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Abstract: Biomedical knowledge is growing at an astounding pace with a majority of this knowledge represented as scientific publications.
Text mining tools and methods represent automatic approaches for extracting hidden patterns and trends from this semi-structured and
unstructured data. In biomedical text mining, literature-based discovery (LBD) is the process of automatically discovering novel
associations between medical terms otherwise mentioned in disjoint literature sets. LBD approaches have proven to successfully reduce
the discovery time of potential associations that are hidden in the vast amount of scientific literature. The process focuses on creating
concept profiles for medical terms such as a disease or symptom and connecting them with a drug and treatment based on the statistical
significance of the shared profiles. This knowledge discovery approach introduced in 1989 remains a core task in text mining. Currently,
the ABC principle-based two approaches namely open discovery and closed discovery are mostly explored in the LBD process. This
review starts with a general introduction about text mining followed by biomedical text mining followed by a brief introduction of the
core ABC principle and its associated two approaches open discovery and closed discovery in the LBD process. This review discusses
the deep learning applications in LBD by reviewing the role of transformer models and neural networks-based LBD models and their
future aspects. Additionally, the potential of Large Language Models in enriching the LBD process is discussed with challenges and
solutions and finally reviews the key biomedical discoveries generated through LBD approaches in biomedicine and concludes with the
current limitations and future directions of LBD.
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1. Introduction

Key findings and insights from scientific research and clinical
investigations frequently appear as unstructured text in publications
and clinical records [1]. With the ongoing advancements in
biomedical research, the volume of published literature has
experienced rapid growth in recent years [2]. Consequently,
scientists and clinical researchers face considerable difficulties in
remaining up-to-date and uncovering hidden insights from the
massive corpus of millions of biomedical publications [3]. This
extensive body of unstructured data brings challenges related to
data collection, management, exploration, and the discovery of
new knowledge. A promising, comprehensive solution to these
issues is biomedical text mining (BTM) [4].

According to Hearst [5], text mining (TM) can be defined as
“the discovery by computer of new, previously unknown
information, by automatically extracting information from
different written resources”. TM is the process of generating

high-quality information in the form of novel, relevant, and
interesting patterns, trends, facts, or hypotheses by sifting through
a large volume of unstructured data [6–9]. The process of TM
pipeline consists of Information Retrieval (IR), Information
Extraction (IE), and Knowledge Discovery and Hypothesis
Generation [10–14]. In the context of TM, IR is the process of
finding relevant natural language text from a set of literature-
based databases. Normally, IR is performed as a query-based or
document-based search for retrieving abstract or full text from
digital libraries or databases [15–17]. IE can be defined as the
automatic process of extracting structured information from semi-
structured and/or unstructured machine-readable text [18]. The
sole purpose of automated TM is the discovery of new knowledge
and the generation of new ideas or hypotheses from literature by
Zeng et al. [19].

BTM is concerned with the extraction of information regarding
biological entities and their relationships, such as genes and proteins,
diseases, drugs, cell type, miRNA, phenotypes, or evenmore broadly
biological events and pathways from the scientific text [20–24].
Furthermore, the extracted information has been used for
hypothesis generation, knowledge discovery, annotation of
specialized databases, tools and manual curation of biological
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databases such as infer novel relationships: fish oil and Raynaud
disease, magnesium deficiency and migraine, creation of
databases CTD, OMIM, DisGeNET, STRING, building
sophisticated web servers PubTator, mirCancer, PolySearch,
DISEASES, PKDE4J, and formation of discovery platforms such
as BEST, DigSee, Beegle, and Implicitome [25–33]. Thus, BTM
has become an integral part of many resources serving a wide
audience of researchers and scientists [34–41]. In general, the
BTM pipeline encompasses the three core steps of traditional TM:
IR, IE, and Knowledge Discovery from Text (KDT).

Schematic flowchart for identifying, screening, and including
relevant studies for this review is shown in Figure 1. In this
review, we have collected all the relevant articles from PubMed
search engine using words and subwords representing LBD such
as “knowledge discovery” and “literature based discovery”. The
selected literatures were screened based on relevancy and topic
interest which resulted in a total of 156 articles. With other
conditions such as out of scope or in sufficient details resulted a
total of 84 articles to be included in this review.

Within the KDT framework, the primary objective of TM is to
generate hypotheses with a high degree of reliability by traversing
and linking numerous biomedical concepts drawn from separate
bodies of literature [42, 43]. Discovery platforms and literature-
wide analysis studies (LWAS) that aim to address these issues are
collectively termed Literature-Based Discovery (LBD) in TM
[44]. In BTM, the Knowledge Discovery process is performed as
a novel connection between medical terms or biological network
analysis and prioritization methods. Disease-specific case studies,
drug searches for cancers by integrating pathways and molecules,
gene prioritization, and global disease network generation are
some major examples of these kinds in BTM [45]. Knowledge
Discovery is sometimes referred to as hypothesis generation.
Hypothesis generation is the process of generating unknown facts
by utilizing information discovered with the use of IR and IE.
Generating hypotheses in the biomedical field is a significant task
to infer unknown biomedical facts that can be used to guide the
design of experiments in the future or explain existing
experimental results [46]. This, in turn, helps to determine new

Figure 1. PRISMA style flowchart for the literature selection process in this review. A total of 324 articles were retrieved from
PubMed using the specified query for literature-based discovery (LBD) in the biomedical domain. After initial screening, 168
records were excluded. Of the remaining 156 articles assessed for eligibility, 72 were excluded based on the following predefined
criteria: (A) Out of scope—articles not focused on LBD or not within the biomedical context (n= 47); (B) Insufficient detail—
lacking methodological description, experimental setup, or results (n= 14); and (C) Limited rigor—studies without empirical
validation or use of benchmark data (n= 11). The final set of 84 articles met the inclusion criteria, which required peer-reviewed
publications explicitly describing LBD methods (co-occurrence, semantic, deep learning, or LLM-based), applied within
biomedical research between 1986 and 2023.
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drug targets or novel interactions between biomedical concepts that
have not been proved before [47].

Our review addresses a critical gap in the literature by providing a
comprehensive, end-to-end synthesis of LBD in BTM, which is
currently fragmented across co-occurrence methods, semantic
approaches, graph-based models, and more recently, deep learning
and Large Language Models (LLM)-based paradigms. While
previous reviews have primarily focused on classical LBD
techniques or isolated case studies, ourmanuscript uniquely integrates:

1) Foundational LBD principles (e.g., ABC model) with
2) Modern neural architectures (e.g., AGATHA, LINE, CNNs) and
3) Emerging LLM applications (e.g., GPT-4 and RAG frameworks)

This is the first review, to our knowledge, that holistically traces the
evolution from Swanson’s foundational models to LLM-augmented
hypothesis generation systems, contextualizing each advancement in
light of biomedical literature growth and computational scalability.

We also emphasize the urgency and significance of this review
given the exponential rise in biomedical publications and the
corresponding need for scalable, AI-enabled tools to derive insights
and generate hypotheses. We further argue that the fusion of
transformer-based models and knowledge graphs (KGs), as explored
in our review, will define the next generation of LBD systems,
making our study both forward-looking and practically relevant.

One of the well-known approaches to this task is proposed by
Swanson [48, 49] using the ABC principle to link disjoint literature
sets for biomedical knowledge discovery [50]. The ABC principle
states that if concept A and concept B were associated directly in
one set of literature, while concept B and concept C were in direct
relation to an independent disjoint set, then the union of these
literature sets allows a new possible inference relation between
concepts A and C linking via the concept B.

Kastrin and Hristovski [51] did the first inclusive scientometric
overview of the LBD study covering 35 years (1986–2020) using 409
documents from six bibliographic databases. The overview found
Rindflesch TC, Kostoff RN, Hristovski D, Smalheiser NR, and
Swanson DR as the top five authors in LBD based on several
publications. The study also generated a Co-authorship network and
document co-citation network in this domain and top journals publish
the studies in the LBD domain. We recommend this study for a better
understanding of LBD in biomedicine, its origin, and evolution [51].

Concept profiles are the major component in the LBD study.
Generating a concept profile involves systematically gathering and
organizing information related to a specific concept. Begin by
clearly defining the concept and conducting a thorough search of
academic databases to collect relevant literature, using specific
keywords, synonyms, and related terms to ensure comprehensive
coverage. Extract key terms, phrases, and themes from the
literature, focusing on definitions, attributes, functions, interactions,
and significant findings. Identify related concepts frequently
associated with the primary concept and analyze the context and
connections to determine interactions, focusing on cause-effect
relationships and correlations. Details of the concept profiles are
included in the Literature-Based Discovery Methods section. For
LBD studies using biomedical text, the following sources can be
useful for concept recognition, curation, and normalization.

2. Auxiliary Knowledge Sources

2.1. Unified medical language system

Unified medical language system (UMLS) enables semantic
understanding and interoperability among different software

applications and systems by combining widely used dictionaries in
the biomedical field. UMLS contains three knowledge sources
namely (i) Metathesaurus (ii) Semantic Network (iii) SPECIALIST
Lexicon.

1) Metathesaurus: It is the main component of the UMLS, and it is
organized by combining various biological concepts (such as
Gene, Protein, Disease names, etc.). UMLS utilizes a
metathesaurus to connect the alternative names of the same
concepts from various sources of dictionaries. Metathesaurus
not only links the same concepts from various sources but is
also used to identify relationships among different concepts.

2) Semantic network: The biological concepts described in the
UMLS Metathesaurus are grouped into subject categories
called semantic types. For example: The concept of breast
cancer belongs to the semantic type [“Disease or Syndrome”]
and magnesium is categorized as [“chemical”]. UMLS also
contains the relation between these semantic types called
“semantic relations”.

3) SPECIALIST lexicon: The SPECIALIST Lexicon contains the
information (word usage) used by the natural language
processing (NLP) processing. Each entry in this lexicon
includes the morphological, syntactic, and orthographic
information for each word or term.

2.2. Medical subject headings (MeSH)

MeSH was introduced by NLM for indexing and retrieval of
PubMed articles, MeSH terms provide abstract or summarized
biological concepts used in the paper. MESH terms are classified
into three sub-types: (i) Descriptors: denote the main concepts of the
article described for example, if an article explores the role of
magnesium deficiency in neurological disorders, it would be indexed
under the descriptors “Magnesium Deficiency” and “Neurological
Disorders.” Descriptors are standalone terms compared to other
terms. (ii) Qualifiers: mainly useful if it is used in conjunction with
descriptors. (iii) Supplementary Concept Records (SCR): SCR index
named entities associated with the article such as gene, disease name,
chemical, etc. Apart from the above three sub-types, MESH also
contains a code called MeSH tree code which is arranged
hierarchically. Thus, the MESH concept provides an effective way of
searching for articles on specific biomedical subjects.

2.3. SemMedDB

Semantic relations are important for TM tasks such as knowledge
discovery and hypothesis generation. SemMedDB [52] is the repository
of semantic relations extracted from PubMed articles titles and abstracts
using the rule-based system called SemRep. SemMedDB Contains
the predictions of (subject-predicate-object) triples from the
PubMed articles. SemMedDB uses UMLS Metathesaurus for
concept extraction and relation extraction, it uses the Semantic
Network concept. The Semantic MEDLINE Database (SemMedDB)
indexes semantic predications triples (subject-predicate-object)
extracted by the semantic interpreter SemRep from PubMed citations.

2.3.1. SemRep tool
SemRep is a program that extracts three-part clauses, called

semantic predicates, from sentences contained in biomedical text.
The predicate consists of a subject argument, an object argument,
and the relationship between them. This is a UMLS-based
program that uses UMLS metathesaurus concepts and their
associative relationships to extract predicates. SemRep is available
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as a standalone program on the Linux platform and can be run
interactively or in batch mode using the SKR scheduler.

The current version of SemMedDB provides approximately 96.3
million predictions from SemRep using 29.1 million citations from the
MEDLINE database. This PubMed scale MySQL database provides
information about the PubMed citation, One-to-many relationships
of the concept with UMLS metathesaurus information, and links
between predictions and between a prediction and a sentence.

Literature sources and NLP tools in TM for LBD are given
in Tables 1 and 2 provide curated knowledge sources for LBD in
biomedicine below.

3. LBD Methods

This section briefly discusses the various terms and concepts
explored in LBD such as the ABC principle, Concept profile, and
open and closed discovery process followed by key applications
and discoveries in the BTM domain.

3.1. ABC principle

Using BTM integrated with prior knowledge (already known
biomedical associations), intuition, and experience scientific
discoveries are made in biomedicine. TM plays an important role
by assisting this process using automatically discovering interesting
novel hypotheses. In this regard, TM researchers adapted the widely
explored ABC principle for hypothesis generation and knowledge
discovery [49]. The ABC principle can be stated as, If concept A

and concept B are directly associated in one body of literature,
while concept B and concept C are similarly linked in a separate,
disjoint body of literature, then merging these two sets enables a
new possible inference of a connection between concepts A and C
via concept B [53]. This approach enables the establishment of a
new link between Concept A and Concept C via shared Concept B.
The concepts can be any relevant biological entity such as gene,
protein, drug, disease, cell line, miRNA, antibody, peptide, or
common medical terms from repositories like MeSH [54].

The two core aspects of the ABC principle that are explored
widely in LBD studies are the identification of shared(related)
interesting(promising) concepts and the exploration of those
relationships based on certain particulars (biologically relevant).
For example, the starting point of the search can be a disease X
[55]. The first step of the approach will be identifying related
medical concepts to X such as a particular biomarker gene Y1 or
drug Y2. In the second step, the relationship is further explored in
such a way that if the mutation in the Y1 gene that causes disease
X, or drug Y2 is likely to treat disease X or aggravate X [56–58].
The approach aims to derive some kind of novelty in the
relationship and discover more Y concepts (chemical, miRNA, or
medically relevant reactions) thereby creating more new possible
hypotheses between X and Y [59–61]. According to the way the
concepts are searched, the approaches are classified as open
discovery and closed discovery. An open discovery process aims
for hypothesis generation by navigating through connected
concepts at different levels [56, 62–65]. A closed discovery
process starts with known concepts at both ends A and C

Table 1. Literature sources and NLP tools in text mining for LBD

Type Name Web-Link Type Current status

Literature Sources MEDLINE https://www.nlm.nih.gov/medline/index.html Online DB Working
Scopus https://www.elsevier.com/en-in/solutions/scopus Online DB Working
Science Direct https://www.sciencedirect.com/ Online DB Working
Europe PMC https://europepmc.org/ Online DB Working
bioRxiv https://www.biorxiv.org/ Online DB Working

NLP Tools SemRep https://semrep.nlm.nih.gov/ Standalone/Downloadable Working
MetaMap https://metamap.nlm.nih.gov/ Standalone/Downloadable Working
cTAKES https://ctakes.apache.org/ Standalone/Downloadable Working

Table 2. Curated knowledge sources for LBD in biomedicine

Curated knowledge source Web-Link Type Current status

OMIM (Online Mendelian Inheritance in Man)
(Hamosh et al., 2005)

http://www.ncbi.nlm.nih.gov/omim Online DB Working

CTD (Comparative Toxicogenomics Database)
(Davis et al., 2018)

http://ctd.mdibl.org Online DB Working

STRING (Szklarczyk et al., 2017) http://string-db.org/ Online DB Working
DisGeNET (Pinero et al., 2017) http://www.disgenet.org Online DB Working
PharmGKB (Pharmacogenomics Knowledgebase)
(Thorn et al., 2013)

http://www.pharmgkb.org Online DB Working

UniProt (The UniProt Consortium, 2018) http://www.uniprot.org/ Online DB Working
MEDIC (merged disease vocabulary)
(Davis et al., 2012)

http://ctd.mdibl.org/voc.go?type=disease Online DB Working

DO (Disease Ontology) (Kibbe et al., 2015) http://www.disease-ontology.org Online Tool Working
UMLS (Unified Medical Language System)
(Olivier Bodenreider, 2004)

http://umlsks.nlm.nih.gov Standalone/
Downloadable

Working

MeSH (Medical Subject Headings)
(CE Lipscomb, 2000)

https://www.nlm.nih.gov/MeSH/ Online Tool/
Standalone

Working

SNOMED CT (Systematized Nomenclature of
Medicine-Clinical Terms) (Elkin et al., 2006)

http://www.snomed.org/ Online DB Working
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respectively. In this process, the approach searches for B terms
that can support the claim that the A–C association is a relevant
one [66–70]. A schematic representation of open and closed
discovery approaches in LBD is depicted in Figure 2 [79].

3.2. Concept profile

The concept profile of a biological entity represents a set of terms
that are related to the entity either through curated known association or
through a co-occurrence mentioned in a biologically relevant context
[71]. Consider a topic such as Alzheimer’s disease (AD), which is an
irreversible, progressive brain disorder. The profile for this topic
distilled from a suitable text collection could identify, for example,
terms representing the genes, proteins, symptoms, drug treatments,
other diseases, and population groups associated with the disease, i.e.,
“statistically related” to it. In the majority of the cases biologically
co-occurrence implies semantic association [72–75]. One way to
create a concept profile is to apply MeSH metadata on MEDLINE
databases using dictionary matching or automatic concept identifiers
such as MetaMap or cTAKES. A concept profile can be represented as,

Profile Tið Þ ¼ wi;1:m1;wi;2:m2; :::;wi;n:mnf g (1)

j ¼ 1; 2; :::nð Þ

where mj represents a MeSH term, wi, j its weight, and there are
totally n terms in the MeSH vocabulary.

3.3. Open discovery

An open discovery process aims for hypothesis generation by
navigating through connected concepts at different levels.
Initially, there is only the starting concept that can be a scientific
problem or research question and the end of the discovery is not
defined. For example, Swanson’s [48, 49] initial study was to find
a new treatment for Raynaud’s disease. The discovery approach
uses disease C as the initial concept searches for interesting clues
(B), typically treating drugs, molecular pathways, or physiological
processes that play a role in the disease under scrutiny. Next, the
approach finds A-terms, typically substances/drugs or pathways,
that act on the selected Bs. The major challenge of open discovery
support tools is to contain the vast amount of possibilities
identified in the initial search. Finally, a hypothesis can be
formulated like the substance A can be used for the treatment of
disease C. Since search space is expanded into multiple levels due

to connected concepts, a better understanding of the problem with
domain knowledge is necessary for open discovery [76–78].

3.4. Closed discovery

A closed discovery process starts with known concepts at both
ends A and C respectively. In this process, the approach searches for
B terms that can support the claim that the A–C association is a
relevant one. For the sample example as discussed above the
closed discovery approach starts from both disease C and
substances/drugs A, the approach searches for common
intermediate B terms. The more pathways or physiological
processes between A and C in the search results, the more likely
this hypothesis is a valid one [79–81]. Due to the simplicity and
better search paradigm, most of the LBD approaches are focused
on closed discovery. Since both concepts are already known, the
approaches simply search for B terms between them. Various
association hypotheses such as gene-disease and drug-disease are
generated using a closed approach [82–87]. Novel potentially
relevant interesting and spurious biological link identification
using open and closed discovery approaches is depicted in Figure 3.

4. Applications in BTM

Because of the sheer volume of biomedical research literature,
scientists face significant challenges when trying to sift through all
relevant articles on a particular disease, gene, chemical, or miRNA
to formulate research hypotheses or uncover novel connections.
One of the early landmark studies in LWAS was conducted by
Swanson DR, who pioneered a hidden relationship model by
examining disjoint sets of literature. This approach led him to
propose several innovative hypotheses—such as the links between
magnesium and migraine, fish oil and Raynaud’s syndrome, and
somatomedin C and arginine [48, 49, 52]. None of these
connections had been predicted or reported before, but they were
subsequently confirmed, marking the beginning of a new era in
BTM. Another well-known TM-based knowledge discovery system
developed by Smalheiser et al. [87] named Arrowsmith uses B-term
phrases and title words connecting the articles with a two-node
approach-based searching [88]. Following this root and adapting the
famous ABC principle, Hristovski et al. [64] released BITOLA, a
MEDLINE database-based meaningful relation generator using
user-given MeSH terms as pivot concepts. The web server expects
the user to give a meaningful concept and incorporates external

Figure 2. Open and closed discovery approaches in literature-based discovery

Medinformatics Vol. 00 Iss. 00 2025

05



knowledge sources such as a chromosomal location for performance
improvement [64]. Another major real-time discovery tool FACTA+
created by Tsuruoka et al. [88] is based on concept co-occurrence at the
abstract level integrating hidden association generation, bio-molecular
events, and network visualization [89]. Fleuren and Alkema [17]
developed CoPub 5.0, an integrative framework with co-occurrence
and keyword-based searching, ABC principle-based hidden
connection, and Cytoscape software-based network construction.
CoPub 5.0 has three search modes namely term search (to retrieve
abstract and keyword relation extraction for a particular term), pair
search (analyze the new relation or known relation), and set of
terms (relation between multiple terms) to answer biological
questions. Figure 4 shows various approaches and examples in

LBD systems such as co-occurrence bases, semantic relation-based,
graph-based, and hybrid approaches. Table 3 represents details of
knowledge discovery tools using BTM sources. Table 4 shows the
major LBDs in biomedicine using the ABC principle.

Recent work by Tropmann-Frick and Schreier [89] discussed
the various drug repurposing approaches for COVID-19 using
LBD showing the potential and immediate applications of the
field. They used three LBD systems Arrowsmith, BITOLA, and
SemBT for the search of repurposable drugs for COVID-19 using
the ABC principle. With a closed discovery approach using
Arrowsmith, they used COVID-19 and the drug “remdesivir” as A
and B concepts, for open discovery they used “molecular
mechanisms of pharmacological action” as the target concept.

Figure 3. Novel potentially relevant interesting and spurious biological link identification using open and closed discovery
approaches. Through closed discovery, Disease A and Drug C are connected through gene B and miRNA B whereas other
discoveries are not relevant. Through open discovery, Disease A to Drug C is connected via Gene B, Disease A to Disease C is
connected via Drug B, and other connections are not relevant.
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Using BITOLA they used SARS and “chloroquine” in closed
discovery and SARS and “lactate dehydrogenase” as source and
target concepts, respectively. The study generated rank frequency,
rank coefficient, frequency (AB, BC), novel discovery status,
confidence values, etc., to statistical insights into the discovery [89].

One improvement to the ABC principle is discussed by Baek
et al. [90], in their study of plausible new hypothesis generation
from PubMed. They discussed two aspects namely context
surrounding and clinical validation. The proposed solution
emphasized multiple B terms in metabolite-related hypotheses with
diverse biological types. The study found that lactosylceramide and
arterial stiffness are associated with the involvement of a potential
pathway connecting the entities and nitric oxide, malondialdehyde,
and they clinically validated the generated hypothesis [90]. The
same author further expanded the new ABC principle to context-
based and context-assignment-based ABC models by using four
biological context elements: cell, drug, disease, and organism. This
study showed that there is a 50–70% improvement in precision for
identifying an association between APOE–MAPT and FUS–
TARDBP by comparing the co-occurrence-based ABC model with
the context-based ABC models [91].

5. Deep Learning LBD Models

5.1. Transformer models

Contextual word embedding and transfer learning methods
provided immense momentum and new dimensions to NLP. The
biomedical domain adapted this momentum very quickly through
various models pre-trained from weights such as BioBERT [92]
or generated from scratch such as ELECTRAMed [93]. The
baseline for these models is the Bidirectional Encoder
Representations from Transformers (BERT) architecture, a
bidirectional self-attention model that uses encoder layers for two
tasks, masked language modeling and next sentence prediction.
Lee et al. [92] proposed a domain-specific language model
BioBERT (Bidirectional Encoder Representations from
Transformers for Biomedical Text Mining) by further training the
weights of BERT (English Wikipedia and Books Corpus) using
PubMed abstracts and PMC full-text articles. The BioBERT
model base and large versions were shown to outperform general
BERT models and other biomedical models in three tasks, namely
Named Entity Recognition in 9 biomedical datasets, Relation
Extraction in 3 biomedical datasets, and Question Answering in 3
biomedical datasets [92]. The wider success of BioBERT enabled
the researchers to develop new transfer learning models using
biomedical and clinical literature resulting in PubMedBERT [94],

ClinicalBERT [95], MT-clinical BERT [96], Umlsbert [97],
ELECTRAMed [93], BioMegatron [98], etc. Most of these
models are pre-trained with various combinations of scientific
literature data PubMed and PMC, clinical data MIMIC-III, and
biological databases MeSH and UMLS Metathesaurus.

Even though these models are trained with entire biomedical
literature (29 M) knowledge and are performing well in entity
recognition, linking, and summarization tasks, a well-designed LBD
task is not yet widely formulated using biomedical transfer learning
models. Very recently, Sybrandt et al. [99] proposed AGATHA, a
graph-based transformer model for hypothesis generation. This deep
learning-based system using SciBERT tested using a temporal
holdout set used a data-driven ranking criteria for generating new
biomedical connections. The study constructed large-scale semantic
graphs containing over 10 billion edges, representing sentences,
entities, n-grams, lemmas, and terms derived from UMLS and
MeSH, along with predictors from SemRep. Term pairs were
ranked, and the generated hypotheses were validated using methods
such as Heuristic-Based Ranking, Subdomain Recommendation,
Edge2Vec Comparison, and Ablation Studies [99]. These new
approaches demonstrate that neural word embeddings, such as
BERT—which capture sentence context and perform well across
multiple prediction tasks—hold significant potential for literature-
based discovery (LBD). Deep learning-based discovery models like
AGATHA which is exploiting the association of contextual vector
representations and graph neural networks (NNs) are opening a new
dimension for researchers in biomedicine.

Very recently, Millikin et al. [100], introduced Serial
KinderMiner (SKiM) available as an open-source tool and web
interface which identifies ABC linkages for LBD discoveries and
additionally reported the results for drug repurposing and a case
study using Cancer literature. The authors further supplemented the
SKiM tool with a KG and transformers to interpret the discoveries.
As step 1, the proposed algorithm used case-insensitive matching of
the user-given terms to get the indexed PubMed abstracts and
extracted the co-occurred terms. In step 2, a KG was generated
from 34 million PubMed abstracts using entities and relation
identified by a fine-tuned PubMedBERT using annotated data.
Finally, an ABC relation is provided only if it is present in both co-
occurrence extraction and in the KG [100].

5.2. NNs

Crichton et al proposed four graph-based, NN methods using
Large-scale Information Network Embedding (LINE) in open and
closed discovery and compared the performance with the
LION LBD system in the context of cancer case discoveries and a

Figure 4. Various approaches and examples in LBD systems
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Table 3. Detailed representation of knowledge discovery tools using biomedical text mining

Discovery tool Web-Link System description Type Current status

DigSee (Kim et al., 2017) http://gcancer.org/digsee Direct(explicit) gene-disease associations from genes involved in
the bio-molecular events with sentence scoring

Online Tool Inoperative

LION LBD (Pyysalo et al., 2018) http://lbd.lionproject.net Implicit and Explicit associations generation using mapped
ontology and concept graph with a special emphasis on Cancer

Online Tool Working

The Implicitome (Hettne et al., 2016) http://knowledge.bio Indirect(implicit) gene-disease associations using concept profiles
using the ABC principle and association score

Online Tool Inoperative

Textpresso Central (Muller et al., 2018) http://www.textpresso.org/tpc In-depth search and annotation tool with customization and
integration option

Online Tool Inoperative

Beegle (ElShal et al., 2015) http://beegle.esat.kuleuven.be/ Implicit and explicit associations identified through co-occurrence
and concept profile, integrated with a prioritization tool

Online Tool Inoperative

CoPub 5.0 (Fleuren et al., 2011) http://www.copub.org Integrative framework with co-occurrence and keyword-based
searching, ABC principle-based hidden connection

Online Tool Inoperative

GS2D (Miguel A. Andrade-Navarro
and Jean Fred Fontaine, 2016)

http://cbdm.uni-mainz.de/geneset2diseases Direct(explicit) gene-disease associations with co-occurrence
statistics and disease enrichment analysis

Online Tool Available

FACTA+ (Tsuruoka et al., 2011) http://refine1-nactem.mc.man.ac.uk/facta/ Concept co-occurrence at the abstract level integrating hidden
association generation, bio-molecular events, and network
visualization

Online Tool Inoperative

Anni 2.0 (Jelier et al., 2008) http://www.biosemantics.org/anni Implicit and Explicit associations with co-occurrence and
ontologies

Online Tool Inoperative

Arrowsmith (Smalheiser et al., 2009) http://arrowsmith.psych.uic.edu B-term phrases and title words connecting the articles with a two-
node approach-based searching

Online Tool Working

FACTA (Tsuruoka et al., 2008) http://www.nactem.ac.uk/software/facta/ Direct(explicit) associations with co-occurrence statistics and
point-wise mutual information

Online Tool Working

PolySearch (Cheng et al., 2008) http://wishart.biology.ualberta.ca/polysearch Large number of dictionaries and bag-of-words for direct(explicit)
associations

Online Tool Working

DISEASES (Pletscher-Frankild et al., 2015) http://diseases.jensenlab.org/ Direct(explicit) associations integrated with cancer mutation data
and manually curated databases

Online Tool Working

PolySearch2 (Liu et al., 2015) http://polysearch.ca Update of PolySearch with tightness measure based on word
position

Online Tool Working

Anni (Jelier et al., 2007) http://www.biosemantics.org/Anni Concept profile weighting using likelihood ration Online Tool Inoperative
BITOLA (Hristovski et al., 2005) http://www.mf.uni-lj.si/bitola/ User-given MeSH term as pivot concepts with external knowledge

sources such as chromosomal location
Online Tool Working

iTextMine (Ren et al., 2018) http://research.bioinformatics.udel.edu/itextmine Automated workflow with parallel processing for explicit
associations

Online Tool Working

DEXTER (Gupta et al.,2018) http://biotm.cis.udel.edu/DEXTER Disease expressions extraction with co-occurrence and argument
filtering

Online Tool Working

MELODI (Elsworth et al., 2018) www.melodi.biocompute.org.uk Graph-based database for mechanistic pathways identification Online DB Working
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time-slicing based approach with post-cut-off publication year
bases evaluation sets [101]. Baseline models were generated using
8 co-occurrence metrics namely Co-occurrence count, Document
count, Jaccard Index, Symmetric conditional probability,
Normalized point-wise mutual information, Chi-squared (χ2),
Student’s t-test (t-test), and log-likelihood ratio. The neural methods
are proposed as link prediction where node embeddings are created
using LINE along with Jaccard Index-based weighted edges [101].

For closed discovery,Multi-Layer Perceptron (MLP) architecture
is trained as a classifier with the link betweenA and C being taken into
account from the graph. The first model Closed discovery 1 (CD-1)
generated a score for every A-B or B-C link as the second model
Closed discovery 2 (CD-2) A-B-C embeddings link as the single
input trained the model to assign a prediction score for the entire
association A-B-C. The authors claimed that this approach gives
more flexibility in terms of the length of the association (the
number of B entities involved in the association). The Open
Discovery 1 (OD-1) followed the same pipeline as CD-1 with a
difference in using the accumulator function for ranking based on
prediction scores. The final model Open Discovery 1 (OD-2) used a
convolutional neural network (CNN) with a single vector input and
prediction output pipeline. This model allowed the removal of
aggregator and accumulator functions along with the merging of
many paths from A-Bs to the same C concept. A link is given as a
single-dimension input to CNN and generates an A-C link
prediction score. To maintain a consistent input window size, the
authors used elementwise summation and applied zero padding to
fill any gaps. This CNN model used a ReLU activation, max
pooling, and Softplus activation functions [101]. This final model
also gives insights that we can use the other deep learning or
transformer architectures such as BERT for LBS where a token
length of 512 or fixed is expected as input. This approach also
sheds light on the use of graph NNs in LBD.

Preiss [102] investigated a novel approach to drug repurposing
by analyzing word evolution in biomedical literature. Traditional
LBD connects knowledge pairs from separate publications, often
leading to an overgeneration of potential repurposing candidates.
Applications of NNs to LBD circumvent the first and last
problems by utilizing text directly, eliminating the need for
separate extraction of knowledge pairs. The authors propose
further exploration of NNs, specifically by using word
embeddings to detect changes in a drug’s context before it is
repurposed and by evaluating the accuracy of a model based on
time series word embeddings to predict a drug’s suitability for
repurposing. This study proposes using word embeddings, which
capture the context of words in chronological publication

intervals, to detect changes in drug usage. By constructing time
series word embeddings from MEDLINE abstracts and annotating
repurposed drugs, the researchers trained deep learning models to
predict repurposing potential. The study generates bi-monthly
word embeddings from MEDLINE abstracts to create time series
for each drug, focusing on changes in context over time. Two
labeling methods, based on UMLS relations and SemRep
extracted triples, were used to annotate instances of drug
repurposing. Deep learning models were then trained using these
time series and annotations, with 5-fold cross-validation
performed to optimize hyperparameters and evaluate accuracy.
The results show a prediction accuracy of 65% using UMLS
labels and 81% using SemRep labels, demonstrating the method’s
effectiveness. The author claimed that the approach offers a
scalable and data-driven alternative to traditional LBD methods,
potentially expediting the identification of candidate drugs for
repurposing [102]. Cuffy and McInnes [103] employed a NN
architecture for LBD, representing terms as concepts through
PubTator and embedding them using the LINE algorithm. The
model receives A and C concept embeddings as input and
generates probability distributions for all B terms, identifying
explicit and implicit relationships. Three methods—concept
averaging, concatenation, and the Hadamard product—are used to
combine A and C embeddings, with feature scaling applied to
enhance model performance. The model’s output is represented in
two ways: a reduced output with a subset of unique concepts
and a full output encompassing all concepts in the dataset.
Reduced output improves computational efficiency and model
generalization, making it ideal for hypothesis testing, while the
full output captures a wider range of relationships for hypothesis
generation. The model is trained with binary cross-entropy loss
and evaluated by ranking predicted B concepts against known B
concepts. This approach significantly reduces the need for
domain-specific knowledge and manual effort in hypothesis
generation and testing [103].

Yiyuan et al. presented a graph embedding-based link
prediction method for LBD in the context of AD. The researchers
collected an AD-specific corpus and constructed a KG from it,
annotating 16,452 papers published between 1977 and 2021 with
relevant AD-specific concepts and relationships. They applied
graph embedding techniques to predict new knowledge by
identifying potential links between nodes in the graph. The study
evaluates the impact of different link prediction models and time-
sliced evaluation methodologies on the effectiveness of LBD.
Results showed that the Structural Deep Network Embedding
(SDNE) model consistently performed best in predicting links as
knowledge evolved over 20 years. The study highlights the
importance of considering varying prediction window lengths, as
this can significantly impact the evaluation and interpretation of
LBD models. The approach demonstrates potential for scalable
knowledge discovery in AD and can be generalized to other
diseases [29]. Wang et al. [104] introduced Contextual Literature-
Based Discovery (C-LBD), a new approach for generating
scientific hypotheses by integrating background contexts and seed
terms into the hypothesis generation process. This method
contrasts with traditional LBD, which typically focuses on
predicting pairwise relations between discrete concepts without
considering the broader context. The researchers propose a
modeling framework that retrieves “inspirations” from past
scientific papers to ground the generated hypotheses in relevant
contexts, enhancing their relevance and novelty. The framework
includes two tasks: idea-sentence generation and idea-node
prediction, utilizing various retrieval modules such as semantic

Table 4. Important literature-based discoveries in biomedicine
using the ABC principle

Medical entity 1 (A) Medical entity 2 (C)

Migraine Magnesium
Raynaud disease Fish Oil
Indomethacin Alzheimer’s Disease
Estrogen Alzheimer’s Disease
Calcium-Independent Phospholipase A2 Schizophrenia
Magnesium deficiency Neurologic
Thalidomide Chronic Hepatitis C
Testosterone Sleep
Somatomedin C Arginine
Chlorpromazine Cardiac Hypertrophy
Diethylhexyl (DEHP) Sepsis
Sleep Depression

Medinformatics Vol. 00 Iss. 00 2025

09



similarity, KGs, and citation networks. The study evaluates the
performance of different models, including GPT-4, showing that
while advanced models like GPT-4 can generate contextually
relevant ideas, they often lack the technical depth and novelty
found in human-generated scientific ideas. The research highlights
the challenges and potential of using AI to assist in scientific
discovery, demonstrating improvements over traditional LBD
methods but also recognizing the need for further advancements
in generating high-quality, innovative hypotheses [104]. To
summarize the deep learning-based LBD approaches, we can use
a transformer model like BERT for hypothesis generation by
encoding sentences, entities, and their n-gram, to which semantic
predictions and UMLS and MeSH data can be infused. It is also
possible to train open and closed LBD systems using MLP and
CNN-based deep learning architecture by formulating the ABC
problem as link prediction using KGs where entities are
represented with a graph NN and A-B-C links are given as
sequence input with padding and the classifiers are generated a
prediction score for A-C links. These approaches will pave the
path to the future direction of LBD.

6. LLMs

Generative AI models, commonly known as LLMs [105] such
as OpenAI GPT-4 (https://openai.com/research/gpt-4) or Google
Med-PaLM [106], are one of the future directions of NLP and
biomedical informatics where one multi-modal can perform
various IE downstream tasks. There is ample support for the claim
that LLMs can outperform existing state-of-the-art models in
various NLP tasks, especially in biomedical informatics. Here we
discuss some of the future directions of LBD using LLMs.

Nedbaylo andDimitar [107] explored using ChatGPT for LBD to
generate research hypotheses by identifying hidden connectionswithin
scientific literature. This study uses GPT-3.5 and GPT-4 models to
simulate the discovery of relationships between medical concepts
through prompt engineering. The researchers employed a bifurcated
approach to prompt engineering, separating disease characteristics
and potential interventions to reduce bias. The method involved
using two distinct chat windows to reduce bias and enhance the
creative potential of the LLMs. In the first window, the model
generated a list of disease characteristics without revealing the
disease name, aiming to identify general physiological and
pathological traits. In the second window, based on these
characteristics, the model proposed potential interventions, also
without knowing the specific disease, to ensure the connections
were made independently. The prompts were meticulously designed
to be clear and specific, leveraging the LLM’s inherent knowledge
base to simulate the discovery of potential relationships, reminiscent
of traditional LBD methods. The researchers used both zero-shot
and few-shot learning techniques, evaluating the model’s ability to
generate novel connections and validating these outputs against
existing scientific literature using the ScholarAI plugin. Results
showed that while the models often defaulted to established medical
knowledge, they occasionally produced novel hypotheses, such as
the use of adaptogens like Rhodiola rosea for migraine
management. However, the black-box nature of LLMs and the
difficulty in steering them towards innovative connections present
significant challenges. The major one was since GPT-4’s training
data are not publicly disclosed, there is no option to determine if
the predictions are actually connecting two disjoint literature sets.
With LLMs, it is challenging to know if the model is filling in gaps
or relying on existing literature in its training data. Another major
challenge was that without references for its outputs, tracing the

LLM’s “thought process” is difficult, making validation heavily
dependent on empirical testing and clinical trials, which may not
always be feasible. The authors also noted that even with a few-
shot approach, prompting LLMs to generate novel hypotheses
remains challenging, as the models tend to produce well-established
or known information. Even with these challenges, the study
underscores the potential of LLMs in enriching the LBD process
but highlights the need for further research and advanced prompt
engineering techniques to optimize their application. Studies like
this open new dimensions in LDB using LLM.

One solution to this can be the use of Retrieval-augmented
generation (RAG) [108]. Recently, LLMs have been queried with
knowledge source-based prompts using RAG to improve the quality
of the response along with necessary references. Generating
discovery with reference allows researchers to verify the discovery
process back to the root of LBD, the concept profiles. With
additional prompting strategies like the chain of thought (CoT)
[109], researchers can control the LLM discovery in the intermediate
steps. Another approach will focus on prompting LLMs to search
through the vast amount of text, find anomalies or less reported
results compared to highly published association studies as well as
validation of the novel discovery consistency with existing
knowledge. In the future, we may see LBD systems deployed using
AI agents where multiple LLMs work together for LBD.

7. Limitations and Future Directions of LBD

LBD has demonstrated significant potential in accelerating the
identification of hidden associations within vast bodies of scientific
literature. Since its introduction in 1989, it has remained a
foundational technique in BTM. However, several limitations
continue to hinder its full potential, particularly in the creation and
use of underlying knowledge bases. Current approaches often rely
on incomplete or inconsistently structured data. A key area for
improvement lies in integrating advanced NLP tools with curated
biomedical databases and bioinformatics resources. By enriching
these knowledge repositories through precise concept extraction,
semantic normalization, and multi-source integration, researchers
can enhance both the quality and relevance of discovered associations.

Despite progress in NLP and TM, many LBD systems still fail to
generate biologically or clinically valid concept linkages. This
limitation is especially critical in biomedical domains where
inaccurate associations can mislead downstream research. To
address this, future systems should incorporate advances from KG
networks, which provide structured and explainable representations
of relationships between concepts, and social media mining, which
can offer real-world contextual signals often missing in formal
literature. Additionally, many existing systems do not adequately
account for contextual relevance—often disregarding concept
features distributed across multiple contexts or de-emphasizing
medically important traits that fall outside the primary research
focus. Other promising future directions include enhancing logic
and reasoning capabilities for hypothesis generation, reducing
dependence on manual curation and domain expertise, and
developing fully automated LBD pipelines. Interactive and dynamic
visualizations of discovered concepts and their interrelations could
further improve user interpretability and engagement. More
recently, NN and transformer-based architectures have been
proposed for LBD tasks, bringing new opportunities for semantic
generalization and automated inference.

A transformative shift in LBD research is now underway with
the emergence of LLMs such as GPT-4, Gemini, and Llama. These
models, when integrated with LBD frameworks, can simulate the
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reasoning needed to identify latent connections between medical
concepts. Figure 5 illustrates how LLMs operationalize the
classical ABC model: first identifying intermediate features
(Concept B) related to a known concept (Concept A), then
independently generating candidate treatments or interventions
(Concept C) that interact with Concept B. This enables the
model to hypothesize indirect or hidden connections between A
and C, potentially revealing novel therapeutic strategies.
Critically, the integration of RAG systems and KGs significantly
strengthens this LLM-driven discovery framework. While
LLMs can generate plausible connections from pre-trained
knowledge, they may lack access to real-time or domain-specific
information. RAG systems address this gap by retrieving up-to-
date biomedical literature from vectorized databases during
inference, enhancing relevance and recency. In parallel, KGs
provide structured validation of proposed relationships—linking
drugs, diseases, symptoms, and pathways with logical
consistency. Together, RAG and KG modules transform
LLM-based LBD from a black-box heuristic process into a
semi-transparent, evidence-grounded reasoning pipeline. This
convergence of technologies marks a new era in hypothesis
generation—one that blends generative intelligence with
verifiable biomedical evidence.
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Figure 5. Conceptual framework of literature-based discovery (LBD) using Large Language Models (LLMs). This illustration follows
the classical ABCmodelwhereConceptA (e.g., disease) andConceptC (e.g., treatment) are indirectly linked through a sharedConceptB
(e.g., physiological trait or pathological feature). The LLM autonomously generates two steps: (A) identifying ConceptBs related to
ConceptA and (B) determining interventions (ConceptCs) that interact with ConceptBs. This bidirectional discovery process
is supported by retrieval-augmented generation (RAG) systems and knowledge graphs to validate or enrich the proposed
relationships. The ultimate goal is to reveal a novel or “hidden connection” between A and C through structured reasoning.
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