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Abstract: Scleral segmentation and scleral vessel segmentation are increasingly recognized as critical components in medical image analysis,
with broad applications in ocular disease diagnosis and biometric identification. In particular, scleral vessel segmentation contributes
significantly to the early detection of conditions such as diabetic retinopathy and glaucoma. However, the intricate structure of scleral
vessels and the scarcity of high-quality annotated datasets continue to present major challenges. To address these issues, an ensemble
deep learning-based approach is proposed, integrating three segmentation models—UNet, NestNet, and DeepLabv3_Plus—to evaluate
and quantitatively analyze the unified task of scleral segmentation and scleral vessel segmentation. The input ocular images undergo
preprocessing steps including denoising, contrast-limited adaptive histogram equalization, and cropping. Scleral regions are extracted to
enhance the explicit representation of vascular structures. Experiments are conducted on the publicly available SBVPI dataset. The
DeepLabv3_Plus model achieves the highest performance in scleral segmentation, with an accuracy of 0.9656, sensitivity of 0.9694,
specificity of 0.9421, and a Dice coefficient of 0.9723. For scleral vessel segmentation, the same model achieves an accuracy of 0.9285
and a specificity of 0.9536. These results demonstrate the effectiveness of the proposed ensemble framework and highlight its potential
for advancing scleral vessel segmentation research. Future work will focus on further model optimization and the exploration of clinical

and real-world deployment scenarios.
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1. Introduction

Scleral segmentation [1] and scleral vessel segmentation [2] are
important tasks in the field of medical image analysis. They play an
important role in the diagnosis of eye diseases and in biometrics.
Diabetic retinopathy (DR) is a common complication of diabetes
and is one of the leading causes of blindness among the elderly
worldwide [3]. The risk of blindness can be effectively reduced
through early detection and active treatment. According to a
report by the World Health Organization, early detection and
treatment of eye diseases are crucial strategies for reducing the
global burden, saving healthcare costs, and improving quality of
life [4]. Glaucoma, another major cause of blindness, is
characterized by damage to the optic nerve, and changes in the
scleral vessels are closely related to the health of the optic nerve
[5]. By analyzing the morphology of scleral vessels, doctors can
identify early signs of DR and glaucoma. These changes may
include dilated, tortuous, or neovascularized blood vessels.
Morphological characteristics of scleral vessels, such as vessel
length, width, curvature, branching pattern, and angle, can be used
to diagnose DR and glaucoma. In addition, biometrics is a
technology that uses an individual’s physiological or behavioral
characteristics to identify their identity [6]. The scleral vessel
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pattern is highly individual, with each person having a unique and
relatively stable scleral vessel pattern that does not change
significantly over time, making it suitable as a basis for long-term
biometric recognition.

High-precision results for scleral segmentation and scleral
vessel segmentation are important for the diagnosis of DR and
glaucoma, as well as for biometrics. For sclera and scleral vessel
segmentation, an image of the eye needs to be obtained using
professional ophthalmic imaging equipment. These images are
usually high resolution and clearly show the structures of the eye,
including the sclera and vascular tissue structure. The acquired
image needs to be preprocessed to improve image quality.
Preprocessing steps may include denoising [7], contrast
enhancement [8], standardization [9], contrast-limited adaptive
histogram equalization (CLAHE) [10], etc., to facilitate
subsequent segmentation processing. In the absence of automated
tools, researchers need to manually label scleral and vascular
areas, which is time-consuming and prone to errors. It not only
requires researchers to have professional knowledge and
experience to accurately identify and label vascular structures but
also faces large-scale segmentation tasks. The efficiency and
accuracy of manual labeling are difficult to meet actual needs.
This not only greatly limits the timeliness of disease diagnosis but
also hinders progress in subsequent research and applications.

With the continuous development of deep learning technology,
especially in the field of image segmentation, deep neural networks
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have already demonstrated excellent performance. The development
of this technology has undoubtedly brought great potential and hope
to the field of scleral vessel segmentation. In the field of image
segmentation and other vascular segmentation, various models
have proven their efficiency and accuracy. The successful
application of these models provides new ideas and methods for
scleral vessel segmentation.

We tried to apply the model that performed well in retinal
segmentation to scleral vessel segmentation. In order to obtain
more accurate scleral vessel segmentation, the eye image first
needs to be accurately segmented in the scleral region. By
extracting the sclera part of the eye image, we can focus the
scleral vessel segmentation on the sclera area, thereby effectively
reducing the interference of non-sclera areas on the segmentation
results. This step is crucial for improving the accuracy of vascular
segmentation. In order to more clearly show the vascular
structure, we enhance the blood vessel area without sacrificing
image quality and with as little loss of information as possible.
This process aims to enhance the contrast between blood vessels
and the surrounding background so that blood vessel structures
can be more effectively identified and analyzed. A cropping
strategy [11] was used to improve the ability to recognize the
characteristics of small blood vessels and to alleviate the extreme
imbalance between vascular and non-vascular areas. In terms of
task nature, scleral segmentation can be classified as a region
segmentation problem [12], while scleral vessel segmentation
belongs to the more complex tree segmentation problem.

Although significant progress has been made in retinal vessel
segmentation, systematic and quantitative research on scleral
vessel segmentation remains limited. The accurate and efficient
segmentation of scleral vessels continues to pose substantial
challenges due to their distinct anatomical characteristics
compared to retinal vessels, including pronounced curvature and
complex overlap between superficial and deep vascular structures.

The goal of this study is to use three excellent models, UNet
[13], NestNet [14], and Deephlabv3_Plus [15], to evaluate and
quantitatively analyze the unified task of scleral segmentation and
scleral vessel segmentation, with the aim of promoting research
progress in this field. In this way, we aim to fill gaps in existing
research and provide a more precise analytical tool for scleral
vessel segmentation. Meanwhile, on the public dataset SBVPI
[16], we will use evaluation metrics [17] such as accuracy, Dice,
Intersection over Union (IoU), loss, sensitivity, specificity, and
area under the curve (AUC) to comprehensively evaluate the
performance and effectiveness of these three models in the scleral
segmentation and scleral vessel segmentation tasks. The paper is
organized as follows: The following section will provide an
overview of relevant research progress in the fields of scleral
segmentation and vessel segmentation. Section 3 will elaborate on
the overall architecture of the task design, provide an in-depth
interpretation of the preprocessing techniques used, and
systematically introduce the framework structure of the usage
model. Section 4 will present the experimental results of the
methods used and analyze them in detail. Section 5 expands on
the relevant issues and discusses them in depth. Finally, Section 6
summarizes the text and draws conclusions.

2. Related Works

The traditional scleral segmentation and scleral vessel
segmentation rely on manual segmentation performed by experts
with extensive knowledge. In recent years, with the significant
advancements of deep learning in the medical field, automation in
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both scleral segmentation and scleral vessel segmentation has
made remarkable progress.

2.1. Scleral segmentation

In the process of scleral vessel segmentation, scleral
segmentation is a crucial step, as it involves the accurate
separation of the scleral region from eye images. Traditional
scleral segmentation methods include threshold-based approaches
[18], edge detection methods [19], and region growing techniques
[20]. Lucio et al. applied Fully Convolutional Networks (FCNs) to
address the scleral segmentation problem [21]. FCNs are end-to-
end deep learning models capable of learning directly from image
pixels to segmentation masks without the need for manual feature
extraction, allowing the model to adapt to complex image
variations. Although some success has been achieved, there are
still notable limitations in the accuracy of the results. To further
improve segmentation accuracy, Lucio et al. introduced
Generative Adversarial Networks (GANs) [21]. GANs consist of a
generator and a discriminator; the generator produces samples
close to real data, while the discriminator distinguishes between
real and generated data. GANs can be used to generate higher-
quality training data, enhancing the model’s ability to generalize
to scleral images under varying conditions. However, GANs are
prone to instability during training, and the adversarial process
between the generator and discriminator may lead to mode
collapse. Additionally, inaccuracies are observed in the
segmentation of certain local regions in the results. Mistry et al.
explored methods for the automatic detection of ocular cancer in
healthcare through machine learning and image analysis [22],
which also involves scleral segmentation and analysis. However,
machine learning methods typically handle only shallow features
of images, struggling to capture deeper semantic information.
Additionally, when processing complex image features and tasks,
they often exhibit lower accuracy, flexibility, and robustness.
Rizwan Ali Naqvi et al. propose a model named Sclera-net [23],
which effectively leverages the advantages of residual networks to
learn complex features through the network and process image
data from various sensors. Sclera-net is highly adaptable and can
be tailored to diverse image data sources. However, its
performance may degrade under varying lighting conditions or in
the presence of image noise.

2.2. Vessel segmentation

In the field of vessel segmentation, although there is limited
research directly applied to scleral vessel segmentation, the
successful application of deep learning in retinal and other
vascular segmentation fields suggests significant potential for its
use in scleral vessel segmentation. Prior to the use of deep neural
networks, researchers typically relied on traditional image
processing techniques and machine learning methods for retinal
vessel segmentation [24]. Staal et al. proposed an automated
method for segmenting blood vessels in the retina [25] by
generating feature vectors for each pixel, utilizing the scale and
orientation-selective properties of Gabor filters. The extracted
features were then classified using a Gaussian mixture model and
a support vector machine classifier to separate vessels from non-
vessels. In their study on detecting DR in retinal images, Al-Rawi
et al. employed a matched filter to extract vessel features, which
were further analyzed to segment vessels in retinal images [26].
You et al. introduced a novel retinal vessel segmentation method
that combines radial projection with semi-supervised learning
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[27], improving segmentation accuracy, particularly in detecting fine
capillaries.

Traditional machine learning methods for vessel segmentation
still exhibit notable limitations. First, these approaches heavily rely
on manually designed image features and are incapable of
automatically capturing deep semantic information. As a result,
their performance is restricted when dealing with complex
vascular structures, such as fine branches, curved morphologies,
or overlapping regions. Second, these methods are highly
sensitive to variations in image quality and demonstrate poor
robustness under conditions such as uneven illumination, noise
interference, or image blurring. Furthermore, they generally lack
strong generalization capabilities, making them difficult to adapt
to diverse data sources or clinical environments.

With the emergence of deep neural networks, these models have
demonstrated substantial potential in retinal vessel segmentation.
Long et al. proposed an FCN [28] for semantic segmentation,
defining a skip architecture that combines semantic information
from deep, coarse layers with appearance information from
shallow, fine layers to produce accurate and detailed segmentation
results. Fine-tuned for segmentation tasks, FCN has shown
promising potential for retinal vessel segmentation. In another
study, Ronneberger et al. introduced an innovative convolutional
neural network architecture, UNet [29], which features a
symmetric structure with an encoder to capture contextual
information and a symmetric decoder for precise localization,
employing skip connections to reduce information loss during
upsampling. By combining high-resolution and low-resolution
features, UNet has excelled in various biomedical segmentation
applications and has become an essential tool in the biomedical
segmentation field. Wang et al. enhanced the UNet architecture by
incorporating an additional encoder and channel attention
mechanisms in the skip connections for retinal vessel
segmentation [30]. This dual-encoder and multi-scale feature
fusion approach significantly improved the accuracy of retinal
vessel segmentation. A model named “Claw U-Net,” developed
by Chang Yao et al., is proposed for scleral vessel segmentation
through the integration of UNet and deep feature cascade
technology [31]. The capture capability of key image features is
enhanced through deep feature cascades, significantly improving
the detail handling of vessel segmentation and reducing

computational complexity and the number of parameters, thereby
elevating the demand for computational resources.

Although deep learning methods demonstrate outstanding
performance in retinal vessel segmentation tasks, their application
to scleral vessel segmentation remains limited, and the
performance of related models requires further validation.
Furthermore, systematic research and validation are urgently
needed for the evaluation and quantitative analysis of integrated
scleral segmentation and scleral vessel segmentation tasks.

3. Proposed Methodology

Scleral vessel segmentation plays a crucial role in machine
vision and medical image analysis. Its primary goal is to
accurately identify and extract vascular structures from eye
images, which is vital for applications such as medical diagnosis
and biometric identification. Although various models have been
developed for retinal vessel segmentation, each with its unique
strengths and limitations, scleral vessel segmentation remains a
relatively underexplored area. Therefore, this study aims to
explore the potential application of three advanced deep learning
models—UNet, NestNet, and DeepLabv3_Plus—for the task of
scleral vessel segmentation. In this section, the overall architecture
of the task design is discussed in depth, the preprocessing
techniques employed are thoroughly explained, and the
framework structures of the models used are systematically
introduced. To evaluate the performance of these models in scleral
segmentation and scleral vessel segmentation tasks, a series of
quantitative metrics is used to comprehensively assess and
quantify the models’ performance.

3.1. Architecture overview

High-precision results in scleral vessel segmentation are of
critical importance for medical diagnosis and biometric
identification. To achieve this, precise scleral segmentation is
essential to eliminate interference from non-scleral regions around
the eye. This study employs three models—UNet, NestNet, and
DeepLabv3_Plus—to conduct a preliminary quantitative analysis
of scleral segmentation and scleral vessel segmentation, aiming to
advance research in this field. As shown in Figure 1, the publicly
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Figure 1. Overview of the joint sclera and scleral vessel segmentation
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first preprocessed with cropping and image augmentation. Then, the
three models are trained to meet the scleral segmentation task
requirements. Next, the SBVPI (ScleraVesselSeg) scleral vessel
segmentation dataset [15] undergoes cropping, CLAHE, and
image enhancement, followed by training on the three models to
achieve the scleral vessel segmentation task objectives. The input
images are first cropped to meet the model’s input requirements.
Afterward, scleral segmentation is performed on the cropped
images, and the results are stitched together to obtain the complete
scleral segmentation output. The scleral segmentation result is
then processed alongside the original image, retaining only the
scleral region to focus the view on the scleral vessels. CLAHE
enhancement is applied to the processed scleral region to improve
contrast and detail. The image is then cropped again to meet the
input requirements for the model, and scleral vessel segmentation
is performed on the cropped image. Finally, the segmentation
results are stitched together to obtain the scleral vessel
segmentation output for the original input image. Through this
series of operations, the models not only perform scleral
segmentation but also achieve high-precision scleral vessel
segmentation, meeting the core requirements of scleral vessel
segmentation tasks. This provides a more accurate and reliable
image analysis tool for medical diagnosis and biometric
identification, with the potential for broad application in related
fields.

3.2. Preprocessing

3.2.1. Contrast-limited adaptive histogram equalization

To improve the contrast between vessels and background
regions, reduce noise, and make small and weakened vessel
structures more prominent—while preserving image quality and
minimizing information loss—we apply an image enhancement
technique known as CLAHE.

CLAHE is an image enhancement method [32]. The
fundamental principle involves dividing the image into several
blocks (local regions) and performing histogram
equalization on each block individually to enhance local contrast.
A threshold (clip limit) is set for each block’s histogram to

prevent excessive amplification of noise resulting from over-

small

enhanced local contrast. Finally, interpolation is applied to smooth
the boundaries between adjacent blocks, producing an enhanced
image with improved overall contrast and controlled noise.

It is important to note that the CLAHE technique is not directly
applied to the original image but is instead applied only to the green
channel of the image. Compared to applying CLAHE to the entire
image, focusing on enhancing the green channel more effectively
improves the contrast of the vessels, highlighting the vascular
details without significantly affecting the structure of the other
color channels [33].

3.2.2. Cropping strategy

The images processed through scleral segmentation and
CLAHE enhancement are still subject to certain limitations when
used for scleral vessel segmentation model training. For instance,
it is challenging to capture the local features of small vessels, and
there is a significant imbalance between vascular and non-vascular
regions. To address these issues and improve model performance
while reducing the model’s burden of learning from non-scleral
vessel regions, a cropping strategy is applied to the dataset
images. The images are cropped into smaller, fixed-size patches,
which are then used to train the model.
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Cropping the image into smaller patches offers several benefits
for our model training, particularly in computer vision tasks [34]. For
example: (1) patch cropping enables the model to focus on smaller
regions, allowing it to learn the local features of fine vessels; (2) for
datasets with limited scleral vessel segmentation data, the cropped
patches increase dataset diversity, reduce overfitting, and improve
the model’s generalization ability; (3) it effectively alleviates the
extreme imbalance between vascular and non-vascular regions in
the image, helping to train a more balanced model. The model
makes local decisions based on these cropped patches, and the
results are later stitched together to form the global output.

To minimize interference from irrelevant regions, a cropping
strategy is primarily focused on vessel areas. Specifically, random
cropping from the central region of the image is performed to
highlight scleral vessel features, and additional small patches are
randomly cropped to increase sample diversity. Patches with a
low proportion of vessel pixels are removed through threshold
filtering, thereby improving both the training effectiveness and
generalization capability of the model.

3.2.3. Augmentation

In image processing, data augmentation is a widely used
technique designed to enhance a model’s generalization ability
and robustness by generating more diverse training samples [35].
In this study, several image enhancement techniques are employed
to improve the model’s performance in real-world applications.

During the image preprocessing stage, horizontal flipping is
first applied. This technique, a simple and effective data
augmentation method, generates a new image symmetric to the
original one along the horizontal direction by mirroring it across
the vertical center axis. Next, elastic deformation is applied.
Elastic deformation is an image enhancement technique that
simulates the surface deformation of objects in the real world
[36]. Finally, a local distortion operation is introduced through
grid distortion. Grid distortion modifies the shape of local regions
in the image by shifting the grid points.

In summary, by incorporating horizontal flipping, elastic
deformation, and local distortion through grid distortion, a large
number of diverse training samples with real-world characteristics
are generated. This approach significantly enhances the model’s
generalization ability, allowing it to perform tasks more accurately
and stably when confronted with various complex scenarios and
changes in real-world applications, thereby offering more reliable
support for research and applications in related fields.

3.3. Model and architecture

3.3.1. UNet

The UNet model is an encoder-decoder architecture commonly
used for image segmentation tasks. The encoder extracts features
from the input image, while the decoder reconstructs these
features through upsampling, producing an output image with the
same dimensions as the input. Each decoder block utilizes skip
connections to concatenate high-resolution feature maps from the
encoder with low-resolution feature maps from the decoder,
allowing for improved restoration of image details.

The model primarily consists of two components: the
Encode_block and Decoder_block. The Conv_block involved is
uniformly defined as follows: a convolution operation is
performed using a 3 x 3 convolutional kernel, with padding set to
“same” to ensure that the output size matches the input size. A batch
normalization layer is then applied to accelerate training and improve
stability, followed by the ReLU activation function to introduce
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non-linearity. This process is repeated twice, forming a
standard convolution block with two convolutional layers. The
Encoder_block extracts features through the Conv_block and
reduces the spatial dimensions of the feature map using MaxPool2D
with 2 x 2 pooling. The Decoder_block first performs upsampling
using Conv2DTranspose, which doubles the spatial dimensions of
the feature map. This operation is the reverse of pooling and restores
the image resolution based on the learned weights. The upsampled
feature map is then concatenated with the skip connection feature
map from the encoder using the Concatenate layer, allowing the
decoder to utilize high-resolution information from the encoder to
recover image details. The concatenated features are then processed
further through the Conv_block to extract additional features.

The model’s image processing flow is described as follows.
First, four encoder blocks, each employing 64, 128, 256, and 512
convolution filters, are used to extract features, while a max
pooling layer is applied to reduce the spatial dimensions of the
feature maps. A bottleneck with 1024 convolution filters is then
employed to capture the deepest level of features (i.e., high-level
image information). Next, four decoder blocks progressively
restore the spatial resolution of the feature maps, and skip
connections are used to integrate detailed information from the
corresponding encoder layers. In each decoder block, a transposed
convolution is performed for upsampling, and spatial details are
recovered by concatenating the skip-connected feature maps and
applying additional convolution operations. Finally, a 1 x 1 convo-
Iution reduces the number of channels to one, generating a single-
channel output. A Sigmoid activation function is then applied to pro-
duce a probability value indicating whether each pixel belongs to a
vessel.

The UNet model is a classic convolutional neural network
architecture specifically designed for image segmentation tasks. Its
distinctive encoder-decoder structure enables the extraction of rich
multi-scale features while efficiently recovering spatial details. By
introducing skip connections between corresponding layers of the
encoder and decoder, UNet effectively integrates high-level
semantic information with fine-grained spatial details, which
significantly improves segmentation accuracy—particularly for
small or structurally complex targets. Due to its strong contextual
capture ability and precise localization performance, UNet is
widely employed as a highly effective solution for medical image
segmentation, remote sensing, and related fields.

3.3.2. NestNet

Both the NestNet model and the aforementioned UNet model
are deep learning models employed for image segmentation tasks.
Many similarities in structure and design philosophy are observed
between them; however, NestNet is regarded as an extension and
improvement of UNet. A U-shaped architecture is adopted by
NestNet, preserving the encoder—decoder framework. In the
decoding stage, additional skip connections and upsampling
strategies are introduced to enhance feature utilization and
improve model performance. A detailed description of NestNet is
provided below.

A Conv_batchnorm_relu_block is first constructed, which
defines a convolution block that employs a 3 x 3 kernel with “same”
padding to maintain the spatial dimensions of the input. Sub-
sequently, a batch normalization layer is applied to accelerate train-
ing and enhance stability, followed by a ReLU activation function to
introduce non-linearity. In the encoder block, features are extracted
using the Conv_batchnorm_relu_block and are downsampled via a
2 x 2 pooling operation using AvgPool2D, thereby reducing the spa-
tial dimensions of the feature maps. In the decoder block, upsampling

is performed using Conv2DTranspose, which enlarges the spatial
dimensions of the feature maps; this operation restores the image res-
olution through learned weights, counteracting the effect of pooling.
Next, the upsampled feature maps are concatenated with skip con-
nection feature maps from the encoder via the Concatenate operation.
Unlike the UNet model, NestNet incorporates not only the encoder
feature maps at each decoding stage but also the feature maps from
the preceding decoder layer. This approach enables the early decoder
layers to acquire features from multiple locations, thereby facilitating
the capture of multi-scale information.

The model processes image information as follows: First, five
encoder blocks are employed to extract features using 32, 64, 128,
256, and 512 convolutional kernels, respectively, while the spatial
dimensions of the feature maps are reduced by an average pooling
layer. Multiple convolution and pooling layers are constructed to
extract multi-level features. At each encoder, the extracted
features are progressively upsampled using transposed
convolution, and the upsampled feature maps are concatenated
with the feature maps from the preceding level to obtain richer
information. Finally, a 1 x 1 convolution is applied to generate
the final output feature map, and a Sigmoid activation function is
employed to produce a probability value that indicates the likelihood
of a pixel belonging to a vessel.

NestNet is characterized by the introduction of dense skip
connections, which effectively facilitate the comprehensive fusion
of features across different depths and scales. By integrating
shallow fine-grained features with deep high-level semantic
features, NestNet substantially enhances the ability to capture
object boundaries and details, thereby improving accuracy in
segmentation tasks involving structurally complex or variably
sized targets. Additionally, the dense multi-level skip connections
strengthen the internal information flow within the network,
alleviating the gradient vanishing problem commonly observed in
traditional deep networks. As a result, the model is better able to
learn and represent complex structural features.

3.3.3. Deeplabv3_Plus

The architecture of the Deeplabv3_Plus model differs from the
UNet and NestNet models in that it is not strictly U-shaped.
However, it incorporates design elements similar to the U-shape,
particularly by combining low-level and high-level features to
improve boundary details in segmentation results. Dilated
convolutions [37] and Atrous Spatial Pyramid Pooling (ASPP)
[38] are employed to capture multi-scale contextual information,
resulting in superior performance in complex scenes and multi-
scale challenges. A detailed description of Deeplabv3_Plus follows.

The ASPP module is first constructed by the model, in which
global information is extracted by pooling layers and mapped via
1 x 1 convolutions. Convolutions with various dilation rates are
employed to process different feature regions to capture multi-scale
information. All processed feature maps are concatenated through a
Concatenate operation and then integrated usinga 1 x 1 convolution.
ResNet50 [39] is utilized as the backbone feature extraction network,
without pre-trained weights and excluding the top fully connected
layers. Output from the conv4_block6_out layer is extracted as
high-level features and passed to the ASPP module for processing
and upsampling. The output from the conv2_block2_out layer is
processed as low-level features through a 1 x 1 convolution, batch
normalization, and ReLU activation. High-level and low-level fea-
tures are concatenated to fuse semantic information across different
layers. In the Decoder_block, features undergo two 3 x 3 convolu-
tions with ReLU activations, followed by four-fold upsampling to
restore the feature map to match the input’s spatial dimensions.
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The model processes image information as follows: First, high-
level features are extracted from the conv4_block6_out layer of
ResNet50 and passed to the ASPP module to capture information
from different receptive fields, including global context. Next,
low-level features from the conv2_block2_out layer are processed
witha 1 x 1 convolution, batch normalization, and ReL U activation.
The features are then concatenated to integrate semantic information.
The Decoder_block restores the feature map to match the input’s spa-
tial dimensions. Finally,a 1 x 1 convolution with Sigmoid activation
outputs a probability value indicating the likelihood that a pixel
belongs to a scleral vessel.

Deeplabv3_Plus is characterized by the innovative integration
of the ASPP module, which significantly enhances the network’s
ability to extract multi-scale contextual information. The ASPP
module effectively fuses features from different receptive fields by
applying parallel atrous convolutions with varying dilation rates,
enabling the model to simultaneously capture both global
structures and local details of targets within an image. This design
not only markedly improves the recognition and segmentation of
objects with diverse sizes and shapes but also expands the
receptive field of the feature maps, thereby further increasing the
accuracy of segmentation boundaries. The network architecture of
Deeplabv3_Plus is illustrated in Figure 2.

4. Experiments

In the experimental section of this paper, a detailed analysis is
conducted on the performance of the UNet, NestNet, and
Deeplabv3_Plus models in the tasks of scleral segmentation and
scleral vessel segmentation, in order to evaluate their application
potential and limitations.

4.1. Experimental setup

4.1.1. Dataset
The publicly available SBVPI (scleral vessel, periocular, and

sclera) medical imaging dataset is used in this study. It consists of
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0.0001. The learning rate followed a step decay schedule, where it
was multiplied by 0.5 every 10 epochs. The total number of
training epochs was set to 100. The loss function used was Dice
loss. Early stopping was applied with a patience of 100 epochs to
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Figure 2. The architecture of Deeplabv3_Plus. In the encoder, ResNet50 is employed as the backbone network to extract high-level
features, while the ASPP module captures multi-scale contextual information from various receptive fields. In the decoder, the
extracted features are fused, and the feature maps are subsequently restored to the original spatial dimensions of the input images
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prevent overfitting. All experiments were conducted using a single
NVIDIA RTX 3080 GPU.

4.1.3. Performance metrics

In this study, a series of key evaluation metrics is used to
comprehensively assess the model’s performance. First, accuracy is
employed to measure the overall classification correctness, while the
area under the receiver operating characteristic curve (AUC-ROC)
provides a quantitative assessment of the model’s ability to
distinguish between positive and negative samples. Additionally,
sensitivity and specificity are introduced to analyze the model’s
performance across different categories. Sensitivity measures the
model’s ability to correctly identify positive samples, while
specificity evaluates the model’s ability to identify negative samples.
To further analyze the model’s segmentation performance, two key
metrics—Dice coefficient (Dice_coef) and IoU—are incorporated.
The IoU metric focuses on measuring the overlap between predicted
results and ground truth labels, while the Dice coefficient is used to
assess the similarity between two sample sets. Given the relatively
small target areas in the scleral vessel segmentation task, the Dice
coefficient, due to its high sensitivity to small targets, more
effectively evaluates the segmentation performance of vessels. For
the scleral segmentation task, due to the importance of shape
matching, we prefer to use the IoU metric to assess the model’s
performance. By combining multiple metrics, we can
comprehensively evaluate the model’s performance across different
segmentation tasks.

4.2. Performance comparison

Evaluating the model’s performance in scleral segmentation and
scleral vessel segmentation is crucial for improving disease diagnosis
techniques and biometric methods. Our evaluation process first focuses
on the model’s quantitative performance in these two tasks and then
further explores the visual representation of the model’s results for
scleral segmentation and scleral vessel segmentation. Through this
comprehensive evaluation approach, the potential and effectiveness
of the model in handling both scleral segmentation and scleral vessel
segmentation tasks can be fully assessed.

The performance metrics of UNet, NestNet, and Deeplabv3_Plus
for scleral segmentation and scleral vessel segmentation tasks are
provided below. It is important to note that the dataset used for the
scleral segmentation task is ScleraSeg, while the dataset for the
scleral vessel segmentation task is ScleraVesselSeg.

4.2.1. Scleral segmentation performance

As shown in Table 1, the accuracies of the three models are
0.9653, 0.9614, and 0.9656, respectively. However, model
performance should not be evaluated solely based on accuracy; other
metrics such as sensitivity, specificity, Dice coefficient, and IoU are
also essential. In particular, sensitivity and the Dice coefficient
provide a more precise assessment of segmentation performance.
These comprehensive metrics collectively reflect the model’s ability

to distinguish between scleral and non-scleral regions, as well as its
performance in shape matching.

To provide a more intuitive and comprehensive analysis of model
performance, the visual results of the three models in the scleral
segmentation task, along with their ROC curves, are presented in
Figures 3 and 4. These images and curves offer an insightful basis
for further evaluating the models’ performance.

In Figure 3, (A) shows the overall image used as input for scleral
segmentation, (B) shows the corresponding scleral segmentation mask
for the overall image, (C) presents the scleral segmentation result from
the UNet model applied to the input image, (D) displays the scleral
segmentation result from the NestNet model, and (E) illustrates the
scleral segmentation result from the Deeplabv3_Plus model.

A detailed comparison between the scleral segmentation results
and the mask images of the input images reveals the following
observations: when examining the scleral segmentation of the
overall images, all three models accurately identify most of the
scleral region boundaries. Notably, Deeplabv3_Plus demonstrates
exceptional performance in the eye-corner region, showing not
only high accuracy but also smooth edges, which highlights its
advantage in handling fine details.

Figure 4 presents the ROC curves and AUC for UNet, NestNet,
and Deeplabv3_Plus in scleral segmentation; the AUC values are
0.98, 0.97, and 0.97, respectively.

4.2.2. Scleral vessel segmentation performance

In Table 2, the three models achieved accuracy values of
0.9328, 0.9267, and 0.9285, respectively. Compared to the scleral
segmentation task, the performance of the three models in
sensitivity and specificity decreased—likely due to the higher
complexity of the scleral vessel segmentation task, in which the
vascular structures are fine and difficult to identify. In addition,
Dice coefficient and sensitivity are critical metrics for evaluating
model performance in the high-sensitivity detection of small
targets. The three models achieve Dice coefficients of 0.4821,
0.5062, and 0.4586 and sensitivities of 0.4821, 0.5062, and
0.4586, respectively. These results indicate that NestNet slightly
outperforms the other two models on both metrics, demonstrating
superior sensitivity and segmentation accuracy in scleral vessel
segmentation tasks. Therefore, NestNet is more suitable for
precise segmentation applications involving small targets.

To provide a more intuitive and comprehensive analysis of
model performance, the visual results of three models in the
scleral vessel segmentation task, along with their ROC curves, are
presented in Figures 5 and 6. These images and curves offer a
direct basis for further analysis of model performance.

InFigure 5, (A) shows the input image and its zoomed-in view, (B)
displays the input image after scleral segmentation and the subsequent
image enhanced using CLAHE, along with its zoomed-in view; (C)
presents the ground truth image for scleral vessel segmentation of
the input image and its zoomed-in view; (D) illustrates the result of
the UNet model for scleral vessel segmentation on the input image
and its zoomed-in view; (E) shows the result of the NestNet model

Table 1. Direct performance comparison on scleral segmentation tasks

Model Accuracy Sensitivity Specificity Dice ToU

UNet 0.9653 0.9692 0.9412 0.9706 0.9546
NestNet 0.9614 0.9661 0.9347 0.9671 0.9511
Deeplabv3_Plus 0.9656 0.9694 0.9421 0.9723 0.9484
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Figure 3. Visualization results for the scleral segmentation task. Panel (A) displays an ocular image, while panel (B) shows its
corresponding ground truth. Panels (C), (D), and (E) depict the scleral segmentation outcomes obtained using the UNet, NestNet,

and Deeplabv3_Plus models, respectively
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Figure 4. Receiver operating characteristic (ROC) curves and
the corresponding area under the curve (AUC) values for the
scleral segmentation task

for scleral vessel segmentation on the input image and its zoomed-in
view; and (F) provides the result of the Deeplabv3_Plus model for
scleral vessel segmentation on the input image and its zoomed-in view.

Figure 6 presents the ROC curves and AUC values for scleral
vessel segmentation using the UNet, NestNet, and Deeplabv3_Plus
models; the corresponding AUC values are 0.85, 0.84, and 0.77,
respectively.

4.2.3. Ablation experiments and statistical analysis

To evaluate the impact of CLAHE preprocessing and cropping
strategies on segmentation outcomes and to eliminate the possibility
of incidental experimental results, relevant ablation experiments and
statistical analyses are conducted for the scleral vessel segmentation
task. Given that the primary focus of the proposed integrated sclera
and scleral vessel segmentation method lies in scleral vessel
segmentation, this section specifically analyzes the effectiveness and
role of CLAHE and cropping strategies in scleral vessel segmentation.

The experimental design is as follows: This section aims to
evaluate the impact of CLAHE image enhancement and cropping
strategies on scleral vessel segmentation performance. The
experiment is divided into two groups, ensuring that both groups use
the exact same configuration parameters. In the NoCLAHECrop
group, CLAHE image enhancement and cropping strategies are not
applied to the data, while in the CLAHECrop group, these strategies
are implemented. By comparing the results from both groups, the
actual effectiveness of CLAHE and cropping strategies in improving
scleral vessel segmentation performance can be determined.

When evaluating the image segmentation performance of the
model, sensitivity and Dice are considered two crucial metrics.
Therefore, special attention is paid to the variations in these
parameters. As shown in Table 3, the segmentation performance of
the three models is significantly improved when CLAHE image
enhancement and cropping strategies are applied, compared to when
these strategies are not used. This indicates that CLAHE image
enhancement and cropping strategies effectively enhance the
model’s performance in scleral vessel segmentation tasks.

The experimental design for statistical analysis is structured as

follows: Each of the three models is subjected to five independent

Table 2. Direct performance comparison on scleral vessel segmentation tasks

Model Accuracy Sensitivity Specificity Dice IoU

UNet 0.9328 0.5473 0.9420 0.4821 0.3371
NestNet 0.9267 0.6371 0.9343 0.5062 0.3397
Deeplabv3_Plus 0.9285 0.5097 0.9536 0.4586 0.2943
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Figure 5. Visualization results for the scleral vessel segmentation task. Image (A) shows the ocular image, while image (B) depicts the
ocular image following scleral segmentation and CLAHE processing. Image (C) represents the corresponding ground truth. Images
(D), (E), and (F) display the scleral vessel segmentation results produced by the UNet, NestNet, and Deeplabv3_Plus models,

respectively
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Figure 6. Receiver operating characteristic (ROC) curves and
corresponding area under the curve (AUC) values for the
scleral vessel segmentation task

repeat experiments. In these experiments, all settings are kept
consistent, except for the variation in random seed, encompassing
dataset loading, weight parameters, and test set selection. Upon
completing the five independent repeat experiments, a statistical

Table 3. Comparison of CLAHE and clipping strategy ablation

Model Strategy Sensitivity Dice
UNet NoCLAHECTrop 0.4732 0.2403
CLAHECrop 0.5473 0.4821
NestNet NoCLAHECTrop 0.4070 0.3321
CLAHECrop 0.6371 0.5062
Deeplabv3_Plus NoCLAHECrop 0.2449 0.2161
CLAHECrop 0.5097 0.4586

analysis of the models’ performance on the test set is conducted, and
confidence intervals are calculated to ensure the results’ reliability
and accuracy. The resulting boxplots are illustrated in Figure 7.

5. Discussion

In tasks involving scleral segmentation and scleral vessel
segmentation, Deeplabv3_Plus and NestNet models demonstrate
superior performance. In contrast, the performance of the Sclera-net
model declines in the presence of image noise, while the Claw
U-Net model is limited by increased computational complexity and
a higher number of parameters. Moreover, these models still lack
precise evaluation and systematic analysis for integrated tasks of
scleral segmentation and scleral vessel segmentation. This study
evaluates and conducts a quantitative analysis of the combined tasks
of scleral segmentation and scleral vessel segmentation, confirming
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Figure 7. Analysis of the confidence intervals of model performance. The confidence interval analysis of model performance is
carried out to compare the three models in terms of their experimental performance. This involves analyzing the 95%

confidence intervals for sensitivity and Dice metrics

their feasibility and demonstrating significant potential, certain
limitations persist. First, high-quality scleral vessel segmentation
datasets are relatively scarce, restricting both the scale of datasets
used in experiments and the evaluation of model generalization.
Although the SBVPI dataset offers high-resolution images, its size
remains limited; thus, optimizing performance on small-scale
datasets during model training remains an important research
direction. Second, the observation of scleral vessels is challenging—
particularly for deep vessels, which are finer and less visible
compared with superficial vessels—complicating their identification
during segmentation. Additionally, the tortuous nature of scleral
vessels, along with their varying lengths and diameters, further
complicates segmentation. Given the small proportion of vessels
relative to the background, even minor deviations in predictions can
lead to suboptimal performance metrics. Future research may
explore the integration of advanced attention mechanisms or
segmentation models to enhance the segmentation of fine and deep
vessels and improve vessel smoothness, thereby increasing their
practical utility.

6. Conclusion

This study investigates the application of several models, which
have demonstrated superior performance in retinal vessel
segmentation, to the integrated task of sclera and scleral vessel
segmentation. Through evaluation and quantitative analysis, these
models are shown to exhibit significant potential for this task.
Furthermore, applying CLAHE to the green channel of images for
enhancement, along with cropping strategies, significantly improves
segmentation performance. Experiments conducted on the publicly
available SBVPI dataset indicate that this approach holds
considerable promise for sclera and scleral vessel segmentation tasks,
providing a solid foundation for medical diagnosis and biometric
fields. This method is expected to achieve higher precision in scleral
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vessel segmentation results, further advancing the exploration and
application of deep learning in this domain and promoting the
practical implementation of related technologies.
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