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Abstract: Proteins are fundamental to life, as they support vital processes in the body such as muscle development, cell growth, tissue
repair, and immune defense. However, their complex structures and diverse functions make them challenging to fully understand. While
recent advances enable efficient and accurate protein structure prediction, the challenge of predicting protein function remains. Although
promising, current prediction methods suffer from slow performance, high computational demands, and struggle with handling highly
specific proteins. Due to a rapid expansion of protein sequence databases, a computational method for predicting function directly from
sequence is critical. Our solution to this ongoing challenge is Proteinext, an innovative method for protein function prediction that
leverages advanced sequence representations and natural language processing (NLP) techniques. Proteinext leverages Meta’s 15B-parameter
evolutionary scale modeling to generate protein sequence embeddings, which are refined using a fine-tuned BigBird transformer-based
NLP model. This combination results in a powerful model and method that significantly improves protein function prediction. The
model was trained on 372,683 protein sequences from a combined dataset of Gene Ontology and Universal Protein Knowledgebase
annotations. Proteinext represents a major step toward comprehensively understanding and predicting protein functions, achieving an
impressive F, score of 0.74 and Sy, score of 0.39. This work underscores the potential of combining computational biology with
NLP to address critical challenges in proteomics. Proteinext is available at https://github.com/Cao-Labs/AlphaAnalyzer.
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Understanding and accurately annotating protein function
is crucial for expanding our knowledge of life at the molec-
ular level. By identifying and characterizing protein functions,
researchers can uncover the mechanisms underlying health, dis-
ease, and evolution, leading to advancements in drug discovery,
genetic engineering, and synthetic biology. Furthermore, com-
prehensive protein annotation enhances our ability to interpret
genomic data, paving the way for innovations in personalized

1. Introduction

Proteins, the building blocks of life, are the molecules that
perform work in organic cells. Made up of chains of amino
acids, proteins catalyze biochemical reactions, transport nutrients,
recognize and transmit signals, and much more [1-6]. Protein char-
acteristics are classified in three main ways: sequence, structure, and
function. The sequence of a protein refers to the order in which

amino acids are connected in the chain; this unique quality deter-
mines the structure, which is a three-dimensional representation of
the protein’s shape. Both the sequence and structure of a protein
determine its function. Function can be defined in many ways, but
in simple terms, it is the task(s) that the protein performs [7]. Gene
Ontology (GO) notation is a standardized vocabulary developed
to describe complex and multi-layered functions [8].
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medicine and biotechnological applications [9-15].

Traditionally, protein function is determined through exper-
imental methods, which involve a combination of biochemical
assays, genetic studies, high-throughput screening, and struc-
tural analysis techniques including X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and cryo-electron
microscopy [16—18]. However, this process requires tremendous
amounts of time and resources, leading to an increased reliance on
computational methods and Artificial Intelligence (AI) Al-driven
predictions to complement and accelerate functional annotation
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efforts. As protein sequencing technologies continue to decline in
cost and become more reliableAs, advances in mass spectrometry-
based proteomics, next-generation sequencing, and Al-driven
annotation methods have been significantly enhanced, allowing
our ability to identify and catalog proteins across diverse species
and the size of protein databases, in ways like never before
[2, 19-21]. Publicly available databases such as UniProt [22],
PDB [23], AlphaFold DB [24-26], and Pfam [24, 27] are rapidly
growing, incorporating newly sequenced proteins from previously
unexplored organisms and environmental samples. This influx of
data is further accelerated by machine learning and computational
modeling, which aid in predicting protein structures, interactions,
and potential functions with increasing accuracy. Given the rapid
expansion of protein databases and the sheer volume of newly
sequenced proteins, traditional experimental methods alone are
insufficient to keep up with the growing demand for functional
annotation. Therefore, a computational approach to extracting
protein function directly from its sequence information is not just
beneficial but essential in modern biological research [20, 28-30].
By leveraging machine learning, deep learning, and bioinformatics
algorithms, computational methods can predict protein function
based on sequence homology, evolutionary relationships, struc-
tural motifs, and biochemical properties. These approaches enable
the rapid and scalable identification of protein roles, interactions,
and potential applications in drug discovery, genetic engineering,
and disease research [28, 31-33].

Many machine learning methods have achieved success in
predicting protein function. Some notable methods are as fol-
lows: DeepGOPlus can make predictions based only on sequence
data by utilizing a convolutional neural network (CNN) [34].
DeepAdd makes use of two CNNs and integrates the NLP
Word2Vec to predict protein function [35]. Protein annotation
with Z-score (PANNZER) uses a weighted k-nearest neighbor
model to predict based on sequence data [15, 36]. As with
all machine learning models, however, the accuracy of predic-
tions varies depending on the specific model and data used for
training. Protein sequences and structures are very complex, result-
ing in a nuanced “language” that models must understand and
predict.

Language processing techniques such as Natural Machine
Translation are able to treat protein sequences and GO nota-
tion as a “language” of their own. For example, ProLanGO2
uses an encoder-decoder network of two recurrent neural net-
works to translate protein language into GO notation [1]. HiFun
retrieves all reviewed protein sequences from the UniProt database
to train the FastText sequence embedding model [37]. SPROF-
GO first extracts sequence data using the protein language model
ProtT5-XL-U50. Then, the sequence data is fed to two multilayer
perceptron (MLP) , which are used to predict GO terms [38].

Beyond selecting optimal machine learning techniques, the
way protein sequences are represented plays a crucial role in
ensuring the reliability of results. While some approaches, like
ProLanGO2, have developed custom systems for encoding pro-
tein sequences, the most effective methods leverage predictive
protein structure models to enhance accuracy and functional
insights. Evolutionary scale modeling (ESM) is Facebook’ 15-
billion-parameter protein language model used to predict structure,
function, and other protein features. These predictions are in
the form of an embedding, extracted from input sequence data.
Although AlphaFold2 is the current state-of-the-art algorithm per-
forming similar functions as ESM, it is 6X slower because it
requires accessing a database to perform homology-based com-
parisons [39, 40]. Methods that utilize ESM tend to achieve
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better Fl. and Sp;, scores than their baseline methods. For
example, Transformers for high-performance language modeling
(THPLM) uses an encoder-decoder transformer, which takes pro-
tein sequences and single-point variations generated by ESM-2
as input [41]. TransFun combines ESM’s protein language model
with AlphaFold2’s predicted 3D structures to make predictions
using graph neural networks [42]. Hierarchical embedding atten-
tion learning (HEAL) uses a hierarchical graph transformer, a
graph convolutional network, and a multi-layer neural network
along with sequence data from ESM-1b to predict function [25].
Each of these methods resulted in improved accuracy and a
greater ability to extend to newly discovered proteins beyond those
homologous with existing annotations.

Despite significant advancements in computational protein
function prediction, existing methods still face several limitations
in scope and applicability,. THPLM, although very accurate, pre-
dicts only AAG (changes in protein stability upon mutation) and
not the function of a protein [41]. HEAL, another state-of-the-art
method, relies on experimentally determined or computationally
predicted protein structures as input, making it computationally
expensive and time-intensive, thus limiting its scalability for large-
scale functional annotation tasks [25]. Additionally, TransFun,
though effective at predicting general functional categories, strug-
gles with more specific GO terms, particularly those related to
specialized biological pathways. For instance, it can annotate pro-
teins under the broad category of “metabolic process,” but it lacks
precision in assigning deeper, more refined terms like “genera-
tion of precursor metabolites,” which are critical for understanding
context-specific protein functions [42]. To overcome these chal-
lenges and provide a more scalable, precise, and computationally
efficient approach to protein function prediction, we introduce
Proteinext—a novel framework designed to expand the capabilities
of current methods while addressing their inherent limitations.

Proteinext advances the field of protein function prediction by
addressing critical limitations of prior methods by uniquely com-
bining large language and natural language processing models.
The key contribution is the ability to accurately assign GO terms
to proteins using their amino acid sequences. The framework is
unique in its two-step process: first, it generates high-dimensional
vector representations (embeddings) of protein sequences using the
ESM-2 model, and second, it fine-tunes the BigBird natural lan-
guage processing (NLP) model to classify these embeddings. This
overcomes the input length limitations of previous models like
bidirectional encoder representations from transformers (BERT),
which cannot process the long sequences typical of protein embed-
dings without losing data. The dataset used to develop the model
was a merging of the UniProtKB/Swiss-Prot and the GO knowl-
edgebase, which resulted in 372,683 training entries. Proteinext
addresses many of the limitations of current alternative models.
Unlike THPLM, which is restricted to predicting protein stabil-
ity changes (AAG) rather than functional annotations, Proteinext
directly predicts GO terms with fine-grained accuracy. It mitigates
HEAL’s dependence on 3D structural inputs, making it signif-
icantly more scalable and less computationally intensive, while
surpassing TransFun in specificity, especially for deeper GO terms
essential to understanding context-specific biological processes.
Proteinext achieves high accuracy without requiring structural
models or complex preprocessing steps by leveraging lightweight
yet expressive ESM embeddings and a streamlined neural network
architecture. This makes it uniquely suited for large-scale annota-
tion of novel proteins, even those lacking close homologs, setting
a new benchmark for efficient and precise protein function pre-
diction. Ultimately, Proteinext provides a powerful, scalable, and
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accessible solution poised to accelerate discovery across the
biological sciences.

2. Materials and Methods

Proteinext utilizes ESM-2 and NLP to produce accurate protein
function predictions given the sequence information. Below is an
in-depth look at how Proteinext works and our workflow process.

2.1. Data preparation

GO provides a standardized framework to describe the func-
tions, biological processes, and cellular locations of genes and their
products across various species. It aims to unify the representation
of gene and protein attributes, facilitating consistent annotations
and data analysis in genomics and bioinformatics. The first dataset
we utilized is the GO knowledgebase, which is available publicly at
https://geneontology.org/docs/download-ontology/. The 2024-06-17
release of the GO database contains 42,093 entries. Annotations
within each sub-ontology are structured into nodes of a directed
acyclic graph, where the edges between nodes represent the rela-
tionships between protein functions [8]. Parent nodes are always
broader than the children, meaning the deeper you go, the more
specific and complex the node is.

The second dataset we used is from the Universal Protein
Knowledgebase (UniProtKB). The public dataset can be down-
loaded here: https://www.uniprot.org/help/downloads/. It is split
into two sections: Swiss-Prot and TrEMBL. Swiss-Prot contains
manually annotated proteins, and TTEMBL contains proteins that
are computationally found [22]. We only used UniProtKB/Swiss-
Prot entries to train our model to avoid introducing other layers
of computation into our data. We used the 2024_03 release, which
contains 571,609 reviewed protein entries. To filter the data, we
removed entries that contained sequences with length >= 30,000
and entries with duplicate sequences. After filtering, we were left
with 483,428 unique entries.

|

Training Testing

372683 @ 93172

Dataset Entries

17505

To create our training and testing datasets, we first cross-
referenced and merged the GO terms with the filtered Uniprot data.
If a GO term did not have a matching ID in the Uniprot data, it
was omitted. We then generated embeddings for each protein anno-
tation using ESM-2 (650M), with a maximum embedding length
of 1,024. Each embedding was rounded to three decimal places
and appended to the input dataset. Our final processed dataset was
partitioned into training and testing datasets using an 80:20 split,
which resulted in 372,683 training and 93,172 testing entries, and
all data can be found in Figure 1.

2.2. Model architecture and training

Proteinext can be divided into two steps, as described in
Figure 2. First, protein sequences are transformed into numerical
representations using pre-trained models. These embeddings cap-
ture complex biochemical and structural features of the sequences
in a form that can be processed by machine learning algorithms.
Second, these embeddings serve as input for fine-tuning advanced
NLP models. By adapting these models specifically for protein
data, Proteinext can improve its predictive accuracy for the protein
function prediction problem.

We used ESM-2 to generate high-dimensional vector repre-
sentations of protein sequences. This is beneficial to the accuracy
of Proteinext because these embeddings capture the contextual
relationships between amino acids that raw protein sequences can’t.
Using the 650M parameter model, we generated embeddings of
length <= 1,024, extracting on the 33rd layer. Due to system
restrictions, we randomly chose 350,000 entries from the training
data. Then, we appended the embeddings to their respective rows
in the training data, along with the protein ID and GO term(s).

We treat protein function annotation as a multi-label classifi-
cation problem, allowing us to fine-tune pre-trained NLP models
such as BERT, Longformer, and BigBird [43-45]. We experi-
mented with these models throughout the process of designing
Proteinext.

Key
BPO-Biological Process Ontology
MFO- Molecular Function Ontology
CCO-Cellular Component Ontology

MFO CCO

8147 2818

Number of Sub-Ontology

Figure 1. The number of entries in training and testing datasets after filtering and the number of unique GO terms in each

sub-ontology

Note: BPO: biological process ontology; MFO: molecular function ontology; CCO: cellular component ontology
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Figure 2. Flow chart of Proteinext

BERT is a popular, well-documented, transformer-based NLP
model developed by Google. We were able to fine-tune BERT to
our specific use case by utilizing the scikit-learn package’s multi-
label binarizer, which transformed a dictionary of every current GO
term into a binarized format for classification. We then tuned it to
make predicted classifications on ESM embedding representations
of proteins. Although BERT is extremely robust, it is not without
limitations. BERTs time and space complexities are both quadratic,
which translates into a resource-heavy process to make predictions.
Additionally, the model has a maximum token input length of
512, which is not suitable for long sequences. By default, ESM
protein embeddings contain 1,024 tokens each, so in order to use
BERT embeddings had to be truncated [43]. Multiple strategies of
truncation have been developed, but all lead to data loss [46]. Each
embedding is important to the overall representation of the protein
sequence, so cutting out data could lead to inaccurate predictions.
Because of this, we applied principal component analysis (PCA) to
reduce the length of the embeddings and computational efficiency
and to mitigate potential noise in the embedding space [47]. PCA is
a technique that reduces the size of a dataset by selecting the most
important elements. In this case, we reduced embeddings to length
510, leaving room for the start and end tokens of each sentence.
We fine-tuned BERT with a learning rate of le-5 and 5 epochs.
We tested on 500 entries with a threshold of 0.2. Utilizing BERT
and ESM, we were able to achieve an F1 score of 0.83.

Longformer is an NLP that is designed to address BERT’s
limitations, allowing input sequences up to length 4,096 [44]. It
uses a sparse attention mechanism instead of the traditional dense
attention mechanism used in BERT, creating a model that is com-
putationally cheaper than other NLPs. While the sliding window
method reduces space and time complexity to linear, the model is
still receiving sequence inputs that are double the length of BERT.
This leads to the downfall of our use of this model; resources for
Longformer are extremely limited, and it requires double the time
to train compared to BERT. Due to this, we were unable to train
and test Longformer for protein function prediction.

BigBird is Google’s attempt at extending BERT for longer
sequences. Similar to Longformer, BigBird supports sequences up
to length 4,096. BigBird was fine-tuned similarly to BERT, using
a multi-label binarizer for classification. Its sparse attention mech-
anism combines random attention, global attention, and a sliding
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window to create a versatile model that is highly effective with
long sequences [45]. Consequently, BigBird’s time complexity is
sub-quadratic, which makes it slower than Longformer. However,
its effectiveness in predicting protein function allowed us to look
past this downfall.

To fine-tune BigBird, we first loaded the pre-trained model
from Hugging Face’s Transformers library. For label preparation,
we used scikit-learn’s MultiLabelBinarizer to transform the GO
knowledgebase into a binary matrix, where each valid GO term
is represented as a separate column. The binarizer was initial-
ized on the complete GO knowledgebase and then fitted on the
subset of GO terms present in the training dataset to ensure con-
sistent encoding across train/validation splits. For optimization,
we began with the AdamW optimizer using a learning rate of
le-5 and fine-tuned for 5 epochs. Each epoch processed approx-
imately 43,750 mini-batches of sequence embeddings paired with
their corresponding GO term labels. To stabilize training and
reduce overfitting, we employed a learning rate scheduler with
dynamic adjustment: whenever the validation loss plateaued, the
learning rate was reduced by a factor of 0.5, with a minimum floor
of le-7. During each of the five epochs, the model was trained
on 43,750 batches of sequence embeddings and their correspond-
ing GO term labels. Model checkpoints were saved at the end of
each epoch, with the best checkpoint selected based on validation
loss.

In summary, our new method integrates state-of-the-art pro-
tein language models with advanced NLP architectures in a way
that adapts their strengths to the challenges of protein func-
tion prediction. In the first stage, high-dimensional embeddings
generated by ESM-2 capture biochemical and structural relation-
ships between amino acids, providing a rich numerical foundation
beyond raw sequence input. These embeddings are then coupled
with fine-tuned transformer models—BERT, Longformer, and
BigBird—to handle the classification of protein functions framed
as a multi-label problem. To address sequence length and compu-
tational bottlenecks, our method introduces practical adaptations,
such as PCA-based dimensionality reduction to preserve infor-
mation while fitting within BERT’s token limits and leveraging
the sparse attention mechanisms of Longformer and BigBird to
extend context handling up to 4,096 tokens. This integration of
pre-trained protein embeddings with adapted NLP models is novel
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Figure 3. Most common GO terms from our training dataset

in its ability to bridge biological sequence data and transformer
architectures, yielding improved predictive accuracy while balanc-
ing efficiency, scalability, and robustness across different model
constraints.

3. Results and Discussion

3.1. Common GO terms and relationship between
GO term and sequence length

First of all, we removed all protein sequences with length
longer than 1,024, and because of that, 246,603 protein sequences
were removed out of 465,853 sequences.

Next, we graphed the five most common GO terms as
described in Figure 3. GO:0005737 was the most common. It refers
to cytoplasm, which is the liquid that fills the inside of a cell. Next
was GO:0005829, which refers to cytosol—a component of cyto-
plasm that contains particulate matter, such as protein complexes.
The third most common GO term, GO:0005524, refers to adeno-
sine 5-triphosphate (ATP) binding, which is when a protein binds
to ATP. With this, the proteins are given energy to work with.
The fourth and fifth most common terms were GO:0005886 and
GO:0046872, which corresponded to plasma membrane and metal
ion binding. All five of these components are crucial for most cells
to function and therefore are incredibly common.

We specifically monitored predictions for the most com-
mon GO terms to ensure that Proteinext is not simply biased
toward predicting frequent labels, which could artificially inflate
performance metrics. By checking the model’s outputs on these
high-frequency terms, we can verify that Proteinext is learning
meaningful patterns in the data rather than defaulting to naive
predictions based on label prevalence. This step serves as a safe-
guard to confirm that our model captures true functional signals
rather than relying on label imbalance.

Lastly, we created a scatter plot to show a very interest-
ing and vital relationship, as shown in Figure 4. Despite average
sequence length growing as the number of GO terms increases, the
sequences with fewer GO terms tend to have far more cases of long
amino acid sequences. This was surprising, as we initially theorized
that having more GO terms would result in a greater sequence
length. Upon further reflection, this observation may be explained
by the functional complexity and domain structure of proteins.

Proteins with very long sequences but few GO annotations may
contain repetitive regions, large unstructured domains, or nonfunc-
tional extensions (e.g., signal peptides, disordered regions, or large
low-complexity regions) that do not contribute additional func-
tional annotations. In contrast, proteins with multiple GO terms
often have more modular domain architectures where distinct
functional domains correspond to distinct GO annotations, but
these individual domains may not necessarily require very long
sequences. Another possible explanation is annotation bias: some
very long proteins may be insufficiently annotated due to lim-
ited experimental characterization, resulting in fewer assigned GO
terms despite their potential functional complexity. Conversely,
well-studied multifunctional proteins may accumulate more GO
terms even if their overall sequence length is moderate. This
finding highlights the importance of considering both sequence
content and annotation completeness in protein function pre-
diction tasks. Simply relying on sequence length as a proxy for
functional complexity can be misleading. It also emphasizes that
models like Proteinext need to capture nuanced sequence features
beyond simple length-based patterns to accurately predict GO
annotations.

3.2. Results and discussion

We tested Proteinext on 500 unseen sets of sequence embed-
dings from the merged Uniprot and GO knowledgebase testing
dataset. To calculate precision, a method to check the similar-
ity of GO terms was necessary. We first had to propagate the
GO tree, so we were able to visualize the relationships between
GO terms. Then, we checked the similarity between predicted and
actual terms for each sequence by comparing the distance of terms
to the root node. We applied depth-first search to find the com-
mon ancestors and ultimately calculate the precision. Proteinext
achieved an Fp,,, score of 0.74 and an S, score of 0.39, where
F .« refers to the highest harmonic mean of precision and recall
across all thresholds, indicating how well the model balances iden-
tifying correct functions while avoiding false positives. Sy, refers
to how far the model’s predictions deviate from the true functional
annotations; a low S,;, demonstrates fewer and less severe errors
in predicting the protein functions.

Our approach was rigorously evaluated using UniProt data,
where it achieved noteworthy performance metrics: precision of
0.83 and recall of 0.59. These results demonstrate Proteinext’s abil-
ity to balance accuracy and comprehensiveness, ensuring both
high-confidence predictions and meaningful functional coverage.
By combining the strengths of NLP models and ESM-based rep-
resentations, Proteinext bridges the gap between sequence data and
biological function, offering a scalable and efficient solution for
large-scale protein annotation [32, 40, 48—50].

Proteinext is a powerful tool for predicting protein functions,
but it has certain limitations that are actively being addressed
through ongoing improvements. Although it couldn’t use the entire
dataset of 372,683 entries due to system limits, it still trained
effectively on 94% of the data, with only a small impact on
its performance. However, its precision (0.83) and recall (0.59)—
measures of how accurate and thorough it is—could be better,
especially in identifying more protein functions correctly. Right
now, Proteinext relies only on protein sequences and doesn’t use
structural information, which is key to understanding how pro-
teins work. Adding structural data from tools like AlphaFold
could make its predictions much sharper by highlighting important
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features like binding sites. Moving forward, we plan to boost com-
puting power to handle all the data, tweak the model to catch
more protein functions, and blend in structural insights for richer,
more precise results. These steps aim to make Proteinext an even
stronger bridge between protein sequences and their roles in biol-
ogy [51-54]. For future research, we plan to run comparisons of
benchmarks between the Proteinext model and alternative state-
of-the-art methods including DeepGO, THPLM, HEAL, and
TransFun, which will more clearly demonstrate the advantages and
weaknesses of the methods. While the current study followed a
standard 80:20 split for the training and testing datasets, additional
cross-validation would provide stronger evidence of reproducibility
in the future.

4. Conclusion

Proteinext presents a promising advancement in protein func-
tion prediction by leveraging state-of-the-art NLP models and
ESM-2 Sequence embeddings. The model achieved promising
results: an Fy,, score of 0.74, an Sy, of 0.39, a precision of
0.83, and a recall of 0.59. This highlights its effectiveness in mak-
ing high-confidence and broad protein function predictions and
suggests that even for proteins lacking close homologs in cur-
rent databases, contemporary NLP tools can successfully interpret
the intricate link between protein sequences and their biological
functions. The model’s impressive performance demonstrates how
protein language models can directly derive significant functional
signals from sequence data.

Proteinext’s ability to use BigBirds sparse attention mech-
anism to analyze full-length ESM-2 embeddings (1,024 tokens)
addresses an important limitation of conventional NLP models
like BERT, which necessitate dimensionality reduction or trunca-
tion. Two significant advantages of Proteinext are scalability for
large-scale annotation and enhanced specificity for fine-grained
GO word prediction. Limitations still exist, though, including
reliance on sequence data alone and a moderate recall (0.59). These
outcomes are consistent with our findings, which are displayed in
Figures 3 and 4 and indicate that rare terms had poorer accuracy,
while longer sequences (>300 aa) and specific common GO terms
(cytoplasm, ATP binding, etc.) were better predicted.
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Proteinext effectively predicts protein function, but integrating
additional features beyond sequence data could further improve the
model. Future developments will incorporate structural informa-
tion from AlphaFold predictions and primary/secondary structural
embeddings, while upgrading to advanced language models such
as ESM-3. The research team plans to enhance training datasets
with underrepresented GO terms and rigorously benchmark per-
formance against THPLM and TransFun. These enhancements
will boost annotation accuracy for novel proteins while preserving
the model’s existing capability to predict fine-grained functional
terms.

Proteinext accurately predicts protein functions from
UniProtKB/Swiss-Prot sequences. The publicly available model
bridges sequence data and biological function, enabling efficient
large-scale protein annotation.
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