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Abstract: One of the main causes of the global disease burden is psychiatric disorders. However, due to the complex relationships between
genetic, epigenetic, environmental, and neurological factors, diagnosing and treating these conditions remains challenging. Precision
psychiatry, driven by multi-omics and artificial intelligence (Al), offers a novel approach to understanding mental health conditions and
developing personalized treatments. This review examines the contributions of genome integration, transcriptomics, epigenomics,
proteomics, metabolomics, and microbiome studies to psychiatric research and diagnosis. The area has changed as a result of recent
developments in Al, particularly in machine learning and deep learning, combined with information from patient-reported outcomes,
electronic health records, and neuroimaging. Al models facilitate the creation of customized treatment regimens, enhance pharmacogenomic
predictions, and aid in the identification of biomarkers. Furthermore, the interpretability issues of these models are addressed by the
emergence of explainable Al (XAI), which facilitates more transparent healthcare choices. The broad clinical application of precision
psychiatry is, however, hindered by several challenges, including the difficulty in integrating multi-omics data, ethical concerns about the
use of Al in mental health, and the need for thorough validation across diverse populations. Computational biologists, neuroscientists,
psychiatrists, and clinicians from other disciplines must collaborate to address these challenges and develop scalable, reliable, and ethically
sound frameworks for precision medicine in psychiatry. This study lays the groundwork for future research and clinical practice by
highlighting the potential for integrating Al and multi-omics technology to revolutionize psychiatric care. Precision psychiatry can transition
from a trial-and-error method to a tailored and predictive one by utilizing sophisticated computational tools, ultimately improving patient
outcomes and mental health treatment. This study is among the first comprehensive efforts to explore the integration of multi-omics and Al,
especially XAl, within the context of precision psychiatry, establishing a translational model for tailored mental health treatment.
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other medical specialties where laboratory testing or imaging
studies aid in diagnosis (e.g., blood glucose levels in diabetes). This
emphasis on symptomatology leads to diagnostic variability and

1. Introduction

1.1. Overview of psychiatric disorders and

limitations of conventional treatment

Psychiatric disorders such as major depressive disorder (MDD),
schizophrenia, bipolar disorder, anxiety disorders, and post-traumatic
stress disorder (PTSD) rank among the leading global causes of
disability. These disorders originate from a complicated interplay
between genetic, epigenetic, environmental, and neurological
variables, making their diagnosis and treatment exceedingly
problematic. Standard psychiatric treatment is still mostly imprecise
and relies on symptom-based classification rather than underlying
biological causes, despite significant advancements in neuroscience
and psychopharmacology [1]. The absence of objective biomarkers
for diagnosis and prognosis is one of the main problems with
traditional psychiatric treatment. Psychiatric disorders are diagnosed
by subjective clinical evaluations based on criteria from the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) or
the International Classification of Diseases (ICD-11), in contrast to
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makes it harder to distinguish between overlapping disorders, which
frequently results in incorrect diagnoses and treatment delays [2].
The inconsistent treatment response among mental patients is
another important problem. The recommendation of psychotropic
medications, such as mood stabilizers, antidepressants, and
antipsychotics, is based more on trial and error than on personalized
biological insights. According to studies, between 30% and 50% of
people with depression do not experience remission after receiving
initial treatment; instead, they require several drug trials, which
prolongs their suffering and raises the possibility of adverse
outcomes [3]. Additionally, several psychiatric medications have
significant side effects that impact patient adherence and treatment
effectiveness, such as metabolic syndrome, weight gain, sleepiness,
and cognitive impairment [4].

Developing new medications is further hampered by the
intricate neurological underpinnings of mental illnesses. Although
studies have identified several neurotransmitter systems (such as
glutamate, serotonin, and dopamine (DA)) that are connected to
mental health issues, little is known about how psychiatric
medications work. As a result, the development of new drugs in
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psychiatry has been sluggish, and only a small number of novel
treatments have entered clinical use in recent years [5]. Precision
psychiatry, which combines multi-omics data, artificial
intelligence (Al), and biomarker-driven methodologies to enhance
diagnosis, predict therapeutic response, and provide more
personalized medications, is urgently needed in light of these
limitations. Precision psychiatry can enhance mental health care
by leveraging advancements in genomics, transcriptomics, and
neuroimaging to offer personalized and predictive treatment
options, rather than a one-size-fits-all approach [6].

1.2. The need for precision medicine in psychiatry

Given the complexity of mental diseases and the shortcomings
of conventional symptom-based diagnosis and treatment, precision
medicine is essential in psychiatry. Unlike the traditional trial-and-
error approach to selecting psychiatric drugs, precision psychiatry
seeks to develop personalized treatment plans based on a patient’s
genetic makeup, molecular profiles, neurological traits, and
environmental variables. One of the most significant problems
facing psychiatry is the diversity of therapy responses [5]. For
example, the effectiveness of mood stabilizers, antidepressants,
and antipsychotics varies from person to person, and many
patients experience treatment resistance or delayed therapeutic
responses. Pharmacogenomic studies have demonstrated that
genetic variations in medication target genes (e.g., HTR2A,
SLC6A4) and drug-metabolizing enzymes (e.g., CYP2D6,
CYP2C19) significantly impact therapeutic efficacy and adverse
effect profiles [7]. Nevertheless, pharmacogenomic insights are
rarely included in mental treatment guidelines, despite growing
data, which results in subpar therapeutic outcomes [6].

In addition to pharmacogenomics, multi-omics techniques that
include transcriptomics, proteomics, metabolomics, genomics, and
epigenomics have the potential to identify biomarkers that can
forecast the course, severity, and responsiveness to treatment of a
disease. For instance, gene expression profiles linked to
schizophrenia and major depressive illness have been discovered
by transcriptome studies. Meanwhile, biomarkers based on
neuroimaging provide information about anomalies in the
structure and function of the brain associated with mental
disorders [8]. By combining these biological datasets with Al and
machine learning (ML) algorithms, it becomes easier to identify
new therapeutic targets and improve diagnostic accuracy.
Additionally, stress, nutrition, and the composition of the gut
microbiome are examples of environmental and lifestyle factors
that are crucial for maintaining mental health [9]. There are now
new opportunities for microbiome-based treatments of mental
illnesses since it has been shown that interactions between the
host microbiota and the brain affect neurotransmitter synthesis,
neuroinflammation, and brain function. The goal of precision
psychiatry is to integrate these elements into a comprehensive
predictive model that facilitates early disease detection and
individualized preventive efforts [10]. Therefore, the transition to
precision psychiatry signifies a paradigm change away from
general and reactive treatment modalities and toward proactive,
customized methods. By utilizing multi-omics technology, Al-
driven analytics, and real-world clinical data, precision medicine
has the potential to transform psychiatric care, enhance diagnosis,
predict treatment outcomes, and improve overall patient outcomes.
However, its practical implementation necessitates defined
protocols, ethical considerations, and interdisciplinary teamwork
to assure therapeutic utility and equal access [11].
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The Role of Multi-Omics and Al in Transforming Mental
Health Care

By enabling precision psychiatry and offering a deeper
understanding of psychiatric diseases, the integration of multi-
omics technology with Al revolutionizes mental health care. A
thorough understanding of the biological processes underlying
mental illnesses can be gained through the use of multi-omics
techniques, including transcriptomics, proteomics, metabolomics,
microbiomics, genomics, and epigenomics. For example, genomic
studies have shown risk variants linked to depression and
schizophrenia. At the same time, epigenetic alterations (such as
DNA methylation and histone modifications) have been connected
to illnesses brought on by stress. Likewise, metabolomic and
microbiome studies reveal biochemical and gut-brain axis
anomalies that cause mental disorders [12].

Notwithstanding these advancements, the amount and
complexity of multi-omics data provide significant obstacles to
clinical application and interpretation. Algorithms for AI and ML
can revolutionize this. Al-driven models can combine diverse
biological facts to identify predictive biomarkers, stratify patients
based on molecular subtypes, and refine tailored treatment
regimens. To accurately distinguish between psychiatric disorders,
for instance, deep learning techniques have been applied to the
analysis of neuroimaging data [13]. Furthermore, Al-driven
diagnostic tools are becoming more transparent thanks to
explainable AI (XAI), which enables clinicians to utilize them
effectively in their practice. Psychiatry is shifting toward data-
driven, precision-based therapies that enhance early diagnosis,
predict therapeutic responses, and facilitate the identification of
new therapeutic targets by leveraging multi-omics and Al This
interdisciplinary approach has the potential to improve patient
outcomes and reduce the societal cost of psychiatric disorders by
moving mental health treatment from a reactive model to a
proactive and customized paradigm [14].

1.3. Methodology

Utilizing an integrative and systematic approach, this review
investigates the contributions of Al and multi-omics to precision
psychiatry. A thorough literature search was conducted using
databases such as PubMed, Scopus, and Web of Science, with a
focus on studies published within the previous five years
(2019-2024). The following keywords were used: “precision
psychiatry,” “multi-omics,” “machine learning in psychiatry,”
“Al-driven psychiatric diagnosis,” and “biomarkers in mental
health.” Relevant studies were categorized into four key themes:

1) Challenges in conventional psychiatric treatment

2) Advancements in multi-omics research for psychiatric disorders
3) Al applications in biomarker discovery and personalized treatment
4) Prospects for precision psychiatry

High-impact research, systematic reviews, meta-analyses,
and clinical trials proving the efficacy of precision medicine
techniques  were  prioritized. The clinical  usefulness,
interpretability, and validity of current Al models in psychiatry
were also evaluated. This methodical approach ensures a
comprehensive and current synthesis of the latest developments in
Al-driven psychiatry and multi-omics, providing valuable insights
into the future direction of individualized mental health treatment.

The goal of this research is to compile the latest advancements
in Al and multi-omics technologies that are impacting precision
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psychiatry. By highlighting key developments in biomarker
discovery, predictive modeling, and personalized treatment
options, this study aims to bridge the gap between genetic
research and clinical application, providing a comprehensive
framework for the future of individualized mental health care.

1.4. Research gaps

Despite notable breakthroughs in these fields, there are still
several research gaps in multi-omics and Al-driven precision
psychiatry. First, repeatability across diverse populations is limited
by the bulk of research’s lack of clearly characterized molecular
subtypes. This complicates the process of developing biomarkers
because psychiatric disorders vary widely. Second, cross-study
comparisons are challenging due to the lack of standardized data
harmonization and interpretation techniques, despite the potential
for multi-omics integration to provide thorough insights [8].
Furthermore, few of the AI models employed in psychiatric
research have been evaluated in actual clinical settings, and the
majority have poor generalizability and transparency. The lack of
extensive, varied, and longitudinal datasets further hampers the
creation of reliable predictive models. Further limiting the
therapeutic application of Al-driven psychiatric tools are ethical
considerations, namely, those pertaining to explainability, bias, and
data privacy. Large-scale multicenter partnerships, enhanced data-
sharing structures, and the use of XAI to guarantee clinical
reliability are all necessary to close these gaps. Prospective
biomarker validation, multi-omics Al pipeline optimization, and
making precision psychiatry a practical reality in standard mental
health care should be the main areas of future study [15].

2. Multi-omics in Precision Psychiatry

2.1. Genomics and transcriptomics

2.1.1. Genomics

By identifying genetic risk factors linked to mental diseases,
genomic research has revolutionized psychiatric studies.
Thousands of common genetic variations linked to disorders
such as MDD, bipolar disorder, autism spectrum disorder
(ASD), and schizophrenia have been identified by genome-wide
association studies (GWAS). Instead of focusing on single-gene
alterations, these investigations have brought attention to
polygenic architectures, where several genetic loci contribute to
disease vulnerability. Notable results include correlations with
genes related to neurodevelopment (e.g., DISCI1, brain-derived
neurotrophic factor (BDNF)), dopaminergic pathways (e.g.,
DRD?2), and synaptic transmission (e.g., CACNA1C, GRIN2A)
[16]. To convert the results of GWAS into clinically useful
instruments, polygenic risk scores (PRSs) were created. PRS
assesses a person’s genetic susceptibility to mental health
conditions by combining the impacts of several genetic variants.
Higher PRS levels have been linked to an increased risk of
disease and have been shown to predict treatment responsiveness
in conditions including schizophrenia and depression. However,
because the majority of studies have been carried out in people
of European ancestry, which lowers their predictive accuracy
across a range of genetic backgrounds, ethnic bias in GWAS
datasets currently limits the therapeutic utility of PRS.
Furthermore, PRS by itself is not biologically interpretable, so in
order to improve precision in psychiatric applications, it must be
integrated with other omics layers [17].

2.1.2. Transcriptomics

Transcriptomics sheds light on the dynamic shifts in gene
expression linked to mental illnesses, whereas genomic variants
show genetic predisposition. Microarray-based expression profiling
and RNA sequencing (RNA-seq) have identified dysregulated genes
and pathways in parts of the brain linked to mental illnesses. In
contrast to healthy controls, research has found that psychiatric
patients exhibit abnormal expression of genes related to
neuroinflammation (e.g., IL6, TNF-a), neurotransmitter systems
(e.g., gamma-aminobutyric acid (GABA), serotonin pathways), and
synaptic plasticity (e.g., postsynaptic density protein 95 (PSD-95),
BDNF) [18]. Advances in single-cell RNA-seq have enabled
scientists to examine variations in gene expression specific to
individual cell types, thereby demonstrating the roles that various
neuronal and glial cell populations play in psychiatric disorders. This
method has linked immunological dysfunction to disease
mechanisms by identifying astrocyte and microglia activation
signatures in MDD and schizophrenia. Furthermore, expression
indicators that predict individual variability in the efficacy of
selective serotonin reuptake inhibitors (SSRIs) have been discovered
by transcriptome investigations of antidepressant response. A more
thorough understanding of mental illnesses is made possible by the
integration of transcriptomics and genomics, which goes beyond
static hereditary risk factors to functional molecular signals that can
direct individualized treatment. To improve psychiatric therapies and
refine predictive biomarkers, future research should prioritize
combining multi-omics data, conducting longitudinal expression
studies, and developing ML models [19].

2.1.3. Epigenomics

An understanding of epigenomics is crucial for comprehending the
intricate relationships between genetic predisposition and environmental
factors in psychiatric disorders. Unlike genetic variants, which are
primarily static, epigenetic modifications are dynamic and responsive
to ecological exposures, making them a potential avenue for
personalized mental therapy. By coordinating changes in gene
expression without altering the DNA sequence, the three primary
epigenetic processes, DNA methylation, histone modifications, and
non-coding RNA, have an impact on neurodevelopment, synaptic
plasticity, and stress response pathways [4].

2.1.4. DNA methylation in psychiatric disorders

DNA methylation, the most extensively studied epigenetic
modification, involves the addition of methyl groups to cytosine
residues at CpG sites, typically leading to gene silencing. Altered
methylation patterns have been linked to several psychiatric conditions:

Schizophrenia: Differential methylation of genes involved in
synaptic function (e.g., GRIN2B, GADI1) and dopaminergic
signaling (e.g., DRD2) has been reported in postmortem brain
tissues of schizophrenia patients.

Depression: BDNF (brain-derived neurotrophic factor)
hypomethylation has been linked to a higher risk of developing
depression, especially in people who experienced stress early in life.

Bipolar disorder: Mood instability has been linked to
dysregulated methylation of the CLOCK and PER genes, which
control circadian rhythms.

Stress, trauma, and medication exposure may cause long-lasting
methylation alterations, according to longitudinal research,
supporting the idea that environmental variables play a part in the
development of disease.
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2.1.5. Histone modifications and chromatin remodeling
Histone modifications influence chromatin structure and gene
accessibility, regulating transcriptional activity. The modifications
comprise  acetylation, methylation, phosphorylation, and
ubiquitination of histone tails. Histone acetylation, facilitated by
histone acetyltransferases, generally enhances gene activation by
relaxing chromatin structure. In contrast, histone deacetylation,
carried out by histone deacetylases (HDACs), suppresses gene
expression. Meanwhile, histone methylation exhibits context-
dependent outcomes, activating or inhibiting gene transcription
depending on the specific histone residue and methylation level.
Altered histone modification patterns have been observed in
psychiatric disorders. For example, decreased histone acetylation
in BDNF promoters has been linked to reduced neuroplasticity in
depression. Interestingly, HDAC inhibitors are being explored as
potential epigenetic-based therapeutics for mood disorders [20].

2.1.6. Environmental influences on the epigenome
Environmental exposures prenatal stress, early-life adversity,
diet, substance abuse, and social stressors can induce long-term
epigenetic changes that predispose individuals to psychiatric
conditions: Childhood trauma has been associated with
hypermethylation of the NR3C1 gene encoding the glucocorticoid
receptor results in a dysregulated hypothalamic—pituitary—adrenal
(HPA) axis response and increased risk of depression and PTSD.
Maternal stress during pregnancy has been linked to altered fetal
methylation of neurodevelopmental genes, increasing vulnerability
to ASD and schizophrenia [21]. Substance abuse, including
alcohol and opioids, has been shown to induce lasting epigenetic
changes in DA-related genes, contributing to addiction and
psychiatric comorbidities. Epigenomic markers provide a dynamic
and reversible layer of regulation, offering new avenues for

Overview of precision mental healthcare

Chemical and biological

Wearable sensors environmental exposures

Electroencephalogram (EEG)*
Heart rate variability

Heart rate, skin temperature
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Continuous glucose monitoring

€D Phenotypic profiling

Figure 1. Overview of precision mental healthcare
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biomarker discovery and therapeutic targeting. Advances in
epigenome-wide association studies, single-cell epigenomics, and
ML-based epigenetic modeling are refining our ability to link
specific modifications to psychiatric phenotypes. Future precision
medicine strategies may incorporate epigenetic profiling to predict
disease risk, optimize treatment response, and develop novel
epigenetic therapies tailored to individual patients [22].

2.2. Proteomics and metabolomics

Proteomics and metabolomics, which offer a dynamic
understanding of the molecular mechanisms underlying mental
diseases, are increasingly significant precision components of
psychiatry. While transcriptomics and genomics reveal genetic
predispositions and shifts in gene expression, proteomics and
metabolomics provide real-time pictures of biochemical processes
in disease states and treatment responses. By identifying particular
biomarkers, these techniques support patient classification, early
diagnosis, and tailored therapeutic interventions in mental health
care. Figure 1 illustrates the precision psychiatry framework [23],
which begins with a comprehensive phenotypic profile that
considers behavioral, biological, and environmental aspects. It
demonstrates how the provision of individualized treatment
decisions is made possible by patient classification according to
underlying physiology. Ultimately, this approach enhances
diagnostic accuracy, therapeutic efficacy, and our understanding
of the mechanisms underlying mental diseases [11].

2.2.1. Proteomics in psychiatric disorders

Proteomics involves the extensive study of proteins and the
examination of their structure, function, and modifications. Within
psychiatry, proteomic studies have uncovered significant

-
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molecular signatures linked to disorders like schizophrenia, MDD,
bipolar disorder, and ASD. According to several studies, these
disorders may arise from the dysregulation of proteins associated
with oxidative stress, neuroinflammation, neurotrophic factors,
and synaptic processes. Psychiatric patients typically exhibit
increased levels of neuroinflammation-related proteins, such as C-
reactive protein (CRP), interleukins (IL-6, IL-1f), and tumor
necrosis factor-alpha (TNF-a), suggesting an immune system
imbalance that may accelerate the disease course [24].
Similarly, deficiencies in neuroplasticity seen in depression and
schizophrenia have been linked to alterations in the amounts of
neurotrophic factors, including glial cell line-derived neurotrophic
factor, BDNF, and nerve growth factor. Furthermore, synaptic
dysfunction in schizophrenia and ASD has been linked to
anomalies in synaptic proteins, including synaptophysin, PSD-95,
and neurexins. Finally, mood disorders exhibit dysregulation
of oxidative stress indicators such as glutathione peroxidase,
malondialdehyde, and superoxide dismutase, indicating a
connection to mitochondrial dysfunction in their pathophysiology.
Additionally, proteomics has shown promise in forecasting
therapy response [25]. Studies have shown that psychiatric
medications, such as antidepressants and antipsychotics, modulate
protein expression profiles, suggesting that specific protein
biomarkers could guide drug selection and minimize adverse
effects. Advances in mass spectrometry-based proteomics now
enable the identification of novel biomarkers that may serve as
diagnostic tools and therapeutic targets in mental health care [3, 24].

2.2.2. Metabolomics in psychiatry

Metabolomics, the comprehensive investigation of small-
molecule metabolites, provides insights into the altered metabolic
processes associated with psychiatric disorders. Since metabolites
are the final products of biological processes, they are directly
regulated by genetic, environmental, and lifestyle variables.
Several metabolic changes have been reported in psychiatric
illnesses, revealing prospective diagnostic and therapeutic targets.
One of the areas of psychiatric metabolomics that has been
studied the most is neurotransmitter metabolism. Patients with
anxiety disorders, schizophrenia, and depression have been found

Table 1. Summary of multi-omics contributions to psychiatry

to have altered amounts of neurotransmitters, including GABA,
DA, norepinephrine, and serotonin [26]. The discovery of
anomalies in phospholipid and sphingolipid metabolism through
lipidomics research underscores the crucial role that membrane
lipid composition plays in the development of mental disorders.
Moreover, both bipolar disorder and schizophrenia are associated
with mitochondrial dysfunction due to abnormalities in energy
metabolism, such as changed levels of pyruvate, lactate, and
tricarboxylic acid cycle intermediates [27]. The importance of gut-
derived metabolites, such as short-chain fatty acids (SCFAs),
metabolites from the kynurenine pathway, and indole derivatives,
which are essential for neuroinflammation and neurotransmission,
has also been highlighted by recent research showing a strong
association between mental health disorders and gut microbiota.
These findings demonstrate how metabolomics can help clarify
gut-brain relationships and inform the development of
microbiome-based therapies for mental health issues [28].

2.2.3. Clinical and translational implications

Integrating proteomics and metabolomics into psychiatric
research could have a significant positive impact on precision
medicine. By identifying accurate biomarkers, these methods can
enhance therapy stratification, facilitate real-time tracking of
disease progression, and expedite early diagnosis. Additionally,
the discovery of metabolic and proteomic indicators associated
with treatment response could lead to customized medication,
reducing the need for psychiatric trial-and-error dosing.
Developments are quickly improving the sensitivity and
specificity of biomarker identification in nuclear magnetic
resonance spectroscopy and mass spectrometry, as well as Al-
driven multi-omics integration [29]. However, extensive validation
studies are essential before these findings can be applied in
routine clinical practice. Future research should aim to develop
standardized procedures for biomarker evaluation and integrate
proteomic and metabolomic data with other omics to achieve a
comprehensive understanding of psychiatric disorders. Table 1
highlights key contributions of various multi-omics methods in
uncovering the genetic basis of psychiatric illnesses and their
potential clinical applications in precision psychiatry [12].

Clinical Validation

Omics Type Key Findings Psychiatric Disorders ~ Clinical Applications Stage

Genomics Identification of risk loci via Schizophrenia, bipolar ~ Genetic predisposition prediction, Early clinical use
GWAS; polygenic risk scoring  disorder, major patient stratification, personalized (e.g., PRS-based tools

depressive disorder intervention strategies in pilot studies)

Transcriptomics Dysregulation of synaptic and Schizophrenia, autism  Molecular subtyping, treatment Research stage
inflammatory genes in brain spectrum disorders response prediction
tissue

Epigenomics DNA methylation and histone PTSD, depression, Epigenetic biomarker development, Experimental validation
modifications influenced by anxiety disorders understanding gene—environment (e.g., methylation
stress and trauma interactions panels in cohorts)

Proteomics Altered synaptic and Schizophrenia, MDD,  Peripheral biomarker discovery, Research stage
inflammatory protein levels in Alzheimer’s disease treatment monitoring
blood and cerebrospinal fluid

Metabolomics ~ Metabolic alterations in Bipolar disorder, Metabolic biomarker identification, Experimental validation
neurotransmitter pathways and  depression therapeutic response evaluation
energy metabolism

Microbiomics ~ Gut—brain axis dysbiosis linked  Autism, depression, Microbiome-targeted therapies, Early clinical

to neuroinflammation and
behavior changes

anxiety

adjunct treatment strategies exploration (e.g.,

probiotics in trials)
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2.3. Microbiome

The gut microbiota profoundly affects brain function and mental
health through the gut-brain axis, a two-way communication
mechanism that involves the neurological, immunological, and
endocrine systems. New research reveals that changes in gut
microbial composition alter neurodevelopment, neurotransmitter
management, and inflammatory responses, consequently playing a
role in psychiatric illnesses such as depression, anxiety,
schizophrenia, and ASD. Dysbiosis, an imbalance in gut microbiota,
is associated with increased intestinal permeability, which in turn
leads to systemic inflammation and neuroinflammation. Certain
bacteria, such as Lactobacillus and Bifidobacterium, generate
neurotransmitters, including GABA and serotonin, which help
control mood and behavior [30]. Reduced levels of these beneficial
microorganisms have been seen in persons with depression and
anxiety, indicating a potential relationship between the microbiome
makeup and psychiatric symptoms.

Alterations in microbial metabolites, such as SCFAs and
intermediates of the kynurenine pathway, have been connected to
bipolar illness and schizophrenia. SCFAs, especially butyrate and
propionate, are crucial for controlling neuroinflammation and
maintaining the blood-brain barrier’s integrity. Disturbances in these
metabolites may lead to mood swings and cognitive decline.
Furthermore, by impairing stress responses, microbial interactions
with the HPA axis may make mental diseases worse. Recent
research has examined microbiome-targeted therapies, such as fecal
microbiota transplantation, probiotics, and prebiotics, to enhance
mental health outcomes and restore gut microbial equilibrium [31].
Despite encouraging first findings, more investigation is needed to
identify certain microbial indicators and show the causal
relationships between gut microbiota and mental health disorders.
Combining microbiome analysis with other omics data may help
advance microbiome-based precision psychiatry and provide a more
thorough understanding of the pathophysiology of mental health.

3. Al in Psychiatry

3.1. Machine learning and neuroimaging

The application of Al and ML in neuroimaging has
revolutionized psychiatric research, providing scientists with
valuable tools for identifying mental health conditions and
developing reliable biomarkers. There are typically no clear-cut
molecular markers for disorders, including schizophrenia, MDD,
bipolar disorder, and ASD; hence, clinical evaluations are mainly
used for diagnosis. ML-based neuroimaging analysis, on the other
hand, offers an objective method of detecting structural and
functional brain abnormalities associated with mental disorders,
increasing the accuracy of diagnosis and available treatments [32].
Advances in neuroimaging technology, including positron
emission tomography, diffusion tensor imaging, magnetic
resonance imaging (MRI), and functional MRI (fMRI), provide
accurate information on the brain’s structure, connections, and
metabolic activity. Massive imaging datasets can be analyzed by
Al algorithms and advanced learning techniques, such as recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs), to identify patterns associated with mental illnesses. For
example, ML models have identified changes in amygdala activity
in depressed individuals, cortical thinning in schizophrenia
patients, and altered white matter networks in bipolar individuals.
These findings highlight the potential use of neuroimaging
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biomarkers in conjunction with clinical assessments to provide
earlier and more precise diagnoses [32].

Based on neuroimaging data, supervised ML algorithms such as
support vector machines, random forests, and deep neural networks
have demonstrated remarkable accuracy in differentiating between
psychiatric patients and healthy controls. ML algorithms that
analyze fMRI data have identified disrupted connectivity in the
default mode network in individuals with schizophrenia. In self-
referential cognition, this brain network is essential. The amygdala
of those with anxiety disorders also exhibits increased activity,
according to Al-based assessments of resting-state fMRI. The
foundation for data-driven diagnostic systems that reduce reliance
on subjective symptom reporting is established by these Al-driven
classifications [33]. Furthermore, by revealing neurobiological
diversity, ML techniques might help subtype mental illnesses. For
example, studies using unsupervised clustering algorithms have
identified different neuroimaging-based groups within depression,
each exhibiting distinct patterns of brain connections and treatment
responses. By matching patients’ brain patterns to specific
medicines, this classification can improve precision psychiatry [33].
To train Al-driven ML models, Figure 2 presents a comprehensive
architecture that integrates neuroimaging, clinical data, and multi-
omics (including genomics, transcriptomics, proteomics, and
metabolomics) [34]. Ultimately, this comprehensive strategy
enhances precision diagnostics and personalized treatment options
in neuropsychiatry by facilitating the discovery of novel therapeutic
targets, patient-specific models, and predictive biomarkers.

Al plays a crucial role in developing predictive biomarkers for the
effectiveness of therapy and aids in diagnosis. Numerous psychiatric
medications, such as antidepressants and antipsychotics, have
inconsistent results, which might occasionally necessitate lengthy
dose trials. Individual treatment outcomes have been predicted
using ML models that integrate neuroimaging data with clinical and
genetic information [35]. Al-based evaluations of initial fMRI
connectivity, for instance, can effectively distinguish between
people who react well to SSRIs, which are used to treat depression,
and those who do not. Similarly, ML techniques have been used to
predict lithium reactions in bipolar disorder patients using
electroencephalography (EEG) and MRI data. Apart from
medication-based treatments, the effectiveness of neuromodulation
techniques, such as electroconvulsive therapy and transcranial
magnetic stimulation, is also evaluated using Al-enabled
neuroimaging analysis. Al improves patient selection and reduces
the risks of unsuccessful therapy by identifying brain signals
associated with positive responses to different therapies [36].

3.2. Natural language processing (NLP)

In psychiatry, natural language processing (NLP), a subfield of
Al has emerged as a crucial instrument for deriving and producing
insightful information from unstructured text data. NLP offers an
objective and scalable approach to processing clinical documents,
electronic health records (EHRs), and patient-reported data
because of the complexity of mental illnesses and the subjective
reporting of symptoms. Researchers and medical professionals can
increase the precision of diagnoses, track the course of illnesses,
and create individualized treatment plans by using NLP [37].
Significant amounts of unstructured data, including doctors’ notes,
diagnostic summaries, medication diaries, and psychological
evaluations, are found in EHRs. To identify patterns indicative of
mental health issues, NLP algorithms effectively extract key
information from these records. For instance, by examining
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linguistic clues in clinical data, NLP models have been used to identify
early indicators of schizophrenia and depression. A patient’s mental
condition can be inferred from confident word choices, sentence
constructions, and emotional indicators, which may allow for earlier
intervention [38]. NLP also enables automated phenotyping, where
ML models classify mental illnesses based on patient histories and
clinical descriptions. This method enhances reproducibility in
psychiatric research, streamlines the standardization of diagnosis,
and reduces clinician variability.

Additionally, by identifying signs of suicidal ideation, self-harm,
or extreme mood swings in clinical data, NLP-based systems can
identify high-risk patients and enable timely intervention [39]. NLP
is being increasingly used to examine patient-reported outcomes,
including social media posts, discussions with chatbots or virtual
mental health assistants, and self-assessments, in addition to clinical
information. Research indicates that mental health disorders like
anxiety and depression are associated with linguistic traits like the
use of more self-referential language, simpler sentence structures,
and a preponderance of words that express negative emotions.
Researchers can now continuously track a patient’s mental health
thanks to Al-driven sentiment analysis and topic modeling [40].
NLP’s use in psychiatry has benefits, but there are drawbacks as
well, including issues with biases in training data, model openness,
and data privacy. Strict adherence to ethical norms is necessary
when handling sensitive patient data to comply with laws such as
the Health Insurance Portability and Accountability Act (HIPAA)
and the General Data Protection Regulation (GDPR). Furthermore,
NLP systems that are based on skewed datasets run the danger of
escalating already-existing inequities in mental health diagnosis and
care. To address these issues, initiatives such as XAI, which aim to
enhance model transparency and fairness, are crucial. In the future,
combining NLP with multi-omics information and neuroimaging
results may lead to a more comprehensive understanding of mental

illnesses [41]. Furthermore, preventive therapies could be made
possible by real-time NLP technology in digital psychiatry, which
would lessen the financial strain that mental illness places on
healthcare systems. NLP holds considerable promise for developing
precision psychiatry and enhancing patient outcomes by increasing
the precision and accessibility of psychiatric assessments.

3.3. Explainable Al

By providing data-driven insights that improve diagnosis, risk
prediction, and therapy optimization, Al has changed psychiatric
research and clinical practice. However, the “black-box™ nature
of many ML models, which usually lack transparency and
interpretability, presents challenges for the widespread use of Al
in psychiatry. This problem is addressed by Explainable Al
(XAI), which makes Al-driven decisions more transparent and
understandable, allowing patients, researchers, and doctors to
trust and utilize Al-generated insights efficiently. Explainability
is especially crucial in psychiatry, where judgments depend
primarily on subjective evaluations, patient-reported symptoms,
and extensive, heterogeneous datasets [32]. A significant issue
with Al in psychiatry is the lack of transparency in deep learning
models, which can identify patterns in data but fail to explain the
reasons behind their predictions. This lack of transparency may
inhibit clinical integration, as healthcare professionals are
reluctant to implement Al-generated recommendations without a
precise understanding of the underlying rationale. For instance,
if an Al model anticipates a high suicide or schizophrenia risk,
psychiatrists demand clarity on whether this prognosis is based
on genetic variables, neuroimaging results, behavioral signs, or a
blend of these elements. Al models can lead to diagnostic
uncertainty or increase biases entrenched in training datasets
without transparency [42].
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Several ways have been proposed to enhance the explainability of
Al models in psychiatry. Techniques for feature attribution, including
SHAP (Shapley Additive Explanations) and LIME (Local
Interpretable Model-agnostic Explanations), help clinicians pinpoint
the key factors — such as genetic variations, neuroimaging
irregularities, and linguistic markers — that most significantly affect
a specific case prediction. Furthermore, rule-based and decision tree
models offer more clarity than deep learning methods as they
present explicit decision-making paths that physicians can easily
understand. Attention mechanisms in deep learning are also applied
in neuroimaging studies, enabling investigators to focus on specific
brain areas associated with mental health issues [35]. Beyond
interpretability, ethical considerations must be taken into account to
ensure the proper use of Al in psychiatry. A significant concern is
bias in Al models, which can arise from training data that fails to
represent diverse populations accurately. Training Al systems based
on data from particular demographic groups might lead to
inaccurate or biased predictions for underrepresented persons,
increasing mental health inequities. Additionally, privacy and data
security are especially crucial in psychiatry due to the sensitive
nature of patient information. Adhering to data protection standards
and establishing secure, anonymized Al systems are vital for
sustaining patient trust [43].

A fundamental ethical challenge is guaranteeing patient autonomy
and informed consent in Al-supported psychiatric care. Both patients
and clinicians require a comprehensive understanding of how Al
algorithms generate predictions and recommendations. Explainable
Al enhances collaborative decision-making by providing explicit
insights into risk factors and treatment alternatives, ensuring that Al
serves as a supportive tool rather than a substitute for clinical
judgment [44]. To advance the field of XAl in psychiatry, future
studies should focus on constructing hybrid models that combine
deep learning with interpretable statistical methods, thereby achieving
high accuracy and transparency. Furthermore, regulatory frameworks
should be built to define requirements for Al explainability, bias
reduction, and the ethical deployment of Al in mental healthcare
situations. By emphasizing interpretability and moral dimensions,
XAI can establish trust in Al-driven psychiatric solutions, ultimately
boosting patient outcomes and furthering precision psychiatry [42].

4. Biomarkers and Drug Development

4.1. Identification of molecular markers for
psychiatric disorders

Identifying molecular biomarkers for psychiatric disorders is
essential for advancing precision psychiatry. Unlike other medical
conditions that have clear biological markers, disorders like
schizophrenia, MDD, and bipolar disorder have typically been
diagnosed based on clinical interviews and symptom criteria. This
dependence on subjective evaluation has led to difficulties in
accurate diagnosis, treatment choices, and prognosis. Recent

Table 2. Psychiatric biomarkers and their clinical relevance

advancements in multi-omics technologies — including genomics,
transcriptomics, proteomics, metabolomics, and epigenomics — are
now facilitating the identification of objective molecular markers
that can enhance diagnostic accuracy and inform personalized
treatment approaches [45]. Genomic research, particularly GWAS,
has uncovered various genetic variants linked to psychiatric
disorders. For example, PRSs derived from GWAS findings have
shown potential in forecasting an individual’s genetic predisposition
to disorders like schizophrenia and depression. Nonetheless, the
complex polygenic nature of these conditions suggests that no
single genetic variant can entirely account for disease risk.
Integrating transcriptomic data — which shows changes in gene
expression in the brain and other tissues — provides deeper insight
into the molecular mechanisms of psychiatric disorders. Irregular
gene expression patterns are associated with neuronal dysfunction,
alterations in synaptic plasticity, and the immune system’s role in
mental health conditions [46].

By providing data-driven insights that improve diagnosis, risk
prediction, and therapy optimization, Al has changed psychiatric
research and clinical practice. However, the “black-box™ nature of
many ML models, which wusually lack transparency and
interpretability, presents challenges for the widespread use of Al in
psychiatry. This problem is addressed by explainable Al (XAI),
which makes Al-driven decisions more transparent and
understandable, allowing patients, researchers, and doctors to trust
and utilize Al-generated insights efficiently. By identifying and
validating dependable molecular markers, precision psychiatry can
advance toward personalized interventions that enhance patient
outcomes and minimize the trial-and-error nature of psychiatric
treatment [23]. Recent advances in large-scale deep learning
models, including transformer-based architectures and graph neural
networks, have enabled more robust biomarker discovery by
integrating genomic, transcriptomic, and neuroimaging data. While
these models offer powerful pattern recognition capabilities,
limitations such as poor generalizability, interpretability, and the
need for large, annotated datasets remain significant challenges.
These constraints underscore the need for cross-validation and
clinical benchmarking to translate computational findings into
actionable psychiatric biomarkers [47]. Table 2 presents essential
validated biomarkers for psychiatric disorders, highlighting their
relevance for diagnosis, prognosis, and treatment, as well as their
current stage of research or clinical use.

4.2. Al-driven pharmacogenomics and
personalized treatment strategies

Al and pharmacogenomics merge to transform psychiatric care
by offering personalized drug treatments tailored to an individual’s
genetic makeup. Psychiatric conditions like depression,
schizophrenia, and bipolar disorder show significant differences in
how patients respond to therapy, sometimes leaving them to cope
with side effects or ineffective symptom management.

Biomarker Type Disorder Clinical Utility

Current Status

BDNF (protein)
S100B (protein)
miR-134 (miRNA)
FKBPS (gene)
CRP (protein)
Cortisol (hormone)

Major depressive disorder
Bipolar disorder
Schizophrenia

PTSD

Depression, schizophrenia
Depression, PTSD

Indicator of HPA axis dysregulation

Indicator of disease severity and treatment response Research
Marker of astrocyte activity and blood-brain barrier damage Research
Potential diagnostic biomarker Research
Predictor of stress response and treatment response Clinical use (limited)
Inflammatory marker associated with symptom severity Research

Clinical use (limited)
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Conventional psychiatric drugs frequently use a trial-and-error
method, which can prolong patient suffering and raise medical
expenses [8]. Al-driven pharmacogenomics offers a data-driven
method that optimizes drug selection and dosage for every patient
by analyzing genetic, transcriptomic, and clinical data using ML
algorithms. Pharmacogenomics research has discovered genetic
variations in transporters, neurotransmitter receptors, and drug-
metabolizing enzymes that impact how people react to psychiatric
drugs. The metabolism of frequently prescribed antidepressants
and antipsychotics, for example, might be changed by
polymorphisms in cytochrome P450 (CYP) genes, such as
CYP2D6 and CYP2C19. Ultra-rapid metabolizers may need
higher doses to produce therapeutic effects, while patients with
particular genotypes of poor metabolizers may incur more severe
medication toxicity [48]. These genetic characteristics can be
combined with other biological and clinical information using Al
algorithms to forecast a person’s reaction to medicine more precisely.

To identify patterns associated with treatment outcomes, large
pharmacogenomic datasets have been analyzed using ML, deep
learning, and decision trees. These Al systems examine intricate
connections between comorbidities, demographics, medication
histories, and genetic markers to give doctors evidence-based
treatment recommendations. Improving personalized psychiatry,
NLP techniques extract key information from EHRs and patient-
reported data, increasing prediction accuracy in treatment response
models [49]. Beyond pharmacogenomics, Al also helps identify
new drug targets and repurpose existing drugs for the treatment of
psychiatric disorders. Deep learning algorithms that utilize multi-
omics data uncover previously unknown biochemical pathways
associated with psychiatric conditions, aiding the development of
targeted therapies. Additionally, Al-powered virtual screening
accelerates the identification of candidate compounds with strong
binding affinity to critical neuropsychiatric targets, speeding up
the drug discovery process [50].

While progress has been made, bringing Al-driven
pharmacogenomics into routine clinical use still faces significant
challenges. Key concerns, including data privacy, model
interpretability, and the need for broad and diverse datasets,
must be addressed to ensure the reliability and applicability of
Al predictions. Additionally, developing multidisciplinary
collaboration among Dbioinformaticians, psychiatrists, and
pharmacologists is essential for refining Al algorithms and
confirming their therapeutic relevance. Future work in Al-driven
pharmacogenomics should focus on developing robust and
transparent models that incorporate genetic, epigenetic, and
environmental factors to provide comprehensive therapy
recommendations. Precision psychiatry can advance toward
completely customized treatments by utilizing AI’s analytical
powers, which will also lessen unfavorable drug reactions and
enhance therapeutic results for patients with mental illnesses
[51]. Core ML techniques are frequently used in Al models used
in psychiatric research. To predict outcomes, such as the
diagnosis of an illness or the response to treatment, supervised
learning involves training algorithms on labeled datasets. On the
other hand, wunsupervised learning techniques, such as
clustering, can identify patient subgroups or underlying patterns
without the need for labels. Complex nonlinear correlations
in high-dimensional data, such as transcriptome profiles or
neuroimaging, are captured by artificial neural networks and
their deep learning extensions, such as CNNs and RNNs. It is
easier to choose, adjust, and understand AI technology in
psychiatric practice when one is aware of these modeling notions.

5. Challenges and Future Directions

5.1. Data integration, ethical concerns, and clinical
implementation barriers

Significant problems with data integration, ethical difficulties,
and therapeutic application arise when multi-omics and Al are
included in precision psychiatry. Even while ML and genetic
technology have advanced, there are still a number of obstacles
that must be overcome before these developments may be
effectively incorporated into standard psychiatric treatment. It can
be difficult to integrate many biological data types, such as
transcriptomics, proteomics, metabolomics, genomes, and
microbiome information. The quantity, structure, and quality of
these diverse datasets vary, making it challenging to develop
cohesive models that can accurately forecast psychiatric outcomes
[34]. Predictive models must also take behavioral, social,
and environmental health factors into account because
psychiatric disorders are impacted by complex gene—environment
interactions. Although AI methods like deep learning and
network-based algorithms show promise in handling multimodal
data, obtaining large, high-quality datasets is still a significant
challenge. The small sample sizes and lack of diversity in many
current psychiatric studies constrain the utility of Al-driven
predictions. Using Al and multi-omics data in psychiatry raises a
number of important ethical issues. Given that genetic and
medical records contain sensitive personal data, privacy and data
security are essential [52]. Maintaining patient anonymity requires
adherence to regulations like HIPAA and the GDPR. Furthermore,
algorithmic bias poses a risk to precision psychiatry, particularly
when Al models are built with non-representative datasets. ML
algorithms that are biased may prescribe different diagnoses and
treatments, which could be harmful to underrepresented groups.
The implementation of bias detection technology, careful dataset
curation, and making sure that diverse populations are included in
psychiatric research are all necessary to address this challenge [53].

Several real-world obstacles exist to the adoption of Al-driven
precision psychiatry. There is skepticism and resistance in clinical
settings since many psychiatrists and other medical professionals
lack competence in Al and multi-omics technology. Furthermore,
standardization of Al models, regulatory approval, and validation
through comprehensive clinical studies are necessary for
incorporating Al-based decision support systems into existing
healthcare frameworks. The practical implementation of precision
psychiatry will be significantly hindered by the lack of precise
standards and evidence of therapeutic efficacy [54]. Future work
should focus on developing robust frameworks for integrating
multi-omics data, ensuring the ethical use of Al, and promoting
increased collaboration between regulatory bodies, physicians, and
computer scientists to address these challenges. Research and
clinical practice can be more closely aligned by investing in XAl
models and creating multidisciplinary training programs. Precision
psychiatry can advance toward offering patients with psychiatric
diseases individualized, data-driven treatments by overcoming
these obstacles [12].

5.2. Future potential of AI and multi-omics in
psychiatry

The use of Al and multi-omics in psychiatry has the potential to
revolutionize the diagnosis, treatment, and management of mental
diseases. Future advancements in these fields are expected to
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enhance precision psychiatry by facilitating more accurate disease
classification, personalized treatment regimens, and improved
mental health disorder prediction models. One noteworthy area of
innovation that can provide a deeper understanding of the brain’s
composition and operation is deep learning-based neuroimaging
analysis. Al models that leverage large imaging datasets, such as
fMRI and EEG, can find novel biomarkers for mental diseases,
enhancing early diagnosis and treatment strategies [8]. More
accurate symptom grading and continuous mental health
monitoring will also be made possible by advancements in NLP,
which will facilitate the identification of clinically significant
patterns in patient-reported data, EHRs, and social media
interactions. Multi-omics methodologies are expected to progress,
especially in the fields of epigenomics, PRS, and gut microbiome
research. Improved PRS, enabled by larger genomic datasets and
improved computational methods, would allow psychiatrists to
evaluate an individual’s genetic risk for diseases such as MDD,
bipolar disorder, and schizophrenia. Furthermore, an increasing
amount of evidence indicates that epigenetic abnormalities, like
DNA methylation and histone modifications, have a significant
impact on the pathophysiology of mental illnesses. Al-powered
models that combine transcriptome, proteome, and epigenomic
data should facilitate the identification of novel treatment targets
and enhance patient group stratification in clinical trials [S5]. The
future of psychiatry will undoubtedly involve multi-omics-based
pharmacogenomics, resulting in more personalized treatment
regimens. Al-driven pharmacogenomic frameworks will facilitate
the precise selection of drugs tailored to an individual’s genetic
and molecular traits, enhancing therapeutic efficacy while
minimizing adverse effects. This technique promises to alter
psychiatric drug administration, especially for complex situations
like refractory depression and schizophrenia [56].

Furthermore, improvements in Al-driven wearable technology
and digital phenotyping will permit the real-time tracking of
behavioral and physiological markers, generating new options for
early intervention and individualized mental health care. Al-
powered chatbots and virtual mental health assistants could also
give scalable, accessible mental health support, supplementing
traditional psychiatric care. To effectively leverage these
achievements, continuous investment in large-scale, multi-omics
databases, ethical Al frameworks, and interdisciplinary collaboration
is necessary. By mixing cutting-edge computational tools with
biological insights, the future of precision psychiatry holds promise
for a shift toward proactive, personalized, and data-driven mental
health care [50].

6. Conclusion

This paper presents a strategic perspective on how multi-omics
technologies and Al are changing precision psychiatry. Researchers
are uncovering complex biological signals that enhance our
understanding of psychiatric pathophysiology by integrating
genomic, transcriptomic, epigenomic, proteomic, metabolomic,
and microbiome data. Al tools, such as ML in neuroimaging,
NLP of clinical records, and Al-guided pharmacogenomics, are
increasing the creation of prediction models and individualized
treatment approaches. Although these methods hold enormous
potential, their clinical use faces problems such as data
uniformity, algorithmic openness, and inadequate external
validation. Therefore, our study highlights the importance of
conducting substantial, diversified, and long-term research to
validate multi-omics biomarkers and AI models in real-world
psychiatric populations. Additionally, ethical and technological
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challenges, including privacy concerns, bias reduction, and model
interpretability, require careful consideration. Future research
should focus on strong model validation, interdisciplinary
collaboration, and the construction of standardized pipelines for
clinical implementation. As these problems are resolved, precision
psychiatry is developing from a promising concept to a realistic
reality, resulting in more effective, evidence-based, and patient-
centered mental health care. Precision psychiatry, driven by
advancements in multi-omics and Al, has the potential to
revolutionize mental health treatment by shifting away from
symptom-based approaches and toward biologically based,
personalized interventions that improve treatment outcomes,
enhance diagnostic accuracy, and ultimately improve patient care.
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