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Abstract: Estimating LDL cholesterol accurately remains a critical challenge in cardiovascular medicine. While ultracentrifugation delivers
precise results, its high cost and complexity make it unsuitable for everyday clinical practice. Current estimation formulas like Friedewald and
Martin-Hopkins are convenient but frequently miss the mark due to patient-specific factors and biological variations. Direct LDL testing,
though reliable, puts a significant financial strain on healthcare systems. We developed a sophisticated machine learning approach that
combines the strengths of 13 existing estimation equations with essential patient data—age, sex, total cholesterol, triglycerides, and high-
density lipoprotein levels—alongside actual LDL measurements. The framework uses three different algorithms (k-Nearest Neighbors,
Random Forest, and Support Vector Machine) as foundational learners, while XGBoost acts as the final decision-maker to identify
intricate data relationships. What sets our method apart is its ability to classify LDL levels according to both NCEP III and European
Society of Cardiology standards, offering clinicians a more complete risk assessment tool. When we tested our integrated model against
simpler versions, the results were striking: our comprehensive approach achieved an R2 value exceeding 0.98, significantly
outperforming models that relied solely on basic clinical parameters (R² around 0.95). This advancement could transform how we assess
cardiovascular risk, especially in settings where expensive laboratory methods aren’
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1. Introduction

Low-density lipoprotein (LDL) cholesterol is a pivotal
biomarker in cardiovascular risk assessment, as its elevated levels
are strongly correlated with the development of atherosclerosis
[1], coronary artery disease [2, 3], and increased mortality rates
[4, 5]. The primary method for precise LDL measurement,
ultracentrifugation, is both expensive and labor-intensive, making
it an impractical choice for routine clinical use [6]. As a result,
clinicians often resort to estimation equations like the Friedewald
[7] and Martin-Hopkins formulas [8]. However, these equations
may yield inaccuracies due to the variability in lipid profiles
influenced by triglycerides, age, metabolic conditions, and other
demographic factors [9–11]. Direct LDL assays, while accurate,
are cost-prohibitive due to high reagent costs, further limiting
their use [12, 15].

The advent of machine learning has opened new avenues for
improving diagnostic accuracy in medicine, particularly in lipid
profile estimation [13]. This paper presents an innovative stacking
machine learning framework that combines traditional LDL

equations with clinical variables to maximize prediction accuracy.
Our approach integrates 13 established LDL estimation equations
as input features, combined with dual classification labels based
on National Cholesterol Education Program Adult Treatment
Panel III (NCEP III) and European Society of Cardiology (ESC)
guidelines [14]. This design leverages existing biochemical
knowledge while enhancing predictive accuracy through machine
learning. Our results demonstrate the effectiveness of this
approach, achieving state-of-the-art accuracy and showcasing the
clinical applicability of the model.

Building on our previous work [15], we employed the R package
LDLcalc for computing these equations, which has now been
integrated into our new R package named AutoLDLStack. This
package automatically handles the computation of equations and
applies labels according to both NCEP III and ESC guidelines for
dual-label stratification. **Our approach is novel in incorporating
both traditional equation outputs and clinical features as model
inputs, while providing dual classification according to NCEP III
and ESC guidelines [16, 17] for comprehensive cardiovascular risk
assessment.

By constructing a stacking ensemble learningmodel, we integrate
13 traditional LDL estimation equations and classification labels
alongside clinical parameters such as sex, age, total cholesterol,

*Corresponding author: Petros Paplomatas, Department of Informatics, Ionian
University, Greece. Email: p.paplomatas@ionio.gr.

Medinformatics
2025, Vol. 00(00) 1–6

DOI: 10.47852/bonviewMEDIN52025919

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:p.paplomatas@ionio.gr
https://doi.org/10.47852/bonviewMEDIN52025919
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


triglycerides, high-density lipoprotein (HDL), and directly measured
LDL values. Our base models include K-Nearest Neighbors (KNN),
Random Forest (RF), and Support Vector Machine (SVM), with
XGBoost as the meta-learner to optimize prediction accuracy [18].
This advanced integration overcomes the limitations of individual
models, providing a robust and practical alternative for LDL
estimation in clinical settings.

This research not only seeks to refine the accuracy of LDL
cholesterol estimation but also aims to democratize access to
precise cardiovascular risk assessment, particularly in resource-
limited healthcare systems. By reducing dependency on costly
direct measurement techniques, our model could revolutionize the
management of cardiovascular risks on a global scale.

2. Materials and Methods

2.1. Data preprocessing

A dataset with 4,244 records was sourced from the biochemical
laboratory at the “Sismanoglio” General Hospital in Komotini, Greece,
for our study. The dataset included patients aged 1–103 years, with
1,794 females (42.3%) and 2,450 males (57.7%). Inclusion criteria
comprised patients with complete lipid panel measurements (total
cholesterol, triglycerides, HDL, and directly measured LDL), while
exclusion criteria included incomplete laboratory data or missing
demographic information. Our analysis employed the following
parameters: SEX (Sex), AGE (Age), CHOL (Total Cholesterol), TG
(Triglycerides), HDL, and LDLd (Directly Measured LDL).

2.2. Model selection and implementation

In this study, we employed three distinct base learning
algorithms—KNN, RF, and SVM with a Radial Basis Function
kernel (SVM-Radial)—selected for their complementary strengths
in handling different aspects of the data:

• K-Nearest Neighbors (KNN) [19] was chosen for its simplicity and
effectiveness in capturing local structures within the data,
particularly useful for modeling non-linear relationships. The
number of neighbors (k) was tuned within the range of 6 to 26
(incremented by 2). Since KNN relies on distance metrics,
preprocessing steps included centering and scaling to normalize
feature impact.

• Random Forest (RF) [20, 21] was incorporated due to its
robustness against overfitting and its ability to handle high-
dimensional data while providing feature importance insights.
The number of variables randomly sampled as candidates at
each split (mtry) was optimized over values of 11, 15, and 22.
Preprocessing was not required, as RF is generally insensitive to
variations in feature scale.

• Support Vector Machines (SVMs) [22, 23] with a Radial Basis
Function kernel (SVM-Radial) was selected for its strong
performance in high-dimensional spaces, making it particularly
suited for capturing complex patterns in the data. The tuning
process involved optimizing the radial basis function parameter (σ)
within the range [0.01, 0.02, 0.05] and the cost parameter (C) across
values [6, 9, 10]. Given SVM’s reliance on distance-based
calculations, features were scaled to ensure uniform contribution to
the model.

To integrate traditional LDL cholesterol estimation, we
automatically computed 13 LDL equations using the R package
LDLcalc, which derives LDL cholesterol levels from total

cholesterol, HDL cholesterol, and triglycerides. These computed
values were incorporated into the dataset as additional input
features. Additionally, LDL cholesterol levels were classified
according to both the NCEP III and the ESC guidelines,
generating categorical labels that provide a more comprehensive
risk assessment perspective. A custom function was implemented
to systematically assign these classification labels within the
dataset. All analyses were conducted using R version 4.3.0 with
the following packages: caret (6.0–94), caretEnsemble (2.0.3),
xgboost (1.7.5.1), and LDLcalc (2.0.0). Fixed random seeds (123
for data splitting, 1,987 for base learners, and 123 for meta-
learner) were used throughout to ensure reproducibility.

2.3. Stacking model framework

To enhance predictive performance, a stacking ensemble
approach was implemented. The dataset was partitioned into 80%
training and 20% testing subsets, ensuring reproducibility through
the use of a fixed random seed. Each base model—KNN, RF, and
SVM-Radial—was trained using 10-fold cross-validation to obtain
robust performance estimates. Model hyperparameters were fine-
tuned using specific grid search strategies for each algorithm to
optimize individual performance.

Extreme Gradient Boosting (XGBoost) [18] was employed as the
meta-learnerdue to its ability tohandlebothregressionandclassification
tasks with high predictive accuracy. XGBoost hyperparameters,
including nrounds [50, 100, 150], max_depth [3, 5], eta [0.1, 0.3],
gamma [0, 1], colsample_bytree [0.6, 0.8, 1.0], min_child_weight [1,
3], and subsample [0.75, 1.0], were systematically optimized to
maximize model performance and generalization.

The final stacked model was validated on the test dataset,
assessing predictive performance using multiple statistical metrics:
root mean squared error (RMSE), R-squared (R2), mean absolute
error (MAE), mean squared error (MSE), mean absolute
percentage error (MAPE), and median absolute error (MedAE).
These metrics provided a comprehensive evaluation of model
accuracy and error distribution. Additionally, variable importance
analysis was conducted to interpret the influence of individual
features within the stacked model.

This methodological framework has been encapsulated in the
AutoLDLStack package, enabling users to seamlessly train their
own models and perform LDL cholesterol predictions. By simply
providing an input dataset containing the parameters SEX, AGE,
CHOL, TG, HDL, and LDLd, the package automates the entire
process, from model training to inference, making it accessible for
clinical and research applications.

3. Results

To evaluate the contribution of traditional LDL equations and
dual classification labels, we compared two model configurations: (1)
Clinical-Features-Only Model—trained exclusively on demographic
and basic lipid parameters (SEX, AGE, CHOL, TG, HDL, LDLd),
and (2) Enhanced Stacked Model—incorporating clinical features
plus 13 traditional LDL equation outputs and dual classification labels
based on NCEP III and ESC guidelines.

3.1. Baseline vs. full model comparison

Initially, we evaluated a baseline model, trained solely on clinical
features, against the full model, which leverages additional predictive
variables, including traditional LDL equations and dual classification
labels. Table 1 presents a summary of key evaluation metrics.

Medinformatics Vol. 00 Iss. 00 2025

02



The metrics reveal a substantial improvement with the
Enhanced Stacked Model. The RMSE dropped from 8.36 to 5.63,
and the coefficient of determination (R²) rose from 0.96 to 0.98,
underscoring the enhanced predictive capability. Moreover, the
MAE was reduced by approximately 30%, confirming the
advantage of incorporating traditional equations and classification
features into the model.

3.2. Model performance analysis and risk
classification

To comprehensively evaluate our Enhanced StackedModel, we
examined both the individual model contributions and the dual
classification system that enhances predictive capability. To
understand the contributions of each base model, we compared
their performance metrics as shown in Table 2.

Interestingly, the SVM Radial model achieves the lowest
RMSE and highest R², indicating that it is the best-performing
base model in terms of error minimization. However, the
Enhanced Stacked Model achieves the lowest MAE, suggesting
more consistent predictions with fewer extreme deviations. While
the differences in RMSE and R² between the stacked model and
SVM Radial are small, the stacking approach ensures robustness
and reliability across various test scenarios, providing stable
predictions critical for real-world clinical applications.

The Enhanced Stacked Model incorporates dual classification
features based on established cardiovascular risk guidelines.
Table 3 presents the distribution of patients across both NCEP III
and ESC categories.

The dual classification system provides complementary
cardiovascular risk assessment perspectives, with ESC guidelines
offering more granular stratification, particularly in lower LDL
ranges. These categorical variables, combined with the 13 traditional
LDL equations, contribute significantly to the Enhanced Stacked
Model’s superior performance demonstrated in Table 1.

3.3. Visualization of baseline models and stacking
performance

To visually bridge the numerical results with their implications,
we introduce Figure 1, which elucidates the performance

characteristics of our stacking algorithm. In the learning curve
analysis, the left plot presents the learning curve, plotting the
RMSE against the increasing percentage of the training set size,
using 10-fold cross-validation with confidence intervals. The
convergence of the training RMSE, depicted by the blue line, and
the test RMSE, shown by the red line, indicates effective
generalization. The stacked model’s lower error rates and the
tighter confidence intervals, represented by the shaded regions at
each data point, underscore its enhanced stability and efficiency in
learning from data. At the point of performance stabilization, the
final test RMSE is noted as 6.086, providing visual evidence that
the model’s learning capacity has been optimized without
overfitting.

Turning to the actual versus predicted LDL values, the right plot
displays a scatter of these values for the stacked model. Each blue
point represents a test sample, with the red dashed line (y = x)
serving as the ideal prediction line. The close alignment of points
along this line illustrates the stacking algorithm’s superior
accuracy, corroborating the high R² and low RMSE values from
our numerical analysis. This visualization not only confirms the
predictive prowess of the stacking approach but also visually
demonstrates the absence of systematic bias, enhancing the
transition from quantitative data to a visual representation of
performance enhancement.

3.4. Analysis of model heterogeneity and
justification for stacking

To evaluate model stability and justify the stacking approach,
we examined performance variability across cross-validation folds.
Beyond the high performance of the stacking algorithm as
evidenced by the metrics in Table 1 and the visualizations in
Figure 1, Figure 2 presents scatter plot matrices for RMSE and

Table 1. Clinical-features-only vs. Enhanced Stacked Model
comparison

Metric Stack_Model Baseline_Model

RMSE(1) 5.630 8.359
R² 0.981 0.959
MAE(2) 4.247 6.117
MSE(3) 31.707 69.877
MAPE(4) 4.489 6.328

Note: (1) Root mean squared error. (2) Mean absolute error. (3) Mean
squared error. (4) Mean absolute percentage error.

Table 2. Performance comparison of machine learning models

MODEL MAE(1) MSE(2) RMSE(3) R2 MAPE(4) MEDAE(5)

KNN 4.465 34.209 5.848 0.9804 4.765 3.625
RANDOM FOREST 4.337 34.056 5.835 0.9803 4.563 3.432
SVM RADIAL 4.260 31.651 5.625 0.9817 4.448 3.357
STACKED 4.247 31.707 5.630 0.9817 4.489 3.366

Note: (1) Mean absolute error. (2) Mean squared error. (3) Root mean squared error. (4) Mean absolute percentage error. (5) Median absolute error.

Table 3. Dual LDL risk classification distribution in study
population (n= 4,244)

CLASSIFICATION
LDL RANGE
(MG/DL) N (%)

NCEP III GUIDELINES
OPTIMAL <100 2005 (47.2%)
NEAR OPTIMAL–ABOVE
OPTIMAL

100–129 1032 (24.3%)

BORDERLINE HIGH 130–159 727 (17.1%)
HIGH 160–189 336 (7.9%)
VERY HIGH ≥190 144 (3.4%)
ESC GUIDELINES
LDL CAT 1 <55 375 (8.8%)
LDL CAT 2 55–69 398 (9.4%)
LDL CAT 3 70–99 1232 (29.0%)
LDL CAT 4 100–115 578 (13.6%)
LDL CAT 5 116–189 1517 (35.7%)
LDL CAT 6 ≥190 144 (3.4%)
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MAE across the base learners (KNN, RF, SVM Radial) and the
Enhanced Stacked Model over different cross-validation instances.
These matrices illustrate how error metrics fluctuate, with each
point representing a model’s performance on a specific fold.

The deviations from the diagonal reference lines are notably more
pronounced for the baseline models, indicating significant variability in
performance. For instance, while SVM Radial generally shows lower
RMSE and MAE values, suggesting strong predictive capability,
KNN and RF exhibit more dispersion, revealing their vulnerabilities

to different data subsets. This heterogeneity in model behavior
supports the stacking approach, where the integration of diverse
models leverages their individual strengths, creating a balanced
system that enhances predictive stability and accuracy.

The stacked model, as shown in Figure 1, exhibits reduced
variability and consistently lower error metrics across resamples,
suggesting a more robust performance. By integrating different
models, the stacking strategy reduces reliance on any single
algorithm, thereby improving generalization and providing a more

Figure 1. Enhanced Stacked Model performance analysis. (Left) Learning curve showing training and test RMSE convergence
across increasing training set sizes with 10-fold cross-validation confidence intervals. (Right) Scatter plot of actual vs. predicted
LDL values on test set (n= 849), with red dashed line representing perfect prediction (y = x). Blue points represent individual
predictions from the Enhanced Stacked Model

Figure 2. Performance variability analysis across cross-validation folds
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robust predictive framework. This method ensures consistent
performance across varying conditions, minimizing error
variations for a more reliable prediction strategy, particularly
when compared to individual baseline models.

Scatter plot matrices showing RMSE andMAE distributions for
base learners (KNN, RF, SVMRadial) and Enhanced StackedModel
across 10-fold cross-validation resamples. Each point represents
model performance on a specific fold, demonstrating reduced
variability in the stacked ensemble.

4. Discussion

Accurate estimation of LDL cholesterol is critical for
cardiovascular risk assessment, yet direct measurement remains a
challenge in routine clinical practice. The gold standard method,
ultracentrifugation, requires specialized laboratory equipment that is
not widely available, making it costly and impractical for large-scale
population screening. As a result, clinicians often rely on LDL
estimation equations, such as the Friedewald and Martin-Hopkins
formulas, which provide an alternative approach based on total
cholesterol, HDL cholesterol, and triglycerides. However, these
equations are not always effective due to their sensitivity to
demographic factors, including age, metabolic status, and triglyceride
levels. This variability can lead to misclassification of LDL levels,
potentially affecting clinical decision-making, particularly in cases
with high triglyceride levels or non-standard lipid profiles.

To address these challenges, we developed AutoLDLStack, an
automated, machine-learning-driven approach that integrates
traditional LDL estimation equations, clinical features, and
machine learning algorithms into a single, cohesive system.
AutoLDLStack offers a robust alternative to traditional methods
by providing a fully automated solution. This system not only
calculates LDL values but also incorporates classification
according to both NCEP III and ESC guidelines, making it a truly
plug-and-play approach. Users can train the stacking model on
their dataset and then apply it to predict LDL values, ensuring
estimations are tailored to their specific patient population with
minimal setup required.

Oneof thekeyadvantagesofAutoLDLStack is its flexibility.Users
can opt to utilize the full stacking ensemble model, which combines the
predictive strengths of multiple machine learning algorithms, or
alternatively, select a single model from the ensemble if they prefer a
specific approach. This feature allows customization based on data
availability, computational resources, and individual clinical needs.

Moreover, AutoLDLStack is designed for continuous
adaptation. Given the evolving nature of lipid profiles and
population characteristics, we recommend retraining the model
periodically to keep predictions accurate and relevant. This
adaptability ensures that the system evolves with changes in
lifestyle trends, treatment guidelines, and demographic shifts,
enhancing its long-term utility in clinical settings.

For ease of use and accessibility, we have provided a
comprehensive tutorial on our GitHub repository, guiding users
through the process of training, deploying, and updating the
model. This resource makes AutoLDLStack accessible to
researchers, clinicians, and healthcare institutions with minimal
technical expertise, fostering its wide adoption.

Numerical comparisons in Table 2 highlight key performance
differences between models, while Figure 1 visually confirms these
findings. The learning curve shows effective generalization without
overfitting, with train and test RMSE lines converging with minimal
variance. The scatter plot of actual vs. predicted LDL values
demonstrates the stacked model’s strong predictive performance, with

test points tightly clustered around the ideal prediction line, indicating
minimal bias. Although SVM Radial achieved the lowest RMSE
among base models, its performance isn’t consistently optimal across
all conditions, as shown by the variability in Figure 2. This figure
illustrates the performance fluctuations across different resamples,
reinforcing theneedfora robustensembleapproachlikeAutoLDLStack.

The stacked model, as evidenced by reduced variability and lower
error metrics in Figure 1, not only minimizes model bias but also
maintains stable predictive performance under diverse conditions.
This underscores the importance of stacking in balancing performance
trade-offs and enhancing model reliability for real-world applications.

The superior accuracy and stability of our stacking model
highlight its potential for clinical deployment, providing a cost-
effective alternative for cardiovascular risk assessment, particularly in
resource-limited settings. From a clinical perspective, AutoLDLStack
bridges the gap between traditional biochemical estimation and AI-
driven predictive modeling, offering accurate LDL assessments
without the financial burden of direct measurement techniques.
Given LDL cholesterol’s critical role in guiding lipid-lowering
therapies and cardiovascular risk management, this method has
significant implications for improving patient outcomes.

Although AutoLDLStack is designed to be comprehensive and
user-friendly, it does come with considerations. Our approach aligns
with recent advances in ensemble learning for biomedical
applications, where stacking methods have demonstrated
consistent improvements over individual models across diverse
clinical datasets [24, 25]. Our dataset was derived from a single
laboratory, necessitating external validation across multiple,
geographically diverse datasets to confirm its broad applicability.
While stacking introduces some computational complexity, the
increasing availability of machine learning frameworks in clinical
research mitigates this concern.

In conclusion, our results confirm that AutoLDLStack
significantly enhances LDL cholesterol estimation by integrating
traditional equations, clinical features, and machine learning
algorithms into an automated, adaptable, and user-friendly system.
This fully automated, plug-and-play approach provides a highly
accurate, scalable, and cost-effective solution for LDL prediction
in clinical practice, empowering researchers and clinicians to
improve cardiovascular risk assessment with ease.
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