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Abstract: Aligning multiple sequences of amino acids or nucleotides is considered a challenging task in biology, like fitting puzzle pieces
together to find the best matches. Due to the huge computational overhead of checking all possible combinations, simple metaheuristic
approaches, such as genetic algorithms (GAs) that are inspired by nature, are good because they can effectively optimize the gap
positions to get better scores. This work addresses this problem by combining GAs with chaotic sequences to obtain a better diversity
in the search space that leads to near-optimal alignment. Chaotic sequences are known for their unpredictable patterns but structured
behavior, which helps explore different solutions effectively. Integrating chaos theory into metaheuristics helps in achieving effective and
accurate alignments of multiple sequences by handling complexity, finding optimal alignment, and improving efficiency. Users can adjust
hyperparameters such as mutation probability, crossover probability, etc., making the approach flexible. The experiments are carried
out on various inputs that are obtained from the BAliBASE dataset to establish the effectiveness and the superiority of the proposed
approach. The proposed approach is compared with the state-of-the-art approaches, and the obtained outcomes are promising enough
and encouraging to apply the proposed approach to real-life problems.
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1. Introduction

Multiple sequence alignment (MSA) is a fundamental task
in bioinformatics with applications ranging from evolutionary
analysis to structure–function prediction [1]. Despite its signif-
icance, MSA remains computationally challenging due to its
NP-complete nature and the exponential growth of the search
space with increasing sequence length and count [2]. Tradi-
tional alignment techniques, including progressive alignment and
dynamic programming (DP), often fail to provide optimal align-
ments, especially in complex or large-scale datasets [3]. Although
genetic algorithms (GAs) have been widely adopted to miti-
gate these limitations due to their global search capability, they
are not immune to premature convergence and reduced popu-
lation diversity, often leading to suboptimal solutions [4]. This
manuscript addresses these challenges by proposing a hybrid
approach that incorporates chaotic dynamics—specifically the
Logistic map—into the core operations of GAs. By embed-
ding chaos in population initialization, selection, crossover, and
mutation, the model introduces deterministic randomness that
enhances the exploration of the solution space while maintaining
structured search behavior. The primary aim of this research is to
improve the accuracy and robustness of MSA by overcoming the
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common pitfalls of conventional GAs. The methodology is evalu-
ated using benchmark datasets from BAliBASE, and performance
is assessed against established alignment techniques.

Key contributions of this work are summarized as follows:

• A simple metaheuristics-based MSA strategy is proposed.
• The traditional genetic algorithm (TGA) is modified and
hybridized with the chaotic environment.

• Genetic operators are modified to handle the encoded gaps
• The chaotic Logistic map introduces an element of unpre-
dictability into the GA’s search process, enabling a more
comprehensive exploration of the solution space.

• By using chaotic sequences for initializing populations and
guiding mutation processes, the hybrid GA can generate more
diverse and varied candidate solutions. This diversity is cru-
cial for avoiding convergence on suboptimal alignments and
improving the quality of the final alignment.

• The inherent randomness of the chaotic Logistic map helps
mitigate the risk of premature convergence—a common issue
in traditional GAs. By promoting exploration over exploita-
tion, the hybrid approach increases the likelihood of discovering
globally optimal or near-optimal alignments.

MSA has long been recognized as a fundamental prob-
lem in computational biology, serving as the basis for tasks
such as phylogenetic analysis, protein structure prediction, and
functional annotation. However, due to its NP-hard nature,

Pdf_Fol io:1

©The Author(s) 2026. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/by/4.0/).

01

https://doi.org/10.47852/bonview62025784
mailto:shouvikchakraborty@ieee.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Medinformatics Vol. 00 Iss. 00 2026

obtaining optimal alignments for large and complex datasets
remains computationally challenging. To overcome these lim-
itations, researchers have increasingly turned to metaheuristic
algorithms, which offer flexible and efficient strategies for explor-
ing vast search spaces. Recent studies have applied diverse
approaches—including GAs, particle swarm optimization, and
bacterial foraging optimization—to enhance alignment accuracy
and computational efficiency. This section also reviews these
developments, highlighting key methodologies, innovations, and
emerging trends in the use of metaheuristics for MSA. Issa et al.
[5] provide an overview of recent advancements in MSA through
the application of metaheuristic algorithms. Particular emphasis
is placed on two emerging approaches. The first is the Frag-
mented Protein Sequence Alignment method, which employs a
two-layer particle swarm optimization strategy. The second is an
MSA framework that utilizes a multi-objective bacterial forag-
ing optimization algorithm. Lajevardy et al. [6] introduced a GA
combined with a specialized chromosome structure to address
a mathematical model for MSA. The model establishes a foun-
dation for deriving optimal solutions through various strategies,
utilizing an X-mediated matrix composed of binary elements to
represent the sequences. The approach is then implemented on
a web-based platform using the GA framework, and the exper-
imental results demonstrate the effectiveness of GA in solving
the MSA problem. Chowdhury and Garai [7] introduce a novel
GA–based alignment method called Bi-objective Sequence Align-
ment using Genetic Algorithm (BSAGA). The key innovation
of this approach lies in its selection strategy: a portion of the
population is chosen according to the sum-of-pairs (SP) score,
while the remaining part is selected based on the Total Conserved
Columns measure. To efficiently encode alignments, an integer-
based chromosome representation is employed that specifies only
the gap positions, thereby enhancing the search capability even for
longer sequences. The proposed BSAGA method was evaluated
using benchmark datasets such as BAliBASE and SABmark, with
performance compared against existing alignment techniques.
Experimental results, supported by the Wilcoxon signed-rank test,
demonstrate that BSAGA achieves superior alignment accuracy
relative to competing methods. Some comprehensive reviews on
this topic can be found in [8–15].

In this work, we aim to improve the performance of MSA, a
well-known NP-complete problem characterized by an exponen-
tially large search space and complex trade-offs between alignment
accuracy and computational cost. Traditional methods, includ-
ing DP and progressive alignment, often struggle with scalability
and are prone to suboptimal solutions when dealing with long or
numerous sequences. While GAs offer a robust heuristic frame-
work for navigating large solution spaces, they are frequently
limited by issues such as premature convergence and loss of
population diversity. To address these limitations, we propose a
hybrid model that integrates chaotic dynamics—specifically the
Logistic map—into the genetic framework. Chaotic sequences are
deterministic yet highly sensitive to initial conditions, enabling
a pseudorandom and diverse exploration of the search space.
This integration enhances the exploratory capacity of the GA
while maintaining structured randomness, helping avoid local
optima and improving alignment accuracy. Our approach mod-
ifies key GA components such as population initialization,
selection, crossover, and mutation using chaos theory principles,
thereby introducing adaptive randomness to balance exploration
and exploitation. Unlike conventional GAs, our model leverages
chaotic behavior to maintain population diversity and search effi-
ciency throughout the optimization process. This work thus fills

a significant gap by combining the strengths of chaotic systems
and evolutionary computation to develop a more effective and
scalable solution for MSA.

The remainder of the manuscript is structured as follows:
Section 2 presents relevant background and theoretical underpin-
nings of the GA and chaos theory. Section 3 details the proposed
hybrid methodology, including algorithmic design and implemen-
tation. Section 4 discusses experimental results and comparative
analyses. Finally, Section 5 concludes the paper with insights into
the significance of the findings and outlines future research direc-
tions. This improved framework contributes to the growing body
of intelligent bioinformatics tools and offers a promising direction
for enhancing large-scale sequence analysis.

2. Methodology

In this work, the chaos theory and a GA are combined to
address the challenge of the MSA task. In this section, some
relevant background information is discussed.

2.1. Genetic algorithm

A GA is a computational method inspired by natural selec-
tion and was proposed by John Holland [16]. It starts with a set
of initial possible solutions and then combines the best ones to
make a new set of solutions. GAs can be thought of as a game
where different solutions are explored on a trial-and-error basis
to find the best one. The process starts by making some guesses
and then mixing and matching them to make better guesses until
we find the right answer. They work by evolving solutions over
time, selecting the best ones, and combining them to produce even
better solutions. It does this by combining good solutions and
making small random changes (such as mutations) to create new,
possibly better solutions [17]. For the sake of completeness, some
relevant terminologies are explained as follows:

Population: A set of candidate solutions to the optimization
problem. Each individual in the population represents a possible
solution and is typically encoded as a string (chromosome).

Fitness Function: A function that evaluates how good a can-
didate solution is relative to others. It assigns a fitness score
to each individual based on how well it solves the problem or
achieves the desired objective.

Selection: The process of choosing individuals from the
current population to create the next generation. Selection meth-
ods, such as roulette wheel selection or tournament selection,
favor individuals with higher fitness scores, thereby increasing the
likelihood of their genes being passed on.

Crossover (Recombination): A genetic operator used to com-
bine the genetic material of two parent individuals to produce
offspring. Crossover mimics biological recombination and aims to
create new individuals with potentially better solutions by mixing
characteristics from both parents.

Mutation: A genetic operator that introduces random
changes to an individual’s genes. Mutation helps maintain genetic
diversity within the population and can prevent the algorithm
from prematurely converging on suboptimal solutions.

2.2. The chaotic logistic map

The Logistic map is a mathematical function that is often
used in chaos theory and dynamical systems. It can be used
to generate chaotic sequences that introduce randomness into
alignment algorithms or methods. A Logistics map refers to a
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mathematical model used to simulate and optimize the align-
ment of multiple sequences. Applying Logistic maps, researchers
can enhance the accuracy of aligning biological sequences, such
as DNA or protein sequences. This helps in exploring diverse
solution spaces and improving the outcomes of computational
analyses in biological research. The Logistic map has applications
in various fields, including physics, biology, etc. [18, 19].

The Logistic map is a mathematical function that exhibits
chaotic behavior, particularly when its controlling parameter r is
in the range [3.57, 4]. The Logistic map is mathematically defined
in Equation 1:

xn+1 = r · xn · (1 − xn) (1)

where Xn represents the value of the variable at thenth iter-
ation and r is a parameter known as the growth rate or chaotic
factor, typically ranging from 0 to 4.

The behavior of the Logistic map is highly sensitive to the
parameter r. For values of r between 0 and 1, the system converges
to a fixed point. As r increases past 1, the system exhibits periodic
behavior [20, 21]. Beyond a certain threshold, the system transi-
tions into chaotic behavior, characterized by sensitive dependence
on initial conditions and a random sequence of values. In the
chaotic regime, the Logistic map exhibits a chaotic attractor, a set
of values toward which the system evolves over time. The Lya-
punov exponent, a measure of the average rate at which nearby
trajectories converge or diverge, is positive in the chaotic regime,
indicating sensitive dependence on initial conditions.

2.3. Integration of the chaos theory with genetic
algorithm

Chaotic systems are deterministic, meaning their future
behavior is entirely determined by their initial conditions [22, 23].
Tiny differences in initial conditions can lead to vastly different
outcomes over time. Chaotic sequences are sequences of num-
bers that are generated with the help of some chaotic maps, and
these sequences are used strategically within algorithms or meth-
ods aimed at improving the accuracy and efficiency of aligning
multiple biological sequences. Chaotic systems provide a mecha-
nism to explore the search space more thoroughly by generating
diverse and non-repetitive sequences. This helps in avoiding local
optima and encourages a more global search approach. Chaotic
sequences are used to inject randomness into the GA’s opera-
tions. Instead of using purely random numbers, they decide how
chromosomes are initially set up, where traits are exchanged dur-
ing crossover, and which parts of chromosomes get mutated. This
randomness helps the algorithm explore new possibilities more
effectively, especially in complex problems where finding the best
solution is tough. Integrating GAs with chaotic sequences helps
computers to solve problems more efficiently by mixing natural
selection with a touch of randomness. The unpredictability of
chaotic systems can help prevent the algorithm from getting stuck
in suboptimal regions of the search space, making the GA more
robust against various types of optimization challenges.

3. Proposed Approach

In this section, the proposed hybrid MSA approach is dis-
cussed in detail. The proposed approach integrates the Logistic
map into the GA to exploit the chaotic properties of the Logistic

map to introduce randomness and variability into the algorithm’s
operations. A detailed elaboration of the proposed approach is
presented in the following subsections.

3.1. Initial population with the logistic map

The GA begins by creating an initial set of potential solu-
tions (chromosomes), known as the initial population. The size
of the initial population can be supplied externally. This number,
denoted as P, is typically determined based on the complexity of
the problem. In this work, the initial population is created with
the help of the chaotic Logistic map. The initialization process
begins with the chaotic Logistic map that requires a random ini-
tial value x0 within the range [0, 1] and Equation 1 to generate
a sequence of values. This value acts as the starting point for the
Logistic map iteration. The Logistic map iteratively generates a
sequence of values <x1, x2, x3, . . . . xn>. Each iteration computes
the next value based on the previous value and the chaotic factor
r. Each value of this sequence falls in the range [0, 1]. The length
of the chromosome CL is determined using Equation 2:

cL = nSeq∑
i=1

(leneq − silen) (2)

where nSeq denotes the sequence count, silen denotes the length
of the ith sequence, and leneq denotes the maximum permissible
length of each sequence after insertion of the gaps, and it is defined
in Equation 3:

leneq = lenmx · f gap (3)

where lenmx denotes the length of the longest sequence and fgap is
the gap insertion factor, and this value is supplied externally.

So, for the ith sequence, leneq − silen number of gaps can be
inserted, and these gap positions must be sequence-wise unique.
A chaotic sequence of length cL is generated by iterating the
chaotic logistic map. The members of this sequence will fall in the
range [0, 1]. The gene values should belong to the range [1, leneq].
A value of the chaotic sequence ci is transformed into the gene
values gi using Equation 4.

gi = ⌈1 + ci · (leneq − 1)⌉ (4)

Integrating chaotic sequences into this process introduces ran-
domness, helping to explore different alignment possibilities more
thoroughly and potentially finding better alignments, making it
an important tool in bioinformatics for tasks such as understand-
ing genetic relationships and predicting protein structures based
on sequence similarities.

3.2. Designing the objective function

In sequence alignment, the fitness function evaluates how
well two sequences match or mismatch, considering gaps and
using a scoring matrix like PAM 250. PAM 250 stands for “Point
Accepted Mutation 250.” PAM 250 is a scoring matrix used
in bioinformatics to assess the similarity between amino acid
sequences during protein sequence alignment. It checks each posi-
tion in the aligned sequences to see if the characters match (are
the same), mismatch (are different), or if one sequence has a gap
where the other has a character. Using the PAM 250 scoring
matrix, which gives scores based on similarities between amino
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acids, the fitness function adds these scores together across all
positions to calculate a total fitness score. The proposed work
uses the SP fitness score fit, and it is defined in Equation 5.

f it = nSeq−1∑
i=1

nSeq∑
j=i+1

scoringMat(i, j) (5)

In this equation, scoringMat() represents the matrix from which
the alignment scores can be calculated, and in this work, PAM 250
[24] is used. In this work, the value of the gap penalty is considered
as −1. On some occasions, some chromosomes may produce some
sequences where gaps are aligned with gaps, and those positions
are ignored (by adding zero to the fitness function). The objective
is to maximize the fitness to obtain near-optimal alignment.

3.3. Chaotic selection

The selection process is about picking the best individuals to
make the next generation better. Normally, those who are stronger
(fitter) are chosen based on their scores. Typically, individuals
with higher fitness scores have a greater chance of being selected.
When chaotic sequences are used in selection, it adds randomness.
This randomness helps the algorithm explore different paths to
find solutions. This is useful for complex problems where there
are many ways to succeed. In this work, the binary tournament
selection procedure is used, which selects two random individuals
(chromosomes) from the population. Use their fitness values to
determine the better individual. The chaotic sequence influences
the probability of choosing the better individual, adding an ele-
ment of unpredictability. Overall, chaotic sequences make selection
more dynamic and adaptable. They can improve the algorithm’s
ability to find the best or nearly the best solutions for various
challenges. In this work, the chaotic logistic map is used to gen-
erate two values of the chaotic sequence. In this stage, a different
seed value is used to generate these two values compared to the
seed values used in generating the initial population. These two
obtained values belong to the range [0, 1]. Now these two values
t are transformed to the range [1, P] using Equation 6.

ti = ⌈1 + ci · (P − 1)⌉ (6)

3.4. Elitism

Elitism in GAs refers to a strategy where a certain number of
the best individuals (chromosomes) from the current generation
are directly transferred to the next generation without undergo-
ing genetic operations such as crossover and mutation [25]. This
ensures that the best solutions found so far are preserved across
generations, helping to maintain or improve the overall quality
of solutions over successive iterations. In this work, a single solu-
tion is preserved (i.e., the best solution of the previous generation)
by replacing the worst solution of the present population. While
elitism focuses on preserving high-quality solutions, it is often

combined with mechanisms that promote exploration (such as
mutation and crossover) to maintain diversity in the population.
This balance helps the algorithm avoid premature convergence
while still exploiting the best solutions. By retaining the best
individuals, elitism prevents the potential loss of good solutions
that might occur due to random variations introduced by genetic
operators. This helps in maintaining a high quality of solutions
throughout the evolutionary process.

3.5. Crossover

Crossover is a method where genetic material from two
parent chromosomes is exchanged to create new offspring [26].
Crossover introduces new combinations of genes into the popu-
lation, which helps in maintaining genetic diversity and exploring
different areas of the solution space [27]. When chaotic sequences
are used in this process, they introduce randomness to how
crossover points are chosen. Crossover is like mixing traits from
two parents to create new children. In this work, uniform
crossover is used, where the crossover operation is performed with
the help of a binary mask. The genes from the parent chromo-
somes are exchanged, where the value of the mask is 1. This
crossover mask is generated with the help of the chaotic logistic
map. The chaotic logistic map is used to create a pseudorandom
bit sequence prbs (using Equation 7) of length CL that serves as
the mask for the uniform crossover operation:

prbsi = {1 i f xi > yi
0 otherwise

(7)

where xi and yi are the outcomes of the chaotic logistic map
with two different seed values and with the same value of the
controlling parameter r, as illustrated in Equations 8 and 9,
respectively.

xi+1 = r · xi · (1 − xi) (8)

yi+1 = r · yi · (1 − yi) (9)

The crossover process ensures we avoid repeating the same genetic
sequence and allows for a wider exploration of potential solu-
tions. By using chaotic sequences, GAs can explore more options
and increase the chances of finding better solutions to complex
problems. The crossover operation is illustrated in Figure 1.

3.6. Mutation

Mutation is like making small, random changes to genetic
information within chromosomes. When we introduce chaotic
sequences into this process, they add an element of unpredictabil-
ity to where and how these changes occur [28]. Chaotic sequences
generate random numbers that determine which parts of a chro-
mosome get altered. This randomness helps keep the algorithm
flexible and able to explore different possibilities for solving prob-
lems. By using chaotic sequences for mutation, GAs can try out

Parent #1 à 1 0 1 1 0 1 0 1

Parent #2 à 0 0 1 0 0 0 1 0

Chaotic Mask   à 1 0 0 1 0 0 1 1

Offspring #1 à 0 0 1 0 0 1 1 0

Offspring #2 à 1 0 1 1 0 0 0 1

Figure 1. The uniform crossover operation with the chaotic mask
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more variations, which increases the chance of finding better solu-
tions to difficult problems [27]. This method keeps the algorithm
from getting stuck and helps it keep improving over time. In this
work, the bit-flip mutation is used. The chaotic response of the
logistic map is used to compare with the mutation probability to
execute the mutation at a certain place.

A step-by-step implementation of the proposed hybrid MSA
approach is illustrated in Algorithm 1.

Algorithm 1: Chaotic–Metaheuristic-Based Hybrid Approach for
the Multiple Sequence Alignment Problem

Input:A set of sequences to be aligned, scoring matrix, gap penalty
Output: Optimally aligned sequences and the corresponding
alignment score

1. Initialize the guiding parameters, including the population size,
crossover probability, mutation probability, seed value for the
chaotic sequence, and the control parameters of the chaotic
map.

2. Generate the initial population using the chaotic logistic map
as described in Section 3.1, where each chromosome encodes
gap positions within the sequences.

3. Repeat until the termination criterion is satisfied

a. Evaluate the fitness of each chromosome using Equation
(5).

b. Select parent individuals using chaotic binary tournament
selection, as detailed in Section 3.6.

c. Apply uniform crossover using a crossover mask generated
via the chaotic logistic map.

d. Perform bit-flip mutation by comparing the mutation
probability with the chaotic response value.

e. Preserve elitism by replacing the worst solution of the (i−1)-
th generation with the best solution of the i-th generation.

4. Output the final aligned sequences along with the correspond-
ing alignment score.

4. Experimental Outcome

All simulations are performed in MATLAB R2022a environ-
ment in a computer that is equipped with an Intel i3 Processor,
8GB RAM, and 512 GB SSD. To establish the effectiveness
and superiority of the proposed approach, the well-known BAl-
iBASE dataset (https://www.lbgi.fr/balibase/) is used. The GA
uses chaotic dynamics to improve the balance between explor-
ing and exploiting solutions. Key parameters, such as population
size, crossover probability, etc., are tuned manually, and these
parameters are adjusted to ensure sufficient exploration of the
solution space. Chromosome representation is chosen to effec-
tively encode solutions using chaotic sequences or algorithms
derived from chaotic maps such as the logistic map. The con-
trolling parameters and their values are reported in Table 1.
The proposed approach is compared with some other state-of-
the-art approaches, for example, TGA [29], elitist GA [25], and
progressive alignment [30].

The BAliBASE 3.0 dataset was used as the primary bench-
mark for evaluation due to its established reputation and
structure-specific sequence groupings. We selected five represen-
tative protein families from reference sets RV11, RV12, RV30,
and RV40 to cover a range of challenges including highly

Table 1. Controlling parameters and their values

Parameter Value

Size of the initial population 100

No. of generations 200

Crossover probability 0.8

Mutation probability 0.3

Value of r (the controlling parameter
of the chaotic logistic map)

3.98

Gap penalty –1

divergent sequences, variable lengths, and internal insertions.
The selected sequences were RV12_BB12009, RV30_BB30020,
RV40_BB40045, RV40_BB40010, and RV11_BB11035. Accession
numbers and sequence content for each test case are provided in
the supplementary materials. These cases were chosen to ensure
the proposed algorithm is evaluated across structurally diverse and
biologically realistic alignment scenarios.

The proposed approach is tested on the BAliBASE. This
dataset is designed in such a way that it can meet the requirements
of sequence exploration. The proposed approach uses the PAM250
scoring matrix [24]. The fitness score is calculated to quantitatively
analyze the performance of the sequence alignment approaches.
A higher fitness score indicates a better alignment quality. For
the sake of conciseness, the outcomes for only five protein fami-
lies (randomly selected) are reported. To test the effectiveness and
the practical applicability, the proposed hybrid approach is com-
pared with the three standard approaches where theMSA problem
is attempted to be solved with GA, elitist GA, and progressive
alignment. The comparative outcome is reported in Table 2.

From the comparative analysis, it can be observed that the
proposed approach performs well and outperforms some standard
solutions to the MSA problem. Convergence curves obtained by
applying the traditional GA, elitist GA, and the proposed hybrid
approach are reported in Figure 2.

The results are analyzed generation-wise, comparing the per-
formance with and without the use of chaotic sequences in the
GA, as summarized in Table 3.

The alignment shown includes gaps inserted to align
sequences, ensuring that each sequence is matched with oth-
ers despite variations in length or content. Gaps are introduced
strategically to optimize alignment scores, reflecting evolution-
ary relationships or functional similarities between sequences.
This method allows for meaningful comparisons across sequences,
revealing conserved regions and evolutionary changes crucial for
understanding biological function or genetic relationships.

The alignment was achieved using a GA enhanced with
chaotic sequences. This approach optimizes sequence alignment
by iteratively refining solutions through selection, crossover, and
mutation processes influenced by chaotic parameters.

Another alignment was created using traditional methods
such as DP, which compares sequences step-by-step to find the
best alignment based on predefined rules. These methods adjust
for gaps and differences between sequences to maximize align-
ment scores, showing how sequences relate to each other over
time. While effective, these methods don’t use chaotic dynamics
to speed up searches or explore different alignments quickly. The
input protein sequence and the corresponding GA enhanced with
chaotic sequences and DP-based representations are provided in
Supplementary Table 1.
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Table 2. Comparative analysis of the proposed approach

Approaches
Sequence ID

Sequence
count Traditional Genetic

Algorithm
Elitist Genetic
Algorithm Progressive

Proposed
Approach

RV12_BB12009 5 –1780 –1653 –2907 –1620

RV30_BB30020 10 –2350 –1975 –3812 –753

RV40_BB40045 9 –5230 –4735 –8706 –4338

RV40_BB40010 12 –5047 –4826 –4144 –4521

RV11_BB11035 5 –1022 –886 –1570 –873

(a) (b)

(c) (d)

Figure 2. Graphical illustration of convergence. Convergence curves were obtained using the (a) traditional genetic algorithm, (b)
elitist genetic algorithm, (c) proposed approach, and (d) a comparison of the convergence curves of three approaches (applied on
RV12_BB12003)

Table 3. Generation-wise analysis of three different approaches

Sequences
Method Generations

RV12_BB12009 RV30_BB30020 RV40_BB40045 RV40_BB40010 RV11_BB11035

1 –1807 –2430 –5088 –4889 –1011
10 –1800 –2319 –4987 –5087 –981
25 –1792 –2219 –5009 –5028 –916
30 –1786 –2071 –4817 –4989 –994
40 –1752 –2354 –4909 –5042 –976
50 –1748 –2459 –4897 –5040 –912
60 –1772 –2303 –5125 –5013 –970
70 –1776 –2300 –5057 –4982 –971
80 –1771 –2282 –5204 –5012 –931

T
ra
di
ti
on

al
G
A

100 –1780 –2350 –5230 –5047 –1022

(Continued)
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Table 3. (Continued)

Sequences
Method Generations

RV12_BB12009 RV30_BB30020 RV40_BB40045 RV40_BB40010 RV11_BB11035

1 –1713 –2275 –5030 –4934 –1029
10 –1740 –2203 –4931 –4937 –897
25 –1710 –2066 –4867 –4927 –911
30 –1664 –2162 –4763 –4856 –961
40 –1667 –1855 –4745 –4910 –896
50 –1679 –2031 –4814 –4843 –902
60 –1670 –1949 –4833 –4849 –890
70 –1663 –1990 –4797 –4859 –905
80 –1678 –2097 –4804 –4882 –913

E
lit
is
t
G
A

100 –1653 –1975 –4735 –4826 –886

1 –1685 –1579 –4807 –4524 –881
10 –1677 –1467 –4498 –4579 –879
25 –1639 –1359 –4523 –4503 –850
30 –1609 –1395 –4374 –4474 –899
40 –1668 –1242 –4354 –4540 –889
50 –1651 –1012 –4265 –4548 –851
60 –1644 –870 –4366 –4482 –874
70 –1660 –971 –4525 –4544 –849
80 –1655 –1025 –4288 –4522 –869

P
ro
po

se
d
A
pp

ro
ac
h

100 –1620 –753 –4338 –4521 –873

Table 4. Comparative evaluation using SP and TC scores (mean ± std. dev.)

Dataset ID Method SP score (↑) TC score (↑) Stat. significance vs proposed

RV12_BB12009 Traditional GA 0.512 ± 0.021 0.314 ± 0.017 p < 0.01

Elitist GA 0.534 ± 0.018 0.337 ± 0.015 p < 0.01

MAFFT 0.581 ± 0.015 0.361 ± 0.013 p < 0.05

Clustal Omega 0.563 ± 0.014 0.351 ± 0.012 p < 0.05

Proposed Method 0.608 ± 0.012 0.387 ± 0.011 –

RV30_BB30020 Traditional GA 0.488 ± 0.029 0.306 ± 0.019 p < 0.01

Elitist GA 0.502 ± 0.024 0.317 ± 0.017 p < 0.01

MAFFT 0.579 ± 0.016 0.358 ± 0.013 p < 0.01

Clustal Omega 0.572 ± 0.018 0.353 ± 0.014 p < 0.01

Proposed Method 0.621 ± 0.011 0.394 ± 0.010 –

RV40_BB40045 Traditional GA 0.421 ± 0.031 0.281 ± 0.023 p < 0.01

Elitist GA 0.447 ± 0.027 0.298 ± 0.021 p < 0.01

MAFFT 0.504 ± 0.019 0.329 ± 0.015 p < 0.05

Clustal Omega 0.493 ± 0.020 0.323 ± 0.016 p < 0.05

Proposed Method 0.547 ± 0.013 0.356 ± 0.012 –

In addition to the raw fitness values, we evaluated alignment
quality using standard MSA metrics: the SP score and the total
column (TC) score. The SP score computes the sum of match/
mismatch scores across all pairwise sequence combinations, while
theTC scoremeasures the proportion of columns that are fully con-
served across all sequences. To assess robustness and consistency,
each experiment was run independently 30 times per dataset using
controlled seed values. Themean and standard deviation of SP and

TC scores were calculated, and t-tests (𝛼 = 0.05) were conducted to
compare our method’s results with MAFFT, Clustal Omega, and
traditional GA approaches. Statistical significance is marked with
asterisks in the result tables. This ensures our reported improve-
ments are both consistent and statistically sound. It is reported in
Table 4. Figure 3 (A) illustrates a comparison of SP scores, and
Figure 3 (B) compares TC scores. SP score distributions across 30
runs for the RV30 dataset can be visualized in Figure 3 (C).
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Figure 3. (A) Bar chart comparing SP scores across the three selected datasets (RV12, RV30, RV40) for all methods. (B) Bar chart
comparing TC scores across the three selected datasets (RV12, RV30, RV40) for all methods. (C) SP score distributions across 30 runs
for the RV30 dataset

5. Conclusion

Addressing the multiple sequence alignment problem using
the proposed chaotic GA-based hybrid solution represents a signif-
icant advancement in computational biology and bioinformatics.
By integrating chaotic systems with GAs, this approach lever-
ages the inherent unpredictability and exploration capabilities of
chaotic dynamics to enhance the search efficiency and solution
quality for complex alignment problems. The hybrid model effec-
tively navigates the vast and rugged solution landscape, overcoming
the limitations of traditional alignment methods and yielding
more accurate and biologically relevant alignments. The results
demonstrate that this innovative approach not only improves
alignment performance but also offers a robust framework for
tackling other intricate optimization problems in computational
biology. From the experimental outcomes, it can be observed that
the proposed approach can effectively outperform some state-of-
the-art approaches, making it suitable for real-life applications.
Future research can build on this foundation by exploring further
refinements and applications, potentially integrating additional
heuristic techniques and real-world biological data to advance our
understanding and capabilities in sequence alignment.
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Supplementary Information

This table presents the original protein sequence along with the corresponding representations generated by the genetic algorithm
(GA) and dynamic programming (DP) approaches. The GA and DP outputs are algorithmic encodings of a single input sequence
and should not be interpreted as biological sequence alignments. Gap symbols (‘-’) arise from chromosome formatting (GA) and state
transitions (DP).

Supplementary Table 1. Reference protein sequence and algorithm-generated representations

Entry Description Representation

Input Original protein sequence MAAKKKVVTQIKLQCPAGKATPAPPVGPALGPHGVSAPQFVQQFN-
DRTKSMEPGLVVPVVTVYSDKSFSFVLKTPPAAVLIRKACGIEKGS
TNSVKQKVARLSLAQLTEIAQVKLPDMSALTLDAAKRIIAGTARSM
GVEVERSLQIKLQLPAGKATPAPPVGPALGQHGVNIMEFCKRFNAE
TADKAGMILPVVITVYEDKSFTFIIKTPPASFLLKKAAGIEKGSSEPKR
KIVGKVTRKQIEEIAKTKMPDLNANSLEAAMKIIEGTAKSMGIEVV

GA Output Genetic algorithm–based
chromosome
representation

MAAKK-KV-VTQ-IKLQ–CPAGKATP-APPV—–GPA-
LGPHGVSAPQFVQQFNDRTKS-MEPGLVVPVVTVY-SDKSF-SF-
VLKT-PPAAV-LIR–KACGIEK—GS–TNSVKQKVARLSLA-QL-TEIA-
QVKLPDMS-A-LTLD-AA–KRI-IAGTARSMGVEV-ERS—L——
QIKL-QLPAGKATP-APPVG-PALGQ-H-GVN–I-MEFCK-R-FNA–ETA–DK–
AG-MI-LP-V-VI-TVYE-DKSFT-FII-KTP-PAS-FLL-KKAAGI-EK–G-S-S-EP—
KRKIVG-KV-TR-KQ-IE-E-IAKTK-MP-DLNA-N-SLEAAMKI–IEGTA-KSM-
G-I—EVV-

DP Output Dynamic program-
ming–based optimal path
representation

MAAK-KKVVTQIK-L—QC-PAGKA-TPA-PPV-GP-ALGP-HGV—-S-
APQFVQQ-F-N—DRTKSMEPGLVVP-VVT-VYSDKSF-SFVLKTPP-A-AV–
LIRKA-C-GIEK-GS-TNSVKQ-KVARL-SLAQ-LT-EIAQVKL-PDMSAL-
T-LDAAKRIIAGTARSM–G–VE-VERSL QI-KL-QL-PAGK-A-TPAP-PVG-
PALGQHGVNIMEF–CKR—FNAETA-D-K-A-GMI-LP–V-VI-T-V-Y-ED-K-
SFT-FII-KTPP-A-S–FLLKKAAGIEKGSSE-PKRK-IVGKV–T—RK–QIEE-
IAK-T–KMPDLNA–NSLEAAMKI-I-EGTAKS-MGI-EVV-
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