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Abstract: The pathological diagnosis is the gold standard for qualitative analysis of tumors. Due to the difficulty in extracting complete features
from high-resolution whole-slice pathological images, the generality and accuracy of traditional deep learning classification algorithms are
limited. This paper proposes an intelligent classification algorithm by combining convolutional neural networks (CNN) and Transformer for
pathological images. Firstly, the local and global features of pathological images are extracted using the designed CNN and Transformer
hybrid network architecture. Furthermore, the Mish activation function is introduced to improve the nonlinear expression ability of the
feature extraction network. Finally, by stacking multiple convolutional blocks and residual attention blocks to increase model depth, the
classification accuracy is improved. The main contribution lies in the design of a residual module that introduces a sliding window multi-
head attention mechanism, which enhances the algorithm’s ability to extract contextual information. While effectively reducing
computational complexity, it also improves classification accuracy. Experimental results show that the proposed algorithm attains accuracies
of 0.987 and 0.947 for classifying benign and malignant lung and breast pathological images, respectively. The algorithm also achieves an
accuracy of 0.932 in classifying benign, adenocarcinoma, and squamous cell carcinoma images and 0.841 in distinguishing benign and four
subtypes of breast cancer. Moreover, it achieves an accuracy of 0.976 on a private dataset for breast cancer tissue pathological grading,
which shows that the algorithm is universal and feasible in multidisease multiclassification tasks and clinical applications.
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1. Introduction

Pathological diagnosis serves as the definitive method for tumor
classification [1]. In tumor treatment, pathological diagnosis directly
impacts the selection of subsequent treatment plans for patients and is
crucial for predicting prognosis [2]. However, with the rapid growth
in demand for pathological diagnosis in China, there are challenges
such as a shortage of pathologists and uneven distribution of
pathological resources [3]. There is an urgent need for AI-assisted
clinical pathological diagnosis solutions.

AI-assisted pathological diagnosis has become a recent research
focus, aiming to utilize image analysis techniques for classifying

histopathological images, assisting in early diagnosis and
treatment of tumors. The primary methods include traditional
machine learning and deep learning-based classification techniques.

1.1. The traditional machine learning methods

Traditional machine learning methods involve manually
selecting features from pathological images and using classifiers
like support vector machines (SVM) for prediction. For example,
George et al. [4] combined Otsu thresholding with fuzzy c-means
clustering to extract image features. They utilized various neural
network models, including multilayer perceptron to classify the
malignancy of breast tissue cells. This approach effectively
reduced false positives. Gupta and Bhavsar [5] utilized color and
texture features and combined classifiers such as SVM, k-nearest
neighbors, and decision trees with a majority voting strategy,
achieving 88% accuracy in classifying breast pathology images at
various magnifications. Peikari et al. [6] proposed a clustering-
first labeling method to identify high-density regions in the semi-
supervised learning space, enhancing SVM decision boundaries
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and achieving 92% accuracy in breast tissue classification. Trivizakis
et al. [7] utilized artificial neural networks with local binary patterns,
wavelet transforms, and Gabor filters to extract features from
multi-scale pathological images and achieved 87.4% accuracy in
classifying colorectal cancer into eight categories by using
extracted features. Alqudah and Alqudah [8] extracted local
binary pattern texture features within each window by introducing
a sliding window feature extraction technique, constructed an
SVM classifier, and achieved 91.12% accuracy in benign vs.
malignant classification for breast pathology image.

Overall, the traditional machine learning classification methods,
due to their reliance on extracting only shallow features from images
and depending on human understanding and selection of these
features, result in limited accuracy in pathological image classification.

1.2. Deep learning-based classification methods

Deep learning methods can improve classification accuracy by
extracting hidden features from pathological images, enabling end-to-
end disease diagnosis and prediction [9]. Spanhol et al. [10] effectively
improved classification accuracy by employing the convolutional
neural networks (CNNs) to classify breast tissue pathological images
based on malignancy. Koné and Boulmane [11] achieved 81%
accuracy in classifying normal breast tissue, benign tumors, ResNet50
is used to classify ductal carcinoma in situ and invasive carcinoma
[12]. Teramoto et al. [13] attained 85.3% accuracy in lung malignancy
classification by augmenting training datasets with generative
adversarial networks. Phankokkruad [14] proposed an ensemble model
combining VGG16, ResNet50V2, and DenseNet201, achieving 91%
accuracy in a five-class classification task for pulmonary pathological
images. Adu et al. [15] introduced a dual-level compressed capsule
network for lung pathology classification, achieving 99.23% accuracy
in distinguishing benign, squamous carcinoma, and adenocarcinoma.
Srikantamurthy et al. [16] presented a hybrid model combining CNNs
and long short-term memory networks for malignancy classification in
histopathological images, achieving 99% accuracy. Liu et al. [9]
proposed a classification algorithm for breast tumor pathological
images by optimizing the cross-entropy loss function of AlexNet. Zou
et al. [17] integrated attention mechanisms and higher-order statistical
features into residual convolutional networks, achieving 99.29% and
85% classification accuracies on the BreakHis and BACH datasets,
respectively.

Most CNN-based methods for classifying pathological images
extract features through multiple convolutional and pooling layers.
These networks can improve classification performance by
capturing semantic information from low to high levels. However,
since the lesion areas in pathological images are closely related to
surrounding tissues, CNNs tend to focus only on local information
and overlook contextual information, which needs further addressing.

Transformer models have gained popularity in recent years
for their ability to capture global features from images using
attention mechanisms [18]. Alotaibi et al. [19] designed a
classification model that integrates ViT (Vision Transformer) [20]
and DeiT (Data-efficient image Transformer) [21] to improve
the performance of breast histopathology image classification.
Thomas et al. [22] achieved an accuracy of 96% in classifying
benign and malignant breast tissue pathology images using the
ViT model. Tummala et al. [23] studied BreaST-Net and
conducted experiments with the Swin Transformer [24] model for
binary and eight-class classification tasks. The results showed that
integrating four different Swin Transformer models significantly
improves recognition accuracy compared to using a single model.

However, faced with information-rich pathological images,
local features can provide detailed information, while global
features can offer contextual information across the entire image.
The challenge lies in how to effectively extract and organically
integrate local and global features to improve classification
performance. Therefore, this study combines CNNs with attention
mechanisms to extract both local and global features from
pathological images, enhancing classification accuracy.

Our contributions to this work are threefold:

1) We design a universal intelligent classification algorithm for
pathological images by combining the respective strengths of
CNN and Transformer.

2) We design a residual module that introduces a sliding
window multi-head attention mechanism, which enhances the
algorithm’s ability to extract contextual information and reduce
computational complexity.

3) Experimental results on several public datasets demonstrate that the
proposed algorithm outperforms most existing method in both
binary and multi-class classification tasks. In addition, the
validation experiment on the private dataset of breast cancer
histopathological grading also showed good performance,
indicating the algorithm’s generalizability, robustness, and
feasibility for practical applications.

2. Related Work

2.1. Sliding window attention mechanism

In the pathology image classification, images can be viewed as
two-dimensional sequences where each position corresponds to a
patch. Self-attention mechanisms weigh different positions in the
image, capturing comprehensive contextual information. Combining
attention mechanisms with CNNs is crucial for improving the
global feature extraction capability, as demonstrated by Chattopadyay
et al. [25], who introduced channel attention mechanisms based on
the bottleneck modules in ShuffleNet, which improves accuracy in
breast tissue pathology image classification tasks.

Window Multi-head Self-Attention (W-MSA) is an attention
mechanism used for processing local region in images. It
independently captures relationships and importance within each
window by dividing the input data into multiple windows.

Self-attention is computed independently within each individual
window, restricting interaction between windows and potentially
impacting comprehensive feature extraction. To overcome this
limitation, the sliding window self-attention mechanism is introduced.

Sliding Window Multi-head Self-Attention (SW-MSA)
introduces the concept of sliding windows using overlapping local
windows on the input sequence. SW-MSA is particularly effective
for handling long sequences, performing multi-head self-attention
calculations within local windows to improve computational
efficiency and resource utilization.

The window partition diagram of sliding window attention is
illustrated in Figure 1, where four pre-segmented windows are
depicted in different colors. Figure 1(A) shows the standard window
self-attention segmentation after W-MSA at layer l, Figure 1(B)
displays the sliding window self-attention segmentation after
SW-MSA at layer l+1. The windows start from the top-left corner of
Figure 1(A) and are offset by M/2 pixels along the right and bottom
sides. Here, M is set to 4.

As shown in Figure 1, the sliding window self-attention
mechanism leads to an increase in the number of windows. In
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order to reduce computational complexity, an efficient calculation
method of cyclic shifting is adopted.

Figure 2 illustrates the specific details of how cyclic shifting
achieves interaction between windows, using a 2-pixel shift as an
example. In Figure 1(B), the segmented nine windows are
considered as the initial state in Figure 2(A). By cyclically shifting,
four 2×2 windows, four 2×4 windows, and one 4×4 windows are
rearranged into four 4×4 windows, as shown in Figure 2(C).
Figure 2(B) depicts an intermediate step. Different colors are used
to clearly illustrate the entire cyclic shifting process. Through this
cyclic operation, the nine windows are eventually reduced back to
four windows, ensuring consistent computational complexity.

The self-attention score calculation method is shown in
Equation (1), which introduces relative position encoding to solve
the permutation invariance problem in self-attention calculation.

Attention ðQ;K;VÞ ¼ softmax
QKTffiffiffi

d
p þ B

� �
V (1)

where Q, K and V represent the query matrix, the key matrix, and the
value matrix, respectively. Q;K;V 2 RM2�d. The M2 and d denote
the number of image patches within a window and the dimension
of either Q or K, respectively. B denotes the bias matrix,
and B 2 R 2M�1ð Þ� 2M�1ð Þ.

The sliding window attention mechanism divides the input
pathological image into multiple local windows and independently
calculates the self-attention score of each window. The self-attention
score of each window reflects the contribution of its corresponding
feature to the subsequent classification task. This method not only
ensures the accuracy of self-attention computation but also enhances
the efficiency of the model in handling image features.

2.2. Residual attention

Residual structure is a popular network used to solve problems such
as gradient vanishing and exploding during the training process of deep
networks. It adds skip connections to pass along residual information,
helping the network learn the differences better. By mixing the
residual structure with a sliding window, it can make good use of
both local and overall information, improving classification precision.

3. Methodology

To improve the accuracy of intelligent diagnosis in pathological
image analysis, this paper proposes a pathology image classification
algorithm. Figure 3 shows the structure diagram of the proposed
algorithm. It mainly includes three parts: the first convolutional
block, the residual attention block, and the classifier Block.

As shown in Figure 3, the input is a 3-channel RGB
pathological image, denoted as Xin. Firstly, Xin applies the first con-
volution module twice to obtain the output Xinþ2. Then, the Xinþ2 is
sent the first residual attention module and obtain the output Xinþ8.
Xinþ8 again applies the residual attention module twice to obtain the
outputXinþ13. This method allows for capturing both local and global
details of pathological images at the same time. After that, all the
gathered features are sent to a classifier to predict the categories.

3.1. First convolutional block

The purpose of designing the first convolutional block is to
extract local features from the original input image.

The computational process of the first convolutional block is
described in Equation (2)

Xinþ1 ¼ Leaky ReLU ðBatchNorm ðConv ðXinÞÞÞ (2)

whereXin andXinþ1 represent the input and the output data, respectively.
Xin 2 RC�W�H , C, W and H represent the number of channels, the
width, and the height of the input data, respectively. Conv Xinð Þ performs
the two-dimensional convolutional operations by using a 3 × 3
convolutional kernel. BatchNorm normalizes the output of the convolu-
tional layer to accelerate model training and enhance model stability.
LeakyReLU is an activation function with a negative slope parameter.

3.2. Residual attention block

The residual attention block embeds the sliding window
attention mechanism into a residual structure. The purpose is to
extract contextual features and fuse the input local feature.

Figure 1. Schematic illustration of window partitioning for the
sliding window attention mechanism

Figure 2. Schematic illustration of cyclic shifting operation
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In this module, the first step introduces the nonlinear
transformation to enhance the model’s feature representation
capabilities through two secondary convolution blocks. The
secondary convolution block is defined by Equations (3) and (4),
comprising a convolutional layer, batch normalization layer, and
Mish activation function layer. The convolutional layers allow
residual attention modules to gradually stack and combine feature
representations, thereby increasing the depth and breadth of the model.

In this module, the selected Mish activation function is shown in
Equation (4) and illustrated in Figure 4. Mish activation function
possesses unique characteristics compared to other activation
functions: firstly, it has no upper limit, which ensures that the
function value can increase infinitely, thereby maintaining a faster
model training speed. The lower limit can reduce the risk of
overfitting by limiting the function values to a finite range.
Secondly, Mish is a nonlinear monotonic function that helps to
confine values within a small range of negative values to stabilize
gradient propagation. Lastly, the continuous smoothing property of
Mish activation function near zero makes it easier to solve gradient
vanishing and exploding problems in algorithm optimization.

Xinþ4 ¼ Mish ðBatchNorm ðConv ðXinþ2ÞÞÞ (3)

Xinþ4 ¼ Xinþ3 � tanh ðlnð1þ eXinþ3ÞÞ (4)

where the residual attention block inputs are the extracted local
features Xinþ2, from the first convolutional block, the Xinþ2, is
sent to the second convolution block for further feature extraction
and feature enhancement using the Mish Activation Function.
Xinþ3 is the output of a convolutional layer and batch normalization
layer in the first second convolution block.

where Xinþ4 is calculated using the Mish activation function as
defined by Equation (4). The second convolution block again is
applied to the data Xinþ4 for obtaining the enhanced features Xinþ5

as shown in Equation (5). This nonlinear transformation enables
better capturing of fine-grained features and high-level representa-
tions within the input data, as depicted in Figure 4.

Xinþ5 ¼ MishðBatchNormðConvðXinþ4ÞÞÞ (5)

The residual attention module also introduces a sliding window attention
layer, further enhancing the model’s ability to perceive global contextual
information. The slidingwindowattention layer employs theSW-MSA to
handle relationships between input features of different positions and
calculate the attention weights using Equation (1). In the windowed
version of multi-head self-attention, the query, key, and value vectors
are first used to weigh the value matrix and obtain a weighted result.
These weighted results are then combined to produce the output of the
windowed multi-head self-attention.

Xinþ6 ¼ SW �MSAðXinþ5Þ (6)

As shown in Equation (7), Xinþ7 is obtained by adding the output of
the sliding window attention layer Xinþ6 to the output of the first
convolution module Xinþ2, and then, the multi-scale fusion feature
Xinþ8 across layers is calculated using Equation (8). The specific
calculation process is shown in Equations (7) and (8).

Xinþ7 ¼ Xinþ6 þ Xinþ2 (7)

Xinþ8 ¼ LeakyReLUðBatchNormðXinþ7ÞÞ (8)

where Xinþ2, Xinþ7, and Xinþ8 denote the input to the
residual block, the residual connections, and the output of the
residual block, respectively. Additionally, the input and output at
each stage are subject to the condition Xinþ2; Xinþ4;Xinþ5;Xinþ6;

Xinþ7;Xinþ8 2 RC�W�H .

Figure 3. The proposed algorithm architecture diagram. Xin represents the input, and Xout represents the output.

Figure 4. The Mish activation function
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3.3. Classifier

The classifier aims to capture high-level semantic information
from the input image and map it to a predefined category space,
where it uses adaptive max pooling, flattening, and fully connected
layers to process feature maps extracted with convolutional and
residual blocks to predict the category of the input image.

The classifier has an adaptive max pooling layer, a flattening
step, fully connected layers, and Softmax. The pooling layer
changes the size of input feature maps to a fixed one, letting the
model take in different-sized inputs and turn them into same-sized
feature maps. The flattening step turns these feature maps into
long vectors, taking away their spatial layout for the fully
connected layers. These layers then convert the vectors into
outputs for each category, matching the number of classes the
model recognizes. The whole process is shown in Equation (9).

Xout ¼ LinearðAdaptiveMaxPoolðXinþ14ÞÞ (9)

where Xinþ14 represents the input to the Classifier, Xinþ14 2 RC�W�H ,
C,W, and H represent the number of channels in the input, the width
and the height of the input, respectively. While Xout denotes the one-
dimensional array utilized for classification, Xout 2 Rclass�1�1, Class
denotes the number of categories in the dataset used formodel training.

By integrating the sliding window self-attention mechanism of
Swin Transformer and the residual structure of ResNet, the proposed
algorithm’s feature extraction ability can be enhanced, and superior
performance can be achieved in intelligent pathological image
classification.

4. Experiments and Analysis

4.1. Datasets and experimental setup

To validate the proposed algorithm, we used two public datasets
and one private dataset:

1) The lung pathology image dataset LC25000

In the LC25000 [26], there are 5000 images of benign tissues,
5000 images of lung squamous cell carcinoma tissues, and 5000
images of lung adenocarcinoma tissues respectively. These images
are 768*768 pixels in size and stored in JPEG format. To support
a binary classification task for lung pathology images, we
randomly selected 2500 images from squamous cell carcinoma
and adenocarcinoma tissues respectively, totaling 5000 malignant
tissue images. These were paired with 5000 benign tissue images
to form the binary classification task dataset. Figure 5(A) and (B)

are examples of pathological images of lung squamous cell
carcinoma and lung adenocarcinoma, respectively.

2) The breast tissue pathology image dataset BreakHis

For the BreakHis [27], it comprises 2480 benign samples and 5429
malignant samples with a dimension of 700*460 pixels and stored in
PNG format. To meet the experimental requirements of the algorithm,
the BreakHis dataset is preprocessed for both binary and five-class
classification tasks, resulting in breast tissue binary and five-class
datasets. Benign breast tumors, including adenosis, fibroadenoma,
phyllodes tumor, and tubular adenoma, are merged into a benign
sample dataset, while malignant breast tumors, including ductal
carcinoma, lobular carcinoma, mucinous carcinoma, and papillary
carcinoma, are merged into a malignant sample dataset for the binary
classification of breast tumors. Furthermore, the merged benign
samples are combined with the four malignant samples to form a
five-class classification task dataset for breast tissue pathology images.
The pathological images of these eight categories of breast tissues are
shown in Figure 6. Figure 6(A), (B), (C), and (D) are examples of
pathological images of benign breast lesions including adenosis,
fibroadenoma, lobulated tumor, and tubular adenoma, respectively.
Figure 6(E), (F), (G), and (H) are examples of pathological images of
ductal adenoma, lobular carcinoma, mucinous carcinoma, and
papillary carcinoma, respectively, of malignant tumors.

3) A private dataset for breast cancer pathology tissue grading
BreastCancerZZU3th

BreastCancerZZU3th is a histological grading dataset of breast
tissue pathology images collected from the Third Affiliated Hospital
of Zhengzhou University. The pathological tissue sections of 10
patients with grade I and II breast cancer were scanned with Motic
digital slide scanner, and the corresponding full scan pathological
images were obtained. The exported original slice images are in tif
format, with a pixel size of 65500*65500. These images have been
annotated by clinical pathologists, as shown in Figure 7. In Figure 7,
(A) represents the scanned slice image, (B) represents the lesion range
image annotated by the pathologist extracted from the original image,
and (C) shows the preprocessed pathology image.

To validate the algorithm designed in this study, 1500
pathological images of Grade I and Grade II breast cancer were
obtained through preprocessing methods such as cropping and
filtering. Each image is 224*224 in size and in JPG format, as
shown in Figure 8. Figure 8(A) and (B) represent pathological
image examples of Grade I and Grade II breast cancer, respectively.

4.2. Evaluation metrics

This study utilizes evaluation metrics like accuracy, precision,
recall, and F1 Score, with their respective calculation formulas
provided as follows in Equations (10)–(13).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(10)

Precision ¼ TP
TP þ FP

(11)

Recall ¼ TP
TP þ FN

(12)

F1 ¼ 2� Precision� Recall

Precisionþ Recall
(13)

Figure 5. Example of pathological image dataset of lung. (A) The
image of lung squamous cell carcinoma and (B) the image of lung
adenocarcinoma.
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where TP, TN , FN, and FP indicate true positive, true negative, false
negative, and false positive prediction, respectively.

4.3. Comparative experiments

This paper compares the designed model with the following
seven different models.

ResNet34: the classification model introducing residual
structure in CNN.

ViT: the classic Transformer model.
Swin-tiny: the original model with sliding window self-

attention mechanism.
The following comparisonmodel replaces the slidingwindow self-

attention module of the design model with different attention modules.

Residual + CBAM [28]: With convolutional block attention
module (CBAM), a lightweight attention module capable of
operating attention on spatial and channel dimensions.

Residual +NAM [29]:With the normalization-based attention
module (NAM), introducing sparse weight penalties to enhance
computational efficiency and utilizing regularization to suppress
insignificant features.

Residual + ECA [30]: With regularization efficient channel
attention (ECA), a channel attention mechanism into convolution
operations to capture relationships between different channels and
adaptively adjust channel feature weights.

Residual + MSA: With multi-head self-attention (MSA), the
classic multi-head self-attention mechanism in Transformers.

This study conducted the following five comparative experiments:
Experiment 1 andExperiment 2 implemented a binary classification

(benign vs. malignant)) and a three-class classification task for lung
pathology images using the LC25000 dataset, respectively. The results
of the quantitative comparison experiments on the lung pathological
image datasets are shown in Tables 1 and 2, respectively.

It is clearly observed from the results in Tables 1 and 2, compared to
the literature model Residual + MSA with the best comprehensive
performance, our algorithm respectively achieves an improvement of
0.01, 0.011 in accuracy 0.012, 0.014 in precision, 0.008, 0.012 in
recall, and 0.01, 0.015 in F1 score for the binary classification and the
three-class classification task. These results indicate that our algorithm
not only achieves the best classification performance in binary
classification tasks for lung pathology images but also outperforms the
comparative models in the three-class classification task, demonstrating
the potential of this algorithm in multi-class classification tasks.
Furthermore, compared with models combining other attention
mechanisms and residual structures, our approach of integrating sliding
window self-attention mechanism with residual modules demonstrates
the superior effectiveness in improving the model’s performance.

Experiment 3 did a binary classification (benign ormalignant) using
the BreakHis dataset for breast pathology images. Experiment 4, on the
other hand, performed a five-class classification task with the same
dataset. The results of the quantitative comparison experiments on the
breast pathology image are shown in Tables 3 and 4, respectively.

As shown in Tables 3 and 4, our algorithm achieves
improvements over the literature model Residual + MSA with the
best comprehensive performance, respectively, in the binary and
five-class classification of breast pathology images: 0.019, 0.026
in accuracy, 0.025, 0.035 in precision, 0.014, 0.027 in recall, and
0.019, 0.031 in F1 score.

Figure 6. Examples of breast tissue pathological image. (A) Adenosis, (B) fibroadenoma, (C) lobulated tumor, (D) tubular adenoma,
(E) ductal adenoma, (F) lobular carcinoma, (G) mucinous carcinoma, and (H) papillary carcinoma.

Figure 7. Example of extracting the lesion range from the
original slice image of a private breast cancer dataset. (A) The
scanned slice image, (B) the lesion area image annotated by
the pathologists, and (C) the preprocessed pathology image.

Figure 8. The pathological image examples of breast cancer. (A)
Grade I and (B) Grade II.
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The experimental results indicate that our algorithm not only
performs better in binary classification tasks for breast pathology
images but also outperforms the comparative models in the five-
class classification task.

4.4. Clinical data validation experiment

The histological grading of breast tissue is closely related to the
prognosis of patients. At present, pathologists have divided breast
cancer into three grades by observing pathological tissue sections
under the microscope and scoring gland tube formation, mitosis
count and nuclear atypia. The higher the grade, the worse the
biological behavior and prognosis of breast cancer.

In order to verify the effectiveness of the proposed algorithm in
the classification diagnosis of pathological images of early and mid-
term breast cancer patients, Experiment 5 is conducted using the
private datasets BreastCancerZZU3. Table 5 shows the comparative
experimental results of the proposed algorithm and the seven
literature method models in the previous section for the histological
grading of breast tissue.

Table 5 shows our algorithm performs best in the two-level
breast cancer histopathology classification. It works well on both

public and private datasets, proving it is versatile and strong. Our
algorithm also does great in tasks with multiple diseases and
classes, meaning it is very robust.

4.5. Ablation study

To investigate the impact of the residual structures,Mish activation
function, and the sliding window attention module on the performance
enhancement of the proposed algorithm, we conduct an ablation study
by creating variants of the proposed algorithm. In each variant, we
selectively remove or replace one of the components from the
proposed algorithm, resulting in the following models:

1) Baseline: The initial model of the proposed approach without
residual structures and with the sliding window attention
module replaced by a regular convolution module.

2) +Residual: Adding the residual structures to the Baseline.
3) +Residual(Mish): Replacing ReLU with Mish activation

functions in +Residual.
4) +SW-MSA: Adding the sliding window attention module to the

Baseline. The ablation experiment used the same dataset as
Experiment 1, The results of experiments on the binary dataset
of lung pathology image are shown in the Table 6.

Table 1. Experimental results for the binary classification task
on lung pathological image dataset

Model Accuracy Precision Recall F1

ResNet34 0.925 0.918 0.926 0.922
ViT 0.933 0.942 0.929 0.936
Swin-tiny 0.966 0.959 0.965 0.962
Residual + CBAM 0.956 0.964 0.971 0.967
Residual + NAM 0.945 0.941 0.949 0.945
Residual + ECA 0.964 0.959 0.968 0.964
Residual + MSA 0.968 0.963 0.972 0.967
Ours 0.978 0.975 0.980 0.977

Table 2. Experimental results for the three-class classification
task on lung pathological image dataset

Model Accuracy Precision Recall F1

Resnet34 0.894 0.898 0.874 0.886
ViT 0.879 0.881 0.868 0.875
Swin-tiny 0.897 0.897 0.885 0.892
Residual + CBAM 0.918 0.920 0.904 0.912
Residual + NAM 0.896 0.897 0.885 0.891
Residual + ECA 0.914 0.902 0.897 0.900
Resisual +MSA 0.921 0.914 0.929 0.922
Ours 0.932 0.928 0.941 0.937

Table 3. Experimental results table for the binary classification
task on breast pathology image dataset

Model Accuracy Precision Recall F1

Resnet34 0.818 0.852 0.798 0.824
ViT 0.853 0.841 0.864 0.853
Swin-tiny 0.885 0.886 0.884 0.885
Residual + CBAM 0.924 0.920 0.927 0.924
Residual + NAM 0.882 0.883 0.881 0.882
Residual + ECA 0.891 0.872 0.906 0.889
Resisual + MSA 0.928 0.914 0.940 0.927
Ours 0.947 0.939 0.954 0.946

Table 4. Experimental results for the five-class classification task
on the breast histopathology image dataset

Model Accuracy Precision Recall F1

Resnet34 0.758 0.744 0.751 0.748
ViT 0.794 0.815 0.788 0.802
Swin-tiny 0.821 0.803 0.818 0.811
Residual + CBAM 0.802 0.791 0.806 0.799
Residual + NAM 0.811 0.821 0.811 0.816
Residual + ECA 0.784 0.798 0.778 0.788
Resisual + MSA 0.815 0.822 0.819 0.821
Ours 0.841 0.857 0.846 0.852

Table 5. Experimental results of histological grading of breast
cancer on a private breast cancer dataset

Model Accuracy Precision Recall F1

Resnet34 0.936 0.942 0.933 0.938
ViT 0.952 0.950 0.946 0.948
Swin-tiny 0.960 0.964 0.958 0.962
Residual + CBAM 0.953 0.947 0.950 0.949
Residual + NAM 0.939 0.945 0.933 0.939
Residual + ECA 0.944 0.925 0.931 0.928
Resisual + MSA 0.959 0.945 0.952 0.949
Ours 0.976 0.973 0.967 0.970

Table 6. Ablation study results

Model Accuracy Precision Recall F1

Baseline 0.908 0.896 0.901 0.899
+Residual 0.944 0.951 0.969 0.960
+Residual(Mish) 0.958 0.963 0.972 0.967
+SW-MSA 0.971 0.966 0.972 0.969
Ours 0.978 0.975 0.980 0.977
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As shown inTable 6, the proposed algorithmic demonstrates positive
impacts on the model’s classification performance. The residual structure
improves accuracy by 0.036, Mish activation function integrated with
residual structure improves accuracy by 0.05, and the sliding window
self-attention mechanism improves accuracy by 0.063.

Overall, the comprehensive improvement approach raises the
baseline model’s accuracy by 0.07. Furthermore, compared to the
baseline, the various enhancements and the final model also show
improvements across other metrics. These results indicate that the
residual structure, Mish activation function, and sliding window
self-attention module in the proposed algorithm are beneficial for
pathological image classification tasks, contributing to higher
accuracy and performance metrics in classification tasks.

4.6. Discussion and analysis

Based on the experimental results from Tables 1–5, our method
is compared with the Resisual + MSA method with the best
classification performance, as shown in Figure 9.

FromFigure 9, we can clearly observe that our method outperforms
the literature method in all five classification tasks. Our algorithm has
shown good performance in both benign and malignant classification
of breast pathological images, subtype multi classification and breast
cancer patient grading. The model achieved accuracies of 0.987 and
0.932 for binary and three-class lung pathology image tasks,
respectively, and accuracies of 0.947 and 0.841 for binary and five-
class breast pathology image tasks, respectively, indicating good
generalization and robustness of the algorithm.

Among the three types of classification tasks (two, three, and five),
whether it is a public dataset or a private dataset, our algorithm achieved
the best results in the two classification tasks. In particular, the accuracy,
precision, recall, and F1 of grade 1 and grade 2 clinical verification of
breast cancer diagnosis, which are difficult for pathologists to identify,
reach 97.6%, 97.3%, 96.7% and 97% respectively, validating its
effectiveness in practical applications.

Its theoretical basis lies in: CNNs consist of multiple
convolutional and pooling layers, focusing primarily on
extracting local features, but they have limited ability to perceive
global information. Moreover, CNNs cannot directly model
the positional relationships between pixels, thus overlooking
spatial dependencies among pixels. In contrast, Transformer is a
model based on self-attention mechanism, which can better
capture global information and positional relationships. However,

Transformer lacks in extracting local features, and the traditional
Transformer model’s self-attention mechanism requires computing
fully connected attention weight matrices, resulting in higher
computational complexity. This limitation restricts the application
of Transformer in large-scale pathological image classification tasks.

Our algorithm combines sliding window self-attention and
residual structure, using Mish to enhance the nonlinear expression
ability of features, which helps extract local and global features
from pathological images to improve classification accuracy.

On the other hand, as the number of classification tasks
increases, the classification performance of the algorithm
decreases. How, it also shows promising results in three-class and
five-class classification tasks for lung and breast pathological
images, indicating its potential in multi-class tasks. This indicates
that the proposed algorithm has outstanding potential in the early
diagnosis and fine classification of various common tumors.

5. Conclusion

In this paper, we have proposed an intelligent classification
algorithm that combines CNN and Transformer for pathological
images. In order to address the issues of algorithm accuracy and
generality, we conducted comparative experiments on lung pathology
datasets and breast pathology datasets for binary and multi-class
classification tasks. Extensive experiments showed that the proposed
algorithm work outperforms most previous SOTA methods based on
ResNet with residual modules, Swin Transformer with sliding
window attention mechanism, and other models combining residual
attention mechanisms. It shows improvements to outperform the
baseline by 7.0%, 7.9%, 7.9%, and 7.8% in accuracy, precision,
recall, and F1 score for a binary task. Unlike previous Swin
Transformers that used sliding window attention mechanism, our
algorithm has designed a residual module by introducing a sliding
window multi head attention mechanism, which enhances the ability
to extract contextual information and reduce computational
complexity. This algorithm is particularly suitable for high-resolution
whole-slice pathological images.
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