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Abstract: Randomized control trials (RCTs) are the gold standard for establishing causality in drug efficacy, but they have limitations due to strict
inclusion criteria and complexity.WhenRCTs are not feasible, researchers often turn to observational study analysis, where explainableAI (XAI)
models offer a compliment to observational study approach for understanding cause-and-effect relationships. In this study, we employed an AI
model using a historical COVID-19dataset consisting of 3,307 patients fromahospital inDelhi, India, to evaluate drug efficacy.Byapplying eight
XAI models and traditional statistical methods, such as multivariate analysis, we identified key factors influencing COVID-19 survival. AI
interpretability techniques were used to determine feature importance in the outcomes. The XGBoost classifier outperformed other models
with a weighted F1 score of 91.7%, ROC-AUC of 92.2%, and sensitivity of 93.8%. However, both the XAI model (trained XGBoost
supplemented with explainable AI method) and forest plot revealed that medications such as enoxaparin, remdesivir, and ivermectin did not
show survival benefits. While XAI models provide valuable insights and individual-level interpretability, they should not replace RCTs in
assessing the safety and efficacy of new treatments but can aid in clinical decision-making and suggest future research directions.
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1. Introduction

Randomized controlled trial (RCT) is a gold standard study design
to test the efficacy and safety of a medical treatment or a procedure [1].
RCT is designed to minimize bias and minimize confounding factors
and provides evidence for efficacy of a drug to achieve its
therapeutic objectives [2]. However, RCT can be complex and
expensive and has strict inclusion criteria, making it difficult to
conduct in all situations. When RCTs are not feasible, observational
studies are used to understand the cause-and-effect relationship [3].
An observational study can be either retrospective or prospective [4].
Such a study provides valuable complementary information related to
drug efficacy or treatment on real-world population and helps to
inform clinical practice and public health policy [5].

During the early stages of the COVID-19 pandemic, observational
studies became critical due to the immediate need for treatment insights,

even though their inherent limitations, such as confounding factors,were
well recognized[6,7].Earlyobservational studies,oftenbasedonlimited
sample sizes, initially supported various treatments for COVID-19, but
their findings were later contradicted by more rigorous RCTs. This
underscores the potential discrepancies between observational and
RCT-derived evidence. For example, observational data initially
suggested benefits of simvastatin in treating moderate-to-severe
chronic obstructive pulmonary disease exacerbations, yet the
STATCOPE trial later showed no such efficacy [8].

An explainable AI (XAI) model can be built using historical data
to predict a drug’s efficacy and to find the relationship between the
cause (drug) and effect (survival). This can provide valuable insights
into the underlying mechanisms and processes that drive the
observed associations [9]. An XAI model complements the
observational study by using advanced machine learning algorithms
to analyze large amounts of data and identify patterns and
relationships that may not be apparent from observational data alone
[10]. Moreover, a XAI model can provide a more comprehensive
view of the relationship between the drug and the outcome because
it considers multiple factors (comorbidity, symptoms)
simultaneously. Additionally, XAI models can be used to make
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predictions about outcomes and to test the robustness and stability of
the results [11]. This can be especially useful in complex situations
such as a new disease, for example the COVID-19 pandemic, where
various unknown clinical factors may impact patient outcomes. In
this study, we aim to explore drug efficacy hypotheses using an
XAI model developed from historical observational COVID-
19 data.

The contributions of our study are as follows (Figure 1):

1) We developed an XAI model to identify the factors affecting
mortality in COVID-19 patients using historical COVID-19 data.
We also hypothesize whether an XAI model can serve as a
complement toObservational andRCTswhenRCTs are not feasible.

2) We compared the results generated from observational study
analytics with those from the ML-based XAI model. The
ML-based XAI model demonstrated better accuracy compared
to logistic or linear regression models.

3) Our proposed model provides individual-level risk interpretation
using techniques such as SHAP (Shapley Additive Explanations)
and LIME (Local Interpretable Model-agnostic Explanations) for
enhanced interpretability.

2. Materials

2.1. Data description

This study was approved by the Institutional Ethics Committee of
Maulana Azad Medical College (See Ethical Statement for details). The
study utilizes historical, digitally available datasets of 3,307 COVID-19
patients selected from approximately 30,000 total admissions at the Lok
Nayak Hospital, New Delhi, India. All patients included in this dataset
tested positive for COVID-19 and were admitted between March
2020 and July 2021. Mortality data from 2,955 deceased patients and
data from 352 discharged patients were retrieved for analysis (Table 1).

Figure 1. Flow diagram of an interpretable AI model for survival outcome prediction. The data of COVID-19 patients (death and
discharged) were acquired. Four types of features were extracted, namely demographics, comorbidity, symptoms at the time of
admission, and treatment given. Statistical and machine learning models were employed on the features to predict the survival
outcome. Finally, LIME and SHAP are used to demonstrate the importance of each of the features in predicting the survival.

Table 1. The results from a multivariate logistic regression analysis of survival outcomes (death vs. discharged) among COVID-19
patients

Feature group Coefficient (Coef) Standard error (SE) z-value P-value Confidence interval (95%)

Demographics Age 0.2097 0.069 3.028 0.002 0.109–0.159
Gender_Female 0.0233 0.068 0.344 0.731 0.109–0.156

Comorbidity Heart disorder 0.1111 0.081 1.374 0.17 0.109–0.164
Kidney disorders 0.4844 0.086 5.641 <0.001 0.033–0.243
Hypertension −0.0395 0.078 −0.504 0.614 0.109–0.161
Tuberculosis 0.1013 0.069 1.473 0.141 0.033–0.236
Diabetes 0.0745 0.075 0.998 0.318 0.109–0.165
Thyroid disorder 0.1186 0.082 1.443 0.149 0.033–0.244
COPD 0.0141 0.07 0.201 0.841 0.109–0.157

Symptoms cough −0.1377 0.068 −2.023 0.043 0.033–0.238
diarrhea 0.0393 0.066 0.6 0.549 0.109–0.158
Breathlessness 0.3714 0.066 5.612 <0.001 0.033–0.245
Headache −0.1089 0.056 −1.944 0.052 0.109–0.162
Body Weakness Removed from multivariate analysis

Treatment Remdesivir 0.4923 0.097 5.096 <0.001 0.033–0.239
Enoxaparin 1.062 0.073 14.619 <0.001 0.033–0.241
Vit_d −0.0871 0.059 −1.486 0.137 0.033–0.240
Zinc −0.6571 0.11 −5.979 <0.001 0.109–0.160
Vit_c −0.5432 0.116 −4.672 <0.001 0.109–0.163
Ivermectin 0.1808 0.081 2.242 0.025 0.033–0.242
on_steroids −18.1649 0.621 −29.252 <0.001 0.033–0.237

Medinformatics Vol. 00 Iss. 00 2025

02



Table 1 summarizes the results from a multivariate logistic
regression analysis performed to identify factors significantly
associated with survival outcomes (death vs. discharged) among
COVID-19 patients. Each feature is represented along with its
corresponding regression coefficient, standard error, z-value, and
p-value. The confidence intervals indicate the precision and reliability
of each coefficient estimate. Positive coefficients imply increased
odds of mortality, while negative coefficients indicate decreased odds.
Features identified as statistically significant (p< 0.05) suggest a
meaningful association with the patient survival outcome.

This dataset includes four types of features: two demographic
features (age and gender), eleven symptoms noted at the time of
admission (cough, body weakness, breathlessness, headache,
diarrhea), seven comorbidity features detailing the existing ailments
of the admitted patients (hypertension, diabetes, tuberculosis, thyroid,
chronic obstructive pulmonary disease (COPD), kidney disease, and
heart disease), and features comprising of the treatment given to the
patients to cure COVID-19 (vitamin C, vitamin D zinc, Remdesivir,
Ivermectin, Enoxaparin). Table 1 shows the distribution of data
among the two classes: one class consisting of patients who died in
the hospital after admission owing to COVID-19 (called mortality
class) and, the other class of patients who survived COVID-19 and
were discharged (called the survival class).

3. Methods

3.1. Statistical tests

Once the dataset is prepared and prepossessed, we implemented a
multi-variable regression model to estimate the odds ratios for each
predictor while adjusting for potential confounders. This model
allows us to determine the independent effect of each variable on
the outcome (mortality) by controlling for other variables in the
model. Each predictor's odds ratio, along with its 95% confidence
interval and p-value, was reported to assess its strength and
statistical significance in relation to the outcome. We used Python
and Jupyter Notebook to calculate the P-value. For calculating the
odds ratio and confidence intervals, we utilized the “statsmodels.api
version 0.14.1” module from the Python library. Additionally, we
employed the “scikit-learn (sklearn)” library for machine learning
development [12, 13].

The dataset exhibited a high degree of class imbalance, with a
ratio of 2955 discharged patients to 352 deaths. This imbalance
poses a challenge as models may over-fit in favor of the majority
class. To address this, we applied random oversampling and
undersampling techniques. Specifically, we utilized the synthetic
minority oversampling technique (SMOTE) for random
oversampling and random undersampling to balance the
dataset [14]. These methods were implemented to address class
imbalance and improve the performance of our models. We also
employed K-fold cross-validation, a model validation strategy
that evaluates how the findings of a statistical method will
generalize to an independent dataset. Cross-validation is a
resampling process that tests and trains a model using various
chunks of the data in successive rounds. It is particularly useful
in predictive modeling to assess model performance in practice.

3.2. Machine learning

We built eight machine learning classifiers, including logistic
regression, random forest, extra tree classifier, support vector
machine (SVM), Naive Bayes, and XGBoost. Logistic regression
was chosen for its interpretability and simplicity, while random

forest, extra tree classifier, and SVM were selected due to their
robustness and effectiveness in handling complex, non-linear
relationships. Naive Bayes was included for its computational
efficiency and performance with categorical data. Additionally,
boosting methods such as XGBoost were specifically employed
due to their proven capability to achieve high predictive
performance in classification tasks by iteratively improving weak
learners. As a part of post-hoc analysis, SHAP [15] and LIME [16]
algorithms were used for the interpretability of the best performing
ML model, that led to the design of an XAI model.

SHAP uses different visuals to show the value of features and
how they contribute to predictions. LIME stands for Local
Interpretable model-agnostic explanations. LIME is model-
independent, which means it can be used with any machine
learning model. It tries to figure out what the model is doing by
changing the input of data samples and seeing how the predictions
change. Model-specific approaches examine the core components of
the black box machine learning model and how they interact in
order to gain a better understanding of it. Local model
interpretability is provided by LIME. It evaluates every feature
value in a single data sample to infer its influence on the output.

To further improve the model, we used sampling techniques to
address the bias in the data using undersampling and oversampling
techniques. We first employed random oversampling and random
undersampling techniques to find that the oversampling is giving
us better results. Subsequently, we applied more advanced
oversampling techniques such as the adaptive synthetic
(ADASYN) algorithm [17] and SMOTE, which effectively
address class imbalance by generating synthetic examples of the
minority class, thus enhancing the classifier’s performance on
imbalanced datasets. Among these methods, we achieved optimal
classification performance using the AdaBoost classifier with
XGBoost as the base estimator.

3.3. Evaluation metrics

The evaluation metrics of classifiers were computed using the
numbers of true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) for a binary classifier, where TP indicates the
number of samples of positive class (mortality class) identified
correctly, FP indicates the number of samples of negative class
(survival class) identified incorrectly as the positive class, TN
indicates the number of samples of negative class identified
correctly, and FN indicates the number of samples of positive
class identified incorrectly as the negative class.

4. Results

4.1. Baseline characteristics

The COVID-19 patients’ data consisted of two classes, the
mortality class (Positive class or the class 1) and the survival class
(Negative class or the class-0). The data are summarized in
Table 1 and Figure 2.

The forest plot illustrates that several factors are significantly
associated with increased mortality risk in COVID-19 patients.
Notably, breathlessness, kidney disorders, and advanced age all
show odds ratios (ORs) greater than 1, with confidence intervals
(CIs) that do not cross 1, indicating these are strong predictors of
mortality. Enoxaparin, remdesivir, and ivermectin demonstrate a
markedly increased risk with an OR greater than 1, highlighting
their potential adverse association with mortality. In other words,
these medications did not prevent the mortality. Conversely, zinc
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and Vit C show an OR below 1, suggesting a potential protective
effect, and did not cross the CI line indicating that this finding is
statistically significant. These results underscore the importance of
managing comorbidities and patient characteristics to improve
COVID-19 outcomes.

The mean age of COVID-19 patients who survived is 49 years,
and the mean age of mortality class is 57 years. The majority of
COVID-19 patients admitted to hospitals were males (64%). A
similar gender ratio was observed in survival and mortality class
patients. The most common symptoms were breathlessness and
cough, while a less number of patients complained of diarrhea and
headache. Among all symptoms, breathlessness and cough were
observed to have statistically significant differences between the
survival and the mortality classes. Comorbidity of kidney disorder
was found to be statistically significant between the two classes.

4.2. ML model performance

We first trained the ML models (Logistic Regression, Kernel
SVM, Complement NB, Random Forest, Extra Trees Classifier,
XGBoost, AdaBoost) using cost-sensitive loss functions. Based on
the performance of these ML models on AUC, sensitivity, and
specificity, random forest (AUC 90%, sensitivity 97%, and

specificity 51%) and XGBoost models (AUC 93%, sensitivity
96%, and specificity 56%) were the best performing model among
all models (Table 2). To further improve the model performance
in terms of specificity, we trained the random forest and XGboost
models using undersampling and oversampling techniques. We
first employed random oversampling and random undersampling
techniques and observed that oversampling yielded better results
on our dataset. Next, we tried advance oversampling techniques
such as ADASYN algorithm and SMOTE [14, 17]. We used
5-fold cross-validation to generate five different sets (or folds) of
data. Five classifiers were trained, each choosing a different fold
as the test set (unseen data) for validating the classifier, while the
remaining four-folds were used with sampling techniques to train
the respective classifiers. Cross-validated results (one-fold) were
generated for evaluating the classifiers (Figure 3).

Table 3 shows the results generated using different sampling
techniques and averaged over all the 5-folds. We have shown
results of top two classifiers (Random forest and XGBoost) after
applying various sampling techniques. Among these, we got the
best overall classification performance with XGBoost classifier and
SMOTE as the sampling technique, which provided weighted F1
score, MCC, accuracy, ROC-AUC, sensitivity, and specificity score
of 91.7%, 58.8%, 91.3%, 92.2% 93.8%, and 70.2%, respectively.

Figure 2. This forest plot displays the odds ratios and 95% confidence intervals for various features assessed in the study. Each line
represents a different feature, with the odds ratio depicted as dot and the confidence interval shown as a horizontal line extending from
the lower to the upper bound. The vertical line indicates the null value (odds ratio of 1), where features with confidence intervals
crossing this line are not statistically significant. This plot allows for a visual comparison of the effectiveness of each feature in
relation to the reference.
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4.3. Interpretability

We applied interpretability techniques to the best performing
classifier, namely XGBoost with SMOTE as the sampling
technique, including all the features. We looked at the ML
interpretability using two approaches – global and local
interpretability. In the case of the former, we explained the
predictions of our ML models at a population level, whereas
in the case of the latter, we explained the model prediction for
a specific patient.

For the purposes of global interpretability, we used SHAP to
analyze our model. SHAP uses Shapley values [16] to determine

the importance and the role that each feature in the model
predictions. The SHAP summary plot, Figure 4 indicates how value
of each feature affects the classifier predictions and also ranks the
features on the basis of the mean absolute value of their Shapley
values, consequently showing their mean impact on the classification.

The SHAP summary plot (Figure 4) obtained from the trained
XGBoost model revealed the below observations on our dataset: (1)
Demographic features: males were observed to have a higher
likelihood of mortality compared to females. Also, a positive
correlation was observed between age and mortality (i.e., higher the
age, more is the risk to mortality). (2) Comorbidity features: The
occurrence of kidney disease, diabetes, or heart disorders in a patient
was noted to significantly increase the mortality risk of a patient.
Other comorbidity such as thyroid disorders, hypertension, and
tuberculosis also played a moderate role in increasing the mortality
risk of a patient as observed from the SHAP plot. (3) Symptoms:
Breathlessness, diarrhea, and body weakness stood out among the
symptoms as the ones most strongly linked to an increased risk of
mortality. Although cough was observed to have a little correlation
with mortality, it was not thought to be as important a characteristic
as the others. (4) Treatment: Among drugs used for COVID-19
patients, enoxaparin, remdesivir, and ivermectin did not prevent
mortality. These drugs were observed to be in the favor of mortality
class, while the other drugs including zinc, vitamin C, and vitamin D
were the most important features for the survival class.

We used LIME for the local interpretability (patient-level
interpretability) of the model. We have presented LIME results on
two samples – one of mortality and the other of a discharged
patient. The former patient (Figure 5) had comorbidity of heart
disease and tuberculosis and reported the symptom of body
weakness. Patient was administered several drugs, namely,
enoxaparin and remdesivir. Our model also assigned a very high
mortality score (100%) to this patient. In the case of latter patient
(Figure 6), we clearly observed that the patient did not have any
major symptoms and comorbidities and was not administered any

Table 2. Performance of chosen learning algorithms on the dataset using 5-fold cross-validation and class weights

Classifier wF1-score MCC Accuracy ROC-AUC Sensitivity Specificity

Logistic Regression 0.848 ± 0.011 0.475 ± 0.029 0.819 ± 0.014 0.929 ± 0.017 0.814 ± 0.017 0.858 ± 0.047
Kernel SVM 0.623 ± 0.042 0.223 ± 0.017 0.543 ± 0.044 0.800 ± 0.035 0.506 ± 0.053 0.852 ± 0.035
Complement NB 0.855 ± 0.006 0.469 ± 0.039 0.829 ± 0.008 0.903 ± 0.032 0.830 ± 0.009 0.818 ± 0.066
RandomForest 0.919 ± 0.009 0.557 ± 0.051 0.924 ± 0.007 0.903 ± 0.022 0.973 ± 0.003 0.517 ± 0.069
ExtraTreesClassifier 0.909 ± 0.008 0.508 ± 0.049 0.912 ± 0.007 0.867 ± 0.025 0.958 ± 0.004 0.520 ± 0.063
XGBoost 0.920 ± 0.010 0.568 ± 0.057 0.923 ± 0.009 0.935 ± 0.015 0.966 ± 0.004 0.562 ± 0.060
Adaboost* 0.916 ± 0.007 0.543 ± 0.046 0.920 ± 0.005 0.922 ± 0.012 0.968 ± 0.004 0.523 ± 0.068
Adaboost** 0.921 ± 0.007 0.568 ± 0.040 0.924 ± 0.007 0.925 ± 0.015 0.969 ± 0.005 0.548 ± 0.031

Note: *=XGBoost as base estimator; **=Decision Tree as base estimator; PPV = Positive Predicted Value; NPV = Negative Predicted Value

Figure 3. ROC curve plot of top 5MLmodel results. Results are
reported on a single 4:1 train test stratified split instead of 5-fold
cross-validation.

Table 3. Classification report after applying sampling techniques like random under/oversampling, ADASYN, and SMOTE

Sampling Classifier wF1-score MCC Accuracy ROC-AUC Sensitivity Specificity

Over-sampling RandomForest 0.914 ± 0.006 0.546 ± 0.040 0.914 ± 0.005 0.903 ± 0.017 0.953 ± 0.005 0.591 ± 0.065
XGBoost 0.894 ± 0.009 0.554 ± 0.025 0.881 ± 0.013 0.931 ± 0.015 0.890 ± 0.019 0.804 ± 0.057

Undersampling RandomForest 0.853 ± 0.013 0.478 ± 0.025 0.826 ± 0.018 0.920 ± 0.019 0.824 ± 0.024 0.844 ± 0.051
XGBoost 0.855 ± 0.007 0.479 ± 0.030 0.828 ± 0.010 0.921 ± 0.019 0.826 ± 0.012 0.841 ± 0.052

ADASYN RandomForest 0.913 ± 0.003 0.552 ± 0.026 0.911 ± 0.002 0.904 ± 0.019 0.945 ± 0.004 0.628 ± 0.047
XGBoost 0.905 ± 0.010 0.556 ± 0.057 0.897 ± 0.011 0.919 ± 0.018 0.916 ± 0.006 0.733 ± 0.076

SMOTE RandomForest 0.916 ± 0.009 0.565 ± 0.053 0.915 ± 0.008 0.902 ± 0.018 0.949 ± 0.001 0.633 ± 0.071
XGBoost 0.917 ± 0.011 0.588 ± 0.055 0.913 ± 0.012 0.922 ± 0.019 0.938 ± 0.008 0.702 ± 0.058

Note: *=XGBoost as base estimator; **=Decision Tree as base estimator; MCC = Matthew’s Correlation Coefficient
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drug such as enoxaparin or remdesivir.MLmodel assigned a very high
discharge score (98%) to this patient.

5. Discussion

Our study showed the potential of XAI models in providing the
valuable insights into the clinical decision-making process, thereby
identifying factors that contribute to outcomes. Consequently, XAI
models can serve as a valuable complement to RCT, providing more
information and enhancing our understanding of drug efficacy causal
relationships, particularly in situations where conducting an RCT
may be impractical or unfeasible. Notably, XAI models can be
used in assessing the efficacy of drugs when the traditional RCT
approach encounters limitations.

In our study, we found that among all the ML algorithms,
XGBoost classifier outperformed with demographic, comorbidity,
symptomatic, and treatment features. From XGBoost explainable
AI model, it is evident that the demographic feature of age was

significant, with individuals of higher age are shown to have an
increased likelihood of mortality. This observation aligns with
well-established findings from prior studies that indicate the older
population is more susceptible to severe COVID-19 outcomes and
mortality. Furthermore, it is observed that males face double the
risk of COVID-19 compared to their female counterparts. Hence,
the mortality is higher in male gender [18].

From the SHAP summary plot of the XAI model, it is shown
that Comorbidity factors like kidney disease, diabetes, heart
disease, hypertension, thyroid disorder, and tuberculosis
contributed to mortality in COVID-19 patients. These results were
true based on the latest studies [19–21]. In the meta-analysis study
by Lee et al. [20], it was found that the presence of
cardiovascular, cerebrovascular, and kidney-related comorbidities
in COVID-19 patients is strongly associated with an elevated risk
of mortality [21].

Next, we checked the literature for the feature of Symptoms. A
study with 100 COVID-19 hospital patients was done in Northern

Figure 4. Global interpretability SHAP summary plot using the XGBoost machine learning model. Each point on the plot represents
the SHAP value for an individual patient, indicating the contribution of each feature to the prediction of patient mortality. The y-axis
lists features ranked by their overall importance in predictingmortality, from highest (top) to lowest (bottom). The x-axis indicates the
SHAP value; positive values (right side) suggest an increased risk of mortality, whereas negative values (left side) indicate a decreased
risk. The color gradient represents feature values from low (blue) to high (red). For instance, features like enoxaparin, breathlessness,
remdesivir, age, kidney disorder, and ivermectin have high feature values (red dots) on the positive SHAP value side, suggesting these
factors increasemortality risk. Conversely, features such as zinc, vitamin C, and vitamin D have high values (red dots) on the negative
side, indicating their protective effect against mortality.
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Ethiopia. The researchers discovered that individuals who
experienced shortness of breath and bodily weakness had
considerably increased mortality odds [19]. This is confirmed by
our model as well because breathlessness is observed as the fourth
ranked in features correlating with the mortality class in our study.

The treatment enoxaparin, ivermectin, and remdesivir, which
were intended to prevent mortality, exhibited a positive
association with mortality in this study. Our study utilizing the
XAI model revealed that these drugs do not prevent mortality
effectively, while other features such as vitamin C, vitamin D, and
zinc are associated with improved survival rates. During the initial
stages of the pandemic, case studies and observational studies in
the literature indicated that anticoagulation therapy could
potentially decrease the severity and reduce mortality rates among
hospitalized COVID-19 patients [22]. Therefore, despite the lack
of RCTs, enoxaparin was routinely used in severe COVID-19
patients. Consequently, prophylactic-dose enoxaparin was widely
adopted as the standard of care and was included in the WHO
treatment guidelines as a recommended therapy [23]. Based on
these limited evidence, clinicians administered enoxaparin to
severe COVID-19 patients, which led to an increased risk of
bleeding and hence mortality rather than reducing the mortality
[24]. In the later stages of COVID-19, the RCT was done [25]
and a meta-analysis publication [26] was also published. These
studies did not support the use of anticoagulant to lower mortality
in all COVID-19 patients including those who were critically ill.
These studies reported that the greater anticoagulant doses
increased the risk of bleeding, while decreasing thrombotic events
[25, 26]. Indeed, our XAI model revealed that the presence of
drug enoxaparin favored mortality class, indicating that

enoxaparin could not prevent mortality in severe COVID-19
patients. Thus, the results of our XAI model about the use of
enoxaparin are consistent and proven with these latest RCTs and
meta-analysis [25, 26]. In fact, XAI can provide important
insights about the factors that may impact outcomes in COVID-19
patients in the early stages of a pandemic.

Similarly, our study has shown that remdesivir and ivermectin
drugs used on COVID-19 patients were actually not beneficial in
preventing the mortality. These results of remdesivir and
ivermectin, of not being beneficial in preventing mortality, were
confirmed from a systematic review [27]. Similarly, based on the
SHAP values obtained from our XAI model, vitamin C and
zinc were beneficial in reducing the severity and mortality in
COVID-19 patients and thus had an overall beneficial effect.
These results were also validated in the later studies [28].

These findings suggest that XAI cannot be a replacement for
RCTs, but rather is a compliment to observational studies in cases
where RCTs are not feasible or practical. Analysis generated by
XAI provides better initial insights similar to those of
observational studies. Furthermore, XAI provides the outcome
prediction score with a significance level of each feature via
SHAP score. SHAP summary plot has an important advantage
over observational studies. SHAP values provide a way to
interpret the results of the AI model, giving a more nuanced
understanding of how different factors contribute to the overall
predictions made by the model. This information can help
healthcare professionals and researchers to better understand the
factors that are most strongly associated with poor outcomes in
COVID-19 patients. Thus, our novel approach to use XAI model
as supplementary to observational study is clearly beneficial. If

Figure 5. Local interpretability using LIMEon a dead patient. (A) It shows the prediction probabilities of the class for a given patient.
Here, it is predicted to be a 100%death class. (B) Features on the right side of the central line (shown with orange color) have a higher
impact onmortality. Treatment using enoxaparin and remdesivir, presence of bodyweakness, heart disease, and tuberculosis indicate
mortality for this patient). Features on the left side of the central line (shown in the blue color) have an impact on the survival. Absence
of the disorders of kidney, thyroid disorder, diarrhea, and breathlessness indicate the survival of this patient. Value of each feature
indicates its impact on the outcome. (C) It presents feature-importance rank in the form of a table for this particular patient, where
value 1 indicates that the feature is present, while the value 0 indicates that the feature is absent.
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the XAI model is properly validated with domain knowledge, then
this XAI model can be used in clinical scenario. Our study
demonstrates that a XAI model without external validation can
prove to be equivalent or better than an observational study.

When RCT evidence of drug efficacy is not available, clinical
judgment can be made with the help of XAI models. Even though
XAI is not a replacement of RCT, XAI developed using data
without validation is valuable and can consequently have direct
impact on the lives of patients [29, 30]. It is relatively easier to
comprehend and explain the predictions of a XAI model using
large dataset with existing domain knowledge. This enables
healthcare experts to make reasonable and data-driven decisions to
provide personalized decisions that can ultimately lead to higher
quality of service in healthcare. This study also has a limitation.
Since we included only the digitally available data, the ML model
was built on an imbalanced dataset, wherein majority of the
patients belonged to the mortality class. Also, the dataset had an
uneven number of males and females, with males being twice as
many as females. This imbalance of the data could be the cause
that our model showed that males were more susceptible to
mortality. Due to this gender difference, it is important to be
careful when interpreting these results. Nevertheless, care was
taken to build a robust model that took care of this class imbalance.

6. Conclusion

Our study demonstrates the potential of XAI models as
complementary tools to observational studies, particularly in
scenarios where RCTs are impractical or infeasible. The XAI

approach identified critical factors influencing mortality among
COVID-19 patients, highlighting demographic variables like age
and gender, as well as key comorbidities and symptomatic
presentations. Interestingly, our analysis revealed that commonly
administered treatments such as enoxaparin, ivermectin, and
remdesivir were associated with increased mortality, contradicting
their intended therapeutic roles, while vitamin C, vitamin D, and
zinc showed protective effects.

Limitations of our study include combining data from
two distinct COVID-19 waves, potentially introducing
variability due to evolving treatment protocols across waves.
Additionally, the lack of severity-level stratification prevented
more granular analysis of treatment effectiveness based on
disease severity. Variables such as obesity, education level, or
socioeconomic status were excluded due to incomplete data,
representing a limitation in comprehensively understanding
patient outcomes.

Future research should validate our XAI findings using external
datasets and explore the integration of additional socioeconomic and
lifestyle variables to refine model accuracy and applicability in
clinical scenarios.
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