 76.25 75.21 75.12 0.10
AdaBoost 79.38 77.82 77.39 55.38 0.46
Bagging 79.14 79.89 77.86 77.02 0.97
TSRF 74.20 75.39 78.79 74.17 0.50

ResNet101 XGBoost 75.64 75.28 78.99 74.03 0.80
AdaBoost 76.48 77.45 76.04 77.93 0.02
Bagging 76.26 65.42 77.48 76.56 0.27
TSRF 75.68 79.53 76.41 78.53 0.63

CNN-LSTM XGBoost 79.06 79.35 76.80 77.33 0.16
AdaBoost 65.00 59.99 64.33 55.37 0.58
Bagging 78.26 74.10 75.29 76.06 0.81
TSRF 79.82 76.07 74.83 79.47 0.89

PCA HRNet XGBoost 80.43 82.61 81.39 83.11 0.89
AdaBoost 81.15 80.94 82.77 84.00 0.91
Bagging 82.76 83.15 80.06 81.22 0.90
TSRF 85.12 84.42 83.65 84.88 0.95

VGG 16 XGBoost 83.01 82.57 84.11 83.69 0.92
AdaBoost 81.79 81.44 82.03 81.93 0.88

(Continued)
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As inferred from the results presented in Table 3, the optimal
feature combination for detecting brain tumors is CNN-LSTM
with TSRF, generated using RFE. This configuration, named
NeuroBlend-3, produces good results with 99.88 accuracy, 99.85
precision, 99.84 recall, 98.89 F1 score, and 0.99 Kappa score. The
spatial and temporal dependency between coordinates is learned
by the CNN-LSTM model, and the TSRF classifier provides a
good generalization performance through robust ensemble
decision. RFE also provides efficiency by selecting the most
discriminative features. Lastly, a number of XO explainability
tools applied to ones and zeros are used to attribute the decision
to the machine to improve transparency and trust.

Table 5 Performance comparisons of the TSRF model using
CNN-LSTM features for brain tumor detection, along with
significant statistical analysis. We see similar results across the
five folds, with accuracy in the range of 99.81 to 99.93, precision

between 99.81 and 99.91, recall of 99.79–99.89, F1-score of
approximately 98.86 to 98.95, and Cohen’s kappa that remains
close to 1, indicating substantial predictive agreement. The
average values – 99.88 accuracy, 99.85 precision, 99.84 recall,
98.89 F1-score, and 0.99 kappa – reflect the model’s strength.
The standard deviation is still very small (0.03–0.04), which
implies almost no variation among folds and demonstrates the
robustness of the performance. The low CIL and high CIU values
from the 95% confidence intervals show the robustness and the
statistical significance of the results as well. An additional
strength of the TSRF is that the bootstrap mean matches the fold-
wise means exactly: this highlights the reliability of the prediction
of the TSRF model. All the above statistical indices confirm that
the TSRF model is accurate and reliable for brain tumor detection.

The CM of NeuroBlend-3 is given in Figure 4. The matrix
performs consistently well in all four classes: undifferentiated

Table 4. (Continued )

DL Model ML Model Accuracy Precision Recall F1 Score Kappa

Bagging 84.26 83.88 85.36 85.00 0.97
TSRF 86.44 85.02 83.19 84.60 0.93

VGG 19 XGBoost 84.93 83.40 84.25 84.17 0.91
AdaBoost 80.67 /81.77 80.98 80.85 0.87
Bagging 82.33 82.16 81.25 81.83 0.89
TSRF 85.18 84.26 83.84 84.79 0.94

ResNet50 XGBoost 83.89 84.08 82.67 83.34 0.92
AdaBoost 81.72 83.52 81.02 82.21 0.90
Bagging 84.11 84.31 83.13 84.02 0.91
TSRF 85.76 85.63 84.74 85.34 0.96

ResNet101 XGBoost 83.38 82.41 83.57 83.72 0.88
AdaBoost 82.56 82.02 81.45 81.86 0.89
Bagging 84.48 85.01 83.76 84.73 0.94
TSRF 86.70 86.22 85.35 85.96 0.98

CNN-LSTM XGBoost 84.21 83.18 82.43 83.05 0.93
AdaBoost 82.67 82.88 81.77 82.03 0.90
Bagging 85.84 86.13 84.92 85.73 0.97
TSRF 86.93 85.69 86.11 86.41 0.99

RFE HRNet XGBoost 86.71 87.05 85.92 86.47 0.93
AdaBoost 85.28 85.67 86.21 85.94 0.89
Bagging 88.34 88.01 87.49 87.75 0.96
TSRF 89.21 88.87 88.74 89.06 0.98

VGG 16 XGBoost 87.56 86.45 86.81 86.62 0.92
AdaBoost 86.38 87.92 86.20 87.05 0.91
Bagging 88.67 89.04 88.35 88.66 0.97
TSRF 89.42 89.21 88.92 89.06 0.99

VGG 19 XGBoost 86.11 86.72 87.48 87.10 0.90
AdaBoost 85.73 86.01 85.64 85.82 0.88
Bagging 88.12 87.56 88.22 87.89 0.95
TSRF 89.85 89.43 89.06 89.24 0.99

ResNet50 XGBoost 87.14 87.91 86.82 87.36 0.93
AdaBoost 86.83 85.76 86.58 86.16 0.91
Bagging 89.04 88.52 89.09 88.80 0.96
TSRF 89.77 89.92 88.90 89.41 0.98

ResNet101 XGBoost 85.92 86.20 85.84 86.01 0.89
AdaBoost 86.79 85.92 86.11 86.01 0.90
Bagging 88.93 88.47 88.60 88.53 0.95
TSRF 89.68 89.55 89.16 89.35 0.98

CNN-LSTM XGBoost 88.26 88.31 87.44 87.87 0.96
AdaBoost 87.34 87.02 86.23 86.62 0.92
Bagging 89.57 89.04 88.76 88.89 0.97
TSRF 99.88 99.85 99.84 98.89 0.99
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(glioma), normal, pituitary, and meningioma. It correctly predicts
glioma with an accuracy of 99.90%, normal with 99.80%,
pituitary with 99.92% and meningioma with 99.86%. The number
of misclassifications is low and less than 1 in most of the off-
diagonal cells. This shows the capability of the model to
discriminate between the types of tumors and the accuracy and
reliability of the model for multi-class classification.

The learning curves of the proposed NeuroBlend3 pipeline
demonstrate stable and balanced model behavior across 100 epochs.
The training and validation accuracy curves (Figure 5A) both
converge to a high final accuracy of approximately 99.88, with only

minimal fluctuations between them. This close alignment indicates
that the model generalizes well to unseen data without exhibiting
signs of overfitting (where validation accuracy would diverge
downward from training accuracy) or underfitting (where both
accuracies would plateau at a low level). Similarly, the training and
validation loss curves (Figure 5B) decrease smoothly and
consistently, maintaining a close overlap throughout training. The
absence of divergence between the two loss curves further confirms
that the model has achieved an optimal balance between learning
from the training set and maintaining strong generalization on the
validation set. Overall, these results validate the robustness of
NeuroBlend3 in effectively learning from the dataset without
performance degradation.

Table 6 presents an instance-wise visual interpretation
of NeuroBlend-3 predictions (i.e., visualization of the relevant
regions in the input image) for three brain tumor classes
(glioma, meningioma, and pituitary) based on different heatmap
explanation methods: Grad-CAM, Grad-CAM++, and LIME.
Each row corresponds to a particular tumor type and presents a
depiction of the various interpretability methods and what regions
are magnified by the method the most in terms of contributing
toward the model’s prediction. Examples of MRI images are
depicted in Table 6, where the sagittal slice of the brain for the
glioma case is illustrated. Grad-CAM directs attention toward a
red area of apparently high concentration in the vicinity of the
tumor, representing the model’s focus. Grad-CAM++ improves
this by centering the attention more precisely around the lesion
border. LIME, in contrast, conveys a partitioned binary region
heat map, which is in accordance with the significance of its
surrounding part – that is, people have reasons to believe that the

Table 5. 5-fold cross-validation performance of the TSRF model with CNN-LSTM feature extraction for brain tumor

Folds Accuracy Precision Recall F1 Score Kappa

Fold 1 99.87 99.82 99.85 98.92 0.97
Fold 2 99.93 99.82 99.86 98.86 0.99
Fold 3 99.90 99.81 99.79 98.86 0.98
Fold 4 99.89 99.89 99.89 98.86 0.97
Fold 5 99.81 99.91 99.81 98.95 1.04
Average 99.88 99.85 99.84 98.89 0.99
Std. Dev 0.04 0.04 0.04 0.04 0.03
95 CIU 99.84 99.81 99.80 98.85 0.96
95 CIL 99.92 99.89 99.88 98.93 1.01
Boot. Mean 99.88 99.85 99.84 98.89 0.99

Figure 4. Visual CM (percentage) for NeuroBlend-3

Figure 5. Learning curves of the proposed NeuroBlend-3 pipeline: (A) Training and validation accuracy over 100 epochs.
(B) Training and validation loss over 100 epochs

Medinformatics Vol. 00 Iss. 00 2025

08



localization of the tumor is highly relevant to the prediction. In the
meningioma sample, the original image is a cross-section. Both
Grad-CAM and Grad-CAM++ present a wide, ordered activation
surrounding the lesion in colors, and Grad-CAM++ provides a
more fine-grained level of detail. LIME segmentation on
NeuroBlend-3 is spread across multiple patches, indicating that a
larger contextual region around the tumor is taken into account by
NeuroBlend-3 for correct classification. The original image of the
pituitary tumor is also a sagittal slice. Grad-CAM indicates
distracting hot spots near the base of the brain, presumably in the
vicinity of the pituitary gland. In contrast, Grad-CAM++ has a
more localized, sharper focus and is more confident in its original
prediction. The LIME map indicates localized areas that
correspond to the activated region in the heatmaps. As depicted in
Table 6, NeuroBlend-3 successfully finds crucial tumor regions by
employing various explainability approaches. Grad-CAM gives a
general attention map. Grad-CAM++ gives an improved spatial
attention map, and LIME gives model-agnostic interpretable
segmentation of the region of interest. These explanations confirm
the accuracy of the model predictions and provide a glimpse of
potential clinical trustworthiness and transparency.

Table 7 compares the proposed NeuroBlend-3 method with some
other brain tumor classification methods. Models such as
DenseNet121, InceptionV3, NeuroSight DC, YOLOv8FEN, VSA-
GCNN, U-Net, EDN, SVM, Modified InceptionV3, MobileNetV3,
VGG16, ICA NN, and SVM are discussed to demonstrate their

relative efficacy and methodological improvements. Although some
approaches, like VSA-GCNN [8], obtained the highest reported
accuracy of 99.98%, they did not consider feature reduction, XAI,
and rigorous statistical testing, which restricts their clinical
interpretability and generalization. Also, methods such as DC
YOLOv8FEN [7] and ICA-NN-SVM [14] also used feature
optimization, yet their explainability was low, which is important
for medical decisions. The proposed NeuroBlend-3, however,
achieved an accuracy of 99.88%, making it one of the
best-performing methods and filling important voids in the existing
works. Importantly, it was the first to implement feature
optimization, XAI, as well as complex statistical testing (standard
deviation, confidence intervals, bootstrap mean). This incorporation
allowed high predictive abilities as well as improved transparency
and reliability of the model, which enabled it to be more
appropriate for real clinical practice. NeuroBlend-3 was thus
established as an all-around and practical improvement in the
research regarding brain tumor discrimination with respect to
performance, interpretability, and statistical robustness.

5. Conclusion

The results of this study show that this AI technique is an efficient
method for multi-class brain tumor classification with the use of MRI
images, with promising performance for diagnostic accuracy and
clinical decision aiding. The framework will allow an in-depth

Table 6. Visual interpretability for NeuroBlend-3

Class Original Grad-CAM Grad-CAM++ Lime

Glioma

Meningioma

Pituitary

Table 7. Benchmarking existing methods against the proposed NeuroBlend-3 framework

Authors Method Accuracy Feature Optimization XAI Statistical Analysis

Hosny et al. [5] DenseNet121 and InceptionV3 99.02 No Yes No
Mugdha and Uddin [6] NeuroSight 95.52 No No No
Abraham et al. [7] DC-YOLOv8FEN 99.5 Yes No No
Joshi et al. [8] VSA-GCNN 99.98 No No No
R et al. [9] U-Net 99.79 No No No
Anantharajan et al. [10] EDN-SVM 97.93 No No Standard Deviation
Agarwal et al. [11] Modified Inception V3 98.89 No No Standard Deviation
Mathivanan et al. [12] MobileNetV3 99.75 No No No
Khaliki and Başarslan [13] VGG16 98 No No No
Asiri et al. [14] ICA-NN-SVM 98.9 Yes No Standard Deviation
Our Study NeuroBlend-3 99.88 Yes Yes Standard Deviation, Confidence

Interval (Upper and Lower),
Bootstrap Mean
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assessment of classification performance, including integration of
explainability techniques so that predictions can be more trustworthy
and more transparent, leading to better outcomes in neuro-oncology.
Most importantly, this study adds to the scientific literature by
proposing the NeuroBlend-3 pipeline combining CNN-LSTM,
TSRF, and RFE in an innovative manner and shows that the hybrid
integration of DL and classic methods could achieve improved
diagnostic performance along with interpretability. By demonstrating
how explainability can be integrated with high-performing models,
the work also adds to the few existing studies on trustworthy AI in
healthcare by bridging the divide between model accuracy and
clinical interpretability. Yet this study has some limitations, such as
using a publicly available dataset collected from different centers
that may not encompass all clinical differences, the lack of
external validation cohorts, and no consideration for ambiguous or
overlapped tumor regions. Future directions in research may include
external validation on multi-institutional datasets to increase
generalizability, more clinical information, 3D imaging with more
in-depth information, and real-time application in the clinical field, in
which the model can be updated continually with new data.
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