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Abstract: Heart failure is a major health issue affecting millions globally, placing a heavy burden on patients and healthcare systems. A critical
challenge in managing heart failure is the high rate of early hospital readmissions. Many patients, after discharge, are readmitted within a short
period, leading to further physical and emotional distress. These frequent readmissions also result in significant financial strain, both for patients
and healthcare providers. Despite efforts by hospitals and government agencies, early readmission rates remain high, causing continued patient
suffering and economic hardship. Health information technology (IT) provides a promising solution by utilizing data-driven approaches to predict
and mitigate readmission risks. Advanced tools integrated with electronic health records (EHR) can help identify patients at higher risk of early
readmission, enabling timely interventions. This approach has the potential to improve patient outcomes while alleviating the financial and
logistical challenges associated with repeated hospital stays. This study explores the implementation of a Health IT solution leveraging
ensemble learning, specifically an extreme gradient boost (XGBoost) algorithm, to predict early readmission risk in heart failure patients. By
analyzing data from EHR, the model aims to accurately identify high-risk patients, allowing healthcare providers to take preventive
measures. The findings emphasize the potential of machine learning tools to enhance healthcare efficiency and transform the management of
heart failure readmissions, benefiting patients and healthcare systems alike. The XGBoost model achieved an AUC of 0.78, with a recall of
0.76 for predicting early readmissions. However, the model demonstrated high overall accuracy but struggled with lower precision (0.23)
for minority class predictions due to class imbalance. The study further used SHAP to explain feature importance.
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1. Introduction

Heart failure (HF) is a significant public health concern,
contributing to high morbidity, mortality, and healthcare costs
worldwide. Characterized by the heart’s inability to pump sufficient
blood to meet the body’s metabolic needs, HF affects millions
globally and is among the leading causes of hospitalizations in adults
aged 65 years and older. The economic burden associated with HF is
staggering, with frequent hospital readmissions accounting for a
substantial portion of the costs. Early identification of patients at risk
of readmission presents an opportunity to improve patient outcomes
and reduce healthcare expenditure. However, accurately predicting
these readmissions remains a complex challenge due to the
multifactorial nature of HF and its associated comorbidities.

Hospital readmissions, particularly within 30 days of discharge,
are increasingly used as a quality metric for healthcare systems.
Policymakers and organizations, such as the Centers for Medicare &
Medicaid Services, have implemented programs to penalize hospitals
with excessive readmission rates for conditions like HF. These
initiatives have spurred interest in developing effective predictive

models to identify high-risk patients and implement targeted
interventions. Nevertheless, the heterogeneity in patient populations,
clinical presentations, and social determinants of health complicates
efforts to develop accurate and generalizable predictive tools.

The significance of early readmissions in HF is particularly
pronounced because of the underlying pathophysiology of HF,
which is often characterized by fluctuating symptoms, recurrent
exacerbations, and progressive deterioration. Inadequately managed
or poorly coordinated care during the early post-discharge period
may lead to worsening symptoms, which can ultimately result in
the need for re-hospitalization. Early readmissions in HF patients
are often associated with a higher risk of adverse outcomes,
including mortality, decreased quality of life, and increased
healthcare costs. Therefore, understanding the factors that contribute
to early readmissions is essential for improving patient outcomes
and reducing the financial burden on the healthcare system.

Recent advancements in health information technology (Health IT)
and machine learning offer promising avenues for addressing this
challenge. By leveraging electronic health records (EHRs),
demographic data, and clinical parameters, machine learning models
can analyze complex patterns and interactions that traditional
statistical methods might overlook. Ensemble learning [1–4], a
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machine learning paradigm that combines multiple base models to
improve prediction performance, has garnered attention for its
potential to enhance predictive accuracy and robustness. Ensemble
methods, such as random forests [5], gradient boosting machines, and
stacking, have demonstrated superior performance in various
healthcare applications, including disease diagnosis, prognosis, and
risk stratification.

This study explores the application of an ensemble learning-
based Health IT solution to predict early readmission risk among
hospitalized patients with a primary diagnosis of HF. The
rationale for focusing on ensemble learning lies in its ability to
mitigate overfitting, enhance model stability, and integrate diverse
predictive signals from heterogeneous data sources. By
constructing an ensemble model tailored to the nuances of HF
readmissions, this research aims to provide a scalable and
interpretable tool for clinicians and healthcare administrators.

The choice of HF as the focus of this research is motivated by its
clinical significance and the unique challenges it presents. HF
readmissions are influenced by a myriad of factors, including
disease severity, medication adherence, social support, and
healthcare access. Traditional risk prediction tools often fail to
capture these complexities, leading to suboptimal performance and
limited utility in clinical practice. Ensemble learning offers a
promising alternative by accommodating non-linear relationships,
high-dimensional data, and interactions among predictors, thereby
improving the identification of high-risk patients [6].

Another critical aspect of this research is the integration of Health
IT with predictive analytics. The widespread adoption of EHRs has
created unprecedented opportunities to harness real-world data for
predictive modeling. However, the integration of machine learning
models into clinical workflows remains a significant challenge. This
study aims to bridge this gap by developing a user-friendly Health
IT solution that seamlessly incorporates ensemble learning
predictions into the decision-making process. Such integration has
the potential to facilitate timely interventions, optimize resource
allocation, and improve patient outcomes.

To achieve these objectives, this research adopts a comprehensive
methodology encompassing data preprocessing, feature engineering,
model development, and validation. The study leverages a large,
multicenter EHR dataset [7–10] containing demographic, clinical,
laboratory, and social determinants of health data. Rigorous
preprocessing steps ensure data quality and address common
challenges, such as missing values and imbalanced classes. Feature
engineering techniques are employed to extract meaningful
predictors, while ensemble learning algorithms are optimized to
maximize predictive performance. The models are evaluated using
robust validation techniques, including cross-validation and external
validation on independent datasets, to ensure generalizability and
reliability.

The implications of this research extend beyond predictive
modeling. By providing a scalable framework for ensemble
learning in healthcare, this study contributes to the growing body
of literature on machine learning applications in clinical settings.
Moreover, it highlights the importance of interdisciplinary
collaboration among clinicians, data scientists, and Health IT
professionals to address pressing healthcare challenges. The
findings of this study have the potential to inform policies and
practices aimed at reducing HF readmissions, ultimately
improving the quality of care and patient outcomes.

Despite the promising potential of machine learning in healthcare,
several challenges warrant consideration. Ethical concerns, such as data
privacy [11], algorithmic bias [12], and transparency, must be addressed
to ensure the responsible use of predictive models. Additionally, the

interpretability of ensemble models remains a critical factor for their
adoption in clinical practice. This study prioritizes explainability by
incorporating model interpretation techniques, such as SHAP
(Shapley Additive Explanations) values, to elucidate the contribution
of individual predictors to readmission risk. By fostering trust and
understanding among clinicians, such efforts aim to bridge the gap
between advanced analytics and practical implementation. In
conclusion, this research investigates the development and
implementation of an ensemble learning-based Health IT solution to
predict early readmission risk among hospitalized HF patients. By
addressing the limitations of traditional risk prediction approaches and
leveraging the strengths of ensemble learning, this study aspires to
advance the field of predictive analytics in healthcare. The integration
of machine learning with Health IT holds great promise for
transforming patient care, particularly for complex conditions like HF,
where timely and accurate risk stratification can make a profound
difference. This introduction sets the stage for the subsequent sections
of the article, which detail the methodology, results, and implications
of this innovative approach. Besides, the study also mentions several
important precision improvement issues that occur in an imbalanced
dataset (which translates into rare event prediction in most cases).
This is a special type of problem that is very difficult to deal with
traditional machine learning or data analysis approaches.

This research study aims to make the following unique
contributions:

1) Prediction of early readmissions: The model aims to identify
high-risk patients after discharge, enabling timely interventions
to reduce hospital readmissions, improving patient outcomes,
and alleviating healthcare system burdens.

2) Machine learning for Health IT: The research highlights the
potential of advanced machine learning tools integrated with
Health IT to transform HF management and reduce the
financial strain caused by repeated hospital stays.

3) Use of SHAP for feature explanation: The study employs SHAP
to interpret and explain the feature importance in the predictive
model, enhancing transparency and interpretability of machine
learning predictions.

This research article has been segmented into different sections for
easier readability and organization. Section 1 combines the introduction
of HF early readmission and related background information. Section 2
discusses the materials and methods that are used in this study followed
by Section 3 which details the numerical results and discussions from
the proposed model. Section 4 includes the conclusions and future
directions of this potentially valuable research area.

2. Materials and Methods

The dataset was organized into fivemajor categories: laboratory
results, medications, outcomes, baseline clinical features and
comorbidities, and demographic details. When patients were
admitted to the hospital for the first time, their demographic
information was manually entered into the electronic medical
record (EMR) system by nurses. For returning patients, this
information was automatically retrieved from prior records,
though nurses carefully reviewed and corrected any missing or
inaccurate details they identified [9]. To improve accuracy and
consistency during data entry, dropdown menus were integrated
into the EMR system for certain variables, such as sex, admission
department, and occupation. Physicians and laboratory personnel
electronically recorded medication details and test results. SQL
queries were then used to extract the data from the EMR system
to create the database, with manual validation performed by
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randomly reviewing 50 patient records for accuracy. A notable
challenge arose due to language barriers, as much of the data,
including drug names, diagnoses, and lab test results, were recorded
in Chinese within the EMR system. There was a huge number of
missing values across many columns as shown in Figure 1.

Demographic information extracted from the EMR included
age, sex, height, weight, marital status, occupation, admission
ward, admission type (emergency or non-emergency), discharge
department, admission date, and the number of previous hospital
visits. These details were captured from the first sheet of each
patient’s medical records [9].

Baseline clinical data documented on the day of admission
included vital signs such as body temperature, pulse, respiration
rate, systolic and diastolic blood pressure, and mean arterial
pressure. Additional measurements included weight, height, body
mass index, and the Glasgow Coma Scale score. Clinical
indicators such as the type of HF, New York Heart Association
functional classification, and Killip grade (ranging from Class 1,
indicating no rales or third heart sound, to Class 4, indicating
cardiogenic shock) were also recorded. Advanced assessments,
such as echocardiography, provided metrics like tricuspid
regurgitation velocity, pressure readings, mitral valve E and A
wave velocities, E/A ratio, left ventricular ejection fraction, and
left ventricular end-diastolic diameter [9].

Comorbidities [13, 14] documented in the admission notes
included myocardial infarction, congestive HF, peripheral vascular
disease, cerebrovascular disease, dementia, chronic obstructive
pulmonary disease, connective tissue disorders, peptic ulcer
disease, diabetes, chronic kidney disease (moderate to severe),
hemiplegia, leukemia, malignant lymphoma, solid tumors, liver
disease, and AIDS. These diagnoses were used to compute the
Charlson Comorbidity Index. Furthermore, some patients received
new diagnoses during their hospital stay, including cases of
congestive HF that were not present before admission.

Laboratory results from the first day of admission provided a
wide range of clinical data. Cardiac biomarkers such as brain
natriuretic peptide and high-sensitivity troponin were measured,
along with coagulation profiles that included tests like D-dimer,
INR, prothrombin time, and thrombin time. Electrolyte levels for

calcium, potassium, chloride, sodium, and magnesium were
recorded, alongside enzyme levels such as creatine kinase, lactate
dehydrogenase, and transaminases. Markers of renal function,
including serum creatinine, urea, uric acid, glomerular filtration
rate, and cystatin, were also evaluated. Other laboratory
measurements encompassed lipid profiles, protein levels, bilirubin,
blood gas analysis, and metabolic markers such as lactate and
glucose. These results offered valuable insights into the clinical
condition of the patients at the time of admission [9].

Figure 2 presents the correlation of various features with early
readmission, with the y-axis representing correlation scores (ranging
approximately from −0.15 to 0.15) and the x-axis listing all features.
Overall, the correlations are relatively weak, with most values
hovering near zero. This suggests that no individual feature has a
strong linear relationship with early readmission, and the outcome
is likely influenced by a combination of multiple factors rather
than a single dominant variable.

Both positive and negative correlations are observed, albeit with
low magnitudes. Features with positive correlations indicate that
higher values might slightly increase the likelihood of early
readmission, while negative correlations suggest the opposite.
However, the weak strength of these relationships means that
these features, on their own, provide limited predictive power.
The variability in correlation scores across features indicates that
some variables contribute more meaningfully than others, though
none stand out as particularly influential.

These findings have important implications for modeling. The
weak correlations imply that linear models may struggle to capture
the complexity of early readmission, as relationships between
features and the target variable may be more nuanced or non-linear.
More sophisticated approaches, such as decision trees, random
forests [15], or neural networks, could better account for feature
interactions and non-linear dependencies. Additionally, while
features with higher positive or negative correlations may hold
some predictive value, those with near-zero correlations may add
noise and should be considered for removal during feature selection.

To improve performance, techniques like recursive feature
elimination have been used to identify irrelevant features and
streamline the dataset. At the same time, handling class imbalance
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might shift the importance of certain features and impact model
outcomes. In summary, the weak linear relationships evident in
the figure suggest that early readmission prediction requires not
only advanced modeling techniques but also careful consideration
of feature selection and preprocessing strategies. The following
sub-sections discuss the methods that have been used in this study.

2.1. Feature selection

Recursive feature elimination (RFE) is a feature selection
technique used to improve the performance and interpretability of
machine learning models. It works by recursively removing less
important features from the dataset, based on their contribution to

Figure 2. Numerical feature correlation with respect to early readmission
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the predictive model, until the optimal subset of features is identified.
RFE is particularly effective in high-dimensional datasets where
irrelevant or redundant features may negatively impact model
performance.

The process begins by fitting a machine learning model, such as
a linear model or a tree-based model, to the entire set of features. The
importance of each feature is evaluated using the model’s internal
metrics, such as coefficients or feature importance scores. The
least significant feature, as determined by the evaluation metric, is
removed from the dataset. This process is repeated iteratively,
with the model being refitted at each step, until the desired
number of features is reached.

RFE helps reduce overfitting, improves computational
efficiency, and can make the model more interpretable by
retaining only the most relevant features. It is widely used in
applications such as biomedical research, finance, and marketing,
where understanding the impact of key variables is essential.
However, RFE’s computational expense may increase for large
datasets, especially when paired with complex models. In this
study, we selected 17 features using RFE for predictive modeling.

2.2. Synthetic minority oversampling technique
(SMOTE)

SMOTE [16, 17] is a popular method used to address the issue
of class imbalance in datasets, a common challenge in machine
learning tasks. Class imbalance occurs when one class (minority
class) has significantly fewer samples compared to the other class
(majority class). Such imbalances can lead to biased model
predictions, as the algorithm often prioritizes the majority class.

SMOTE tackles this problem by oversampling the minority class
using synthetic data generation. Unlike simple oversampling, which
duplicates existing minority samples, SMOTE generates new
synthetic samples by interpolating between existing instances of the
minority class. The process involves selecting a random minority
class instance and one of its k-nearest neighbors, creating a synthetic
sample along the line connecting these two points in the feature space.

2.3. Ensemble-based learning

The ensemble-based learning that was selected for this study is
XGBoost that is short for eXtreme Gradient Boosting [18]. It is a
powerful machine learning algorithm based on gradient boosting,
designed to improve both computational speed and predictive
performance. It has been widely used for classification tasks due
to its efficiency and scalability. XGBoost builds an ensemble of
decision trees sequentially, optimizing an objective function
through gradient descent. Below, we provide brief details into the
mathematical details underlying the XGBoost classifier [18].

The following equation shows the objective function (loss) to be
minimized by the XGBoost classifier [18].

L θð Þ ¼
Xn
i¼1

l yi;byið Þ þ
XK
k¼1

Ω fkð Þ (1)

Where:
l yi; byið Þ is the loss function measuring the difference between

the predicted value and the true label
Ω fkð Þ is the regularization term that controls the complexity

of the
θ represents the model parameters.
n is the number of training samples, and

K is the total number of trees.
XGBoost constructs trees iteratively by adding one weak learner

at a time to minimize the objective function. The prediction at the
tth iteration is given by:

by tð Þ
i ¼ by t�1ð Þ

i þ ft xið Þ (2)

The regularization termΩ fkð Þ controls the complexity of the tree and
helps prevent overfitting. For a tree with T leaf nodes, it is defined as:

Ω ftð Þ ¼ γT þ 1
2
λ
XT
j¼1

ω2
j (3)

Where:
γ is the penalty for the number of leaf nodes T
λ is the L2 regularization term
To grow a decision tree, XGBoost evaluates candidate splits by

calculating the gain in the objective function [18]. The gain for a split
is computed as:

Gain ¼ 1
2

G2
L

HL þ λ
þ G2

R

HR þ λ
� GL þ GRð Þ2
HL þHR þ λ

� �
� γ (4)

Where:
GL and GR are the sums of gradients for the left and right child

nodes, respectively
H and HR are the sums of Hessians for the left and right child

nodes, respectively.
The split with the highest gain is selected, and the process

continues recursively until a stopping criterion (e.g., maximum
depth or minimum leaf size) is met.

XGBoost also introduces a shrinkage parameter η (learning
rate) to scale the contribution of each tree [18]. After fitting a tree,
the model updates the predictions as:

by tð Þ
i ¼ by t�1ð Þ

i þ ηft xið Þ (5)

where 0 < η � 1. Smaller values of η often lead to better generali-
zation but require more iterations.

3. Results and Discussion

The prediction process followed ten times ten-fold approach for
cross-validation. Figure 3 shows the confusion matrix that visualizes
the performance of an XGBoost classification model using 10
selected features on unseen test data set which was 10% of the
total data. It provides an overview of the predictions made by the
model compared to the actual target labels, helping to assess its
accuracy and error patterns. The rows represent the predicted
classes, while the columns denote the actual classes. The classes
are labeled as “0” (no early readmission) and “1” (early readmission).

True positives (TP): The bottom-right cell indicates 13 cases
where the model correctly predicted the early readmission class
(1). These are instances where the model’s prediction aligned with
the actual early readmission class, demonstrating its capability to
identify TP effectively.

True negatives (TN): The top-left cell shows 136 cases where the
model correctly identified the no early readmission class (0). This
indicates the model’s reliability in predicting negative outcomes
accurately.

False positives (FP): The top-right cell contains 44 instances
where the model incorrectly classified non-early readmission cases
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(actual 0) as early readmission cases (1). These errors reflect the
model’s tendency to misclassify some negatives.

False negatives (FN): The bottom-left cell indicates 4 cases
where the model failed to identify the early readmission class (1)
and incorrectly predicted them as no early readmitted class (0).

This confusion matrix [19, 20] highlights the strengths of
the XGBoost model, particularly its reasonable recall and
accuracy. However, the relatively lower precision suggests potential
improvements, especially in reducing FNs. This could involve
techniques such as hyperparameter tuning, or more enhanced feature
engineering to improve the model’s sensitivity to positive cases.

The following metric can be derived from these values like the
following:

Accuracy ¼ TPþ TN
TP þ TNþ FP þ FN

(6)

Precision ¼ TP

TPþ FP
(7)

Recall ¼ TP

TPþ FN
(8)

F1� Score ¼ 2 � Precision � Recall
Precisionþ Recall

(9)

The classification report for testing is shown below:
The classification report in Table 1 evaluates the performance of

a model predicting early readmission in patients. It measures the
model’s performance using precision, recall, and F1 score for
each class: “No early readmission” and “Early readmission.”
Additionally, macro and weighted averages summarize the metrics
across all classes.

No Early Readmission class has a high precision (0.97),
indicating the model effectively identifies TNs with minimal FPs.
However, the recall (0.76) suggests that 24% of the actual cases

are missed. The F1 score of 0.85 balances these metrics, showing
reasonable performance for this majority class.

Early readmission (minority) class has a low precision (0.23),
meaning a significant proportion of predicted positive cases are
FPs. However, recall is relatively high (0.76), demonstrating the
model captures most actual early readmissions. The F1 score
(0.35) highlights the model’s difficulty in balancing precision and
recall, likely due to the class imbalance.

When calculating performance metrics like precision, recall, and
F1 score, the macro-average approach treats both classes equally,
regardless of how many samples each class has. This means that the
metrics are averaged across all classes, with each class contributing
the same weight to the final result. The scores (0.60 for precision
and F1, 0.76 for recall) indicate mediocre model performance for
the minority class. Also, the weighted average adjusts the metrics
based on class support, favoring “No early readmission.” The
weighted F1 score (0.81) reflects stronger performance for the
majority class while downplaying the minority class issues.

The model’s performance is skewed towards the majority class.
Although this imbalance was addressed using sampling, weighted
loss functions, it could not improve predictions for the minority
class that much.

Figure 4 represents the receiver operating characteristic (ROC)
curve [21, 22], a key performance evaluation metric used in binary
classification problems. The ROC curve plots the true positive rate
(TPR, also called sensitivity or recall) on the y-axis against the false
positive rate (FPR) on the x-axis. The FPR is defined as the
proportion of negative instances incorrectly classified as positive, and
the TPRquantifies themodel’s ability to correctly identify positive cases.

This ROC curve and the associated AUC of 0.78 demonstrate the
high effectiveness of the evaluated classifier. The curve’s shape and the
high AUC value indicate that the model is capable of distinguishing
between positive and negative classes with minimal misclassification.
This performance evaluation is a strong indication that the classifier
is suited for the task it is applied to, assuming the dataset and
evaluation process are representative of the real-world use case.
Future steps may include fine-tuning thresholds or comparing this
model to alternatives to optimize performance further. However,
models might not provide the best estimation if the dataset is
imbalanced and only ROC-AUC curve shows good performance [23].

Figure 5 provides a detailed visualization of the significance of
various features in a machine learning model using SHAP values
[24]. SHAP values are a method of interpreting the predictions made

Table 1. Classification report for XGBoost classifier

Class Precision Recall F1 score Support

No early readmission 0.97 0.76 0.85 180
Early readmission 0.23 0.76 0.35 17
Macro average 0.60 0.76 0.60 197
Weighted average 0.91 0.76 0.81 197

Figure 3. Confusion matrix for testing

Figure 4. ROC-AUC

Medinformatics Vol. 00 Iss. 00 2025

06



bymachine learningmodels, revealing the contribution of each feature to
the final prediction. The plot is divided into several elements that
contribute to its comprehensive scientific interpretation. The image is
basically a bar plot, with the x-axis representing the mean SHAP
values and the y-axis listing the various features. The mean SHAP
values on the x-axis range from −1.5 to 0.5, denoting the average
impact of each feature on the model’s output. Positive SHAP values
indicate a positive impact on the prediction, while negative values
suggest a negative influence.

Each feature in the plot is represented by a horizontal line or a
cluster of points spread along the x-axis. The density and spread of
these points illustrate the distribution of SHAP values for each
feature. Features with a wider spread of SHAP values have a more
significant impact on the model’s output. A color gradient from
blue to red overlays the plot, adding another layer of information.
Blue represents low feature values, while red indicates high feature
values. This gradient allows us to discern how different levels of
each feature influence the model’s predictions. For instance, high
values of cystatin (red points) have a positive impact on the
model’s output, while low values (blue points) have a negative
impact. The plot indicates that the cystatin feature has a wide
spread of SHAP values, signaling its substantial impact on the
model’s predictions. Eosinophil also shows a significant spread,
suggesting it is another crucial feature. On the other hand, features
like monocyte ratio, standard deviation of red blood cell distribution
width, etc. show a smaller impact, as indicated by their narrower
spread of SHAP values.

4. Conclusion and Future Directions

Health IT solutions have great potential for predicting and
reducing early readmission risks in HF patients. EHRs,
predictive analytics, and telemonitoring are currently the most
used approaches, with evidence backing their effectiveness.
However, challenges like data integration, privacy, and
variability in healthcare settings need to be tackled to fully
harness these technologies’ potential. Innovations like AI,
personalized medicine, blockchain, mHealth, NLP, and
community-based interventions show promise for the future
[25]. By using these technologies, healthcare providers can
develop more accurate predictive models, improve patient
outcomes, and lessen the burden of HF on healthcare systems.
Bringing Health IT solutions into everyday clinical practice
requires teamwork among healthcare providers, tech developers,
policymakers, and patients. Continuous evaluation and
improvement of these solutions are crucial to ensure their
effectiveness and sustainability. Moving forward, the goal
should be a patient-centered healthcare system that uses IT to
deliver high-quality, personalized care. Focusing on early
identification and intervention, Health IT solutions can play a
key role in improving the lives of HF patients and addressing
one of modern healthcare’s most pressing challenges. The future
of HF early readmission management looks bright, with
technology leading the way for more efficient, effective, and
patient-centered care.

Figure 5. Feature importance by SHAP values
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Besides, incorporating social determinants of health (SDOH)
and patient-reported outcomes (PROs) into predictive models for
HF readmissions can significantly enhance prediction accuracy
and provide a more holistic understanding of the factors that
influence patient outcomes. SDOH, including socioeconomic
status, access to healthcare, housing stability, education, and
social support, can profoundly impact a patient’s ability to
manage their condition and follow treatment plans effectively. For
instance, patients with limited financial resources may struggle to
afford medications or attend follow-up appointments, increasing
their likelihood of readmission. Similarly, those with poor social
support may face challenges in adhering to lifestyle modifications
or managing stress, which can exacerbate their HF symptoms.
Patient-reported outcomes, such as self-reported symptoms,
quality of life, mental health status, and functional limitations,
offer direct insights into the patient’s perspective on their health,
which often correlates with clinical outcomes. These factors are
typically not captured in traditional clinical data but are crucial for
understanding a patient’s risk for early readmission. By
integrating SDOH and PROs into predictive models, healthcare
providers can develop more personalized, targeted interventions
that not only address medical needs but also the broader social
and emotional factors that affect health outcomes. This approach
moves beyond the clinical setting to better predict and mitigate
the risks of readmission, ensuring a more comprehensive and
accurate assessment of patient risk.
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