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Abstract: Hepatitis B virus (HBV) DNA integration into the host genome can be found in all phases of chronic HBV infection and plays a role
in hepatocarcinogenesis. Integration into CpG islands has been reported to be a risk factor for hepatocellular carcinoma (HCC), but the
relationship between HBV integration into other regulatory elements and HCC remains unclear. Superenhancers (SEs) contribute to the
cancer cell state by regulating oncogenes. This study aimed to analyze whether integration into host SEs is a risk factor for HCC. We
systematically annotated 21,520 HBV integration sites in the human genome obtained from the VIMIC database to determine their
distribution in regular elements, including SEs, CpG islands, CCCTC-binding factors (CTCFs)-binding sites, transcription factor-binding
sites (TFBSs), and transcription start sites (TSSs). Then, we constructed a logistic regression model to evaluate the relationship between
the integration sites and HCC. Integration into CpG islands and TFBS were risk factors for HCC (P =0.000, OR =2.65 and P = 0.041,
OR = 1.06, respectively. OR = odds ratio), and integration into SEs and CTCF-binding sites were significantly associated with nontumor
tissues (P =0.000, OR =0.58 and P=10.000, OR = 0.48, respectively). To further investigate the underlying mechanism, we analyzed
CpG methylation and histone modifications at flanking integration sites. We found that regions flanking HBV integration sites in SEs
were more likely to be hypermethylated (P =0.000). Moreover, the hypermethylated SE regions flanking HBV integration sites showed
lower levels of epigenomic markers. Our results suggested that integration into SEs might not be a risk factor for HCC. The protective

effect observed for integration into host SEs might be associated with hypermethylation.
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1. Introduction

Chronic infection with hepatitis B virus (HBV) is an important risk
factor for the development of hepatocellular carcinoma (HCC) [1]. HCC
can be promoted by infection through direct or indirect mechanisms,
such as epigenetic remodeling of the host genome, abnormal
expression of oncogenes, tumor suppressor genes, or genes related to
pathways involved in the regulation of hepatocellular metabolism
and viral infection-induced chronic inflammation [2]. Inefficient
immune reactions may be the primary oncogenic factor for chronic
HBYV infection [3]. PD-Ll-induced depletion of CD8+ T cells,
deficiency of CD4+ CTLs, and alterations in NK cell functions have
been reported in patients with HCC [4].

The integration of HBV DNA into the host genome plays an
important role in the occurrence of HCC. It can be found in all
phases of chronic HBV infection [5]. Approximately 90% of HBV-
associated HCCs harbor HBV DNA integrations; thus, virus-host
chimera DNA can serve as a biomarker for HBV-related HCC [6].
Generally, the integration sites are located randomly throughout the
host genome, but recurrent regions have been reported. TERT and
MLL4/KMT2B are the most commonly reported target genes of
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HBYV integration in HCC tissues. Other commonly reported genes
included N4BP1, WASHP, and PLEKHG4B. In each study,
hundreds of integrated genes were identified [7-11]. These
integration target genes are enriched in pathways including axon
guidance, positive regulation of Ras protein signal transduction,
axonogenesis, and transmitter-gated ion channel activity (not all of
them) [7]. More than 10,000 unique HBV integration sites in the
human genome have been reported, and approximately 20% of
these sites are recurrent [12]. However, integration events are more
common in adjacent liver tissues than in HCC tissues [13]. These
dispersed locations across host chromosomes and various involved
pathways indicate that host genome disruption caused by HBV
integration cannot fully explain the mechanisms of HBV-associated
HCC. Integrated HBV DNA is also a stable source of viral RNA
and proteins, though it does not lead to replication-competent
transcripts. Patients with stable hepatitis B surface antigen levels
derived predominantly from integrated viral DNA do not respond to
nucleos(t)ide analogue therapy [14].

The mechanisms of HBV DNA integration are associated with
microhomology between the viral and host genomes [15]. At the
3-dimensional scale, HBV DNA is not randomly positioned in the
host genome but instead preferentially establishes contacts with
host DNA at active chromatin regions. HBV DNA-host DNA
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contacts are significantly enriched at H3K4mel-marked regions.
Chromatin loops formed by integrated HBV DNA and host DNA
are also found in transcriptionally active regions [16]. Thus, the
integration of HBV DNA into active regulators in the host
genome is not rare. Zhao et al. reported that HBV is prone to
integrate into rare fragile sites and functional genomic regions,
including CpG islands, and that integration into CpG islands is
significantly increased in tumors [10]. CpG islands are
exceptionally hypomethylated, and many of these hypomethylated
regions of DNA function as elements that regulate gene
expression, such as promoters and enhancers [17].

Superenhancers (SEs) are large clusters of enhancer elements
identified by algorithms such as rank ordering of superenhancers
[18, 19] from chromatin immunoprecipitation and sequencing
(Chip-seq) data. SEs are enriched in chromatin factors such as
cohesin, the histone modification H3K27ac, and the dimethylation
of histone H3 at lysine 4 (H3K4me2) and H3K4mel [20]. SEs
play key roles in human cell identity [21] and contribute to the
cancer cell state by regulating oncogenes [22]. SEs tend to lie on
the surfaces of the 3D chromatin model [23] and are thus
presumed targets of viral DNA integration. Viral DNA integration
into host SEs is observed in HIV [24] and HPV [25] infections.
HPV integration can hijack and multimerize cellular enhancers to
generate a viral-cellular SE that drives high viral oncogene
expression [26]. However, the frequency and clinical implications
of HBV DNA integration into SEs have yet to be fully assessed.

In this study, we systematically annotated HBV integration sites in
the human genome to determine their distribution in regular elements and
constructed a logistic regression model to evaluate the relationships
between integration sites and HCC. Interestingly, integration into SEs
was a common event, as we suspected, but was significantly
associated with nontumor tissues. Additionally, we investigated the
potential epigenomic mechanisms underlying this finding.

2. Materials and Methods

2.1. HBV DNA integration sites and host genome
annotation sources

VIMIC is a pilot database of human disease-related virus
mutations, integration sites, and cis-effects (v1, released 21-MAY-21)
[27]. In this database, the authors identified 39,687 HBV integration
sites with host genome locations (GRCh38) and tissue types (http:/
bmtongji.cn/ViMIC/downloaddata/integration/HBV_integration.csv).
We only chose sites without host genome deletions (end location — start
location=1) from tumorous/nontumorous tissues. Recurrent integration
sites were considered multiple records in this investigation, resulting in a
total of 21,520 records, 16,644 of which were unique sites.

Then, we annotated these integration sites with host genome
regulatory elements. CpG islands, CTCFs-binding sites, TFBSs, and
transcription start sites (TSSs) were obtained from the UCSC Genome
Browser (www.genome.ucsc.edu) [28]. Liver tissue SE ranges were
obtained from SEdb v2.0 (https://bio.liclab.net/sedb/index.php) [29].
All cell types and tissues from the liver were included in the study.

2.2. Methylation annotation

We computed the mean methylated CpG rate of the flanking
regions spanning 100 bp around the integration sites. The whole-
genome CpG methylation data for the HepG2 cell line were obtained
from the ENCODE project (https:/www.encodeproject.org/experime
nts/ENCSR786DCL/) [30]. The methylation rates of the integration
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site flanking regions were calculated as described below. CpGs with a
minimum coverage of 1 read were included.

For a single CpG, a methylated CpG was considered when more
than 40% of the reads were methylated.

The region methylation rate was calculated as (methylated CpG/
all CpGs in the region) *100%.

To validate our methylation calculation method, we downloaded
methylation panel data for fetal livers from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1014211) and
compared the methylation rates calculated as above with the panel
results.

2.3. Histone modification of the HepG2 cell line

Chip-seq data were downloaded from the ENCODE project
(https://www.encodeproject.org/). Chip-seq data of H3K4mel,
H3K4me3, and H3K27ac in HepG2 cells and homo sapiens liver
tissue of a female adult (25 years old) were collected. The
ENCODE4 histone Chip-seq data standards and processing pipeline
was available at https://www.encodeproject.org/chip-seq/histone-
encoded4/. A brief Chip-seq pipeline could be found at https://
www.encodeproject.org/documents/6f6351d4-9310-4a3b-a3c2-
70ecac47b28b/(@@download/attachment/ChIP-seq_Mapping_Pipeline_
Overview.pdf and https://www.encodeproject.org/documents/7009be
b8-340b-4e71-b9db-53bb020c 7fe2/(@(@download/attachment/ChIP-seq_
pipeline_overview.pdf. We downloaded bigwig files aligned to
hg38 with fold change over control. These files contained
fold-over control of read depth at each position. Then we used
deepTools v3.5.4 (https://github.com/deeptools/deepTools) [31] for
Chip-seq data calculation and plotting with parameters reference-
point — referencePoint center — beforeRegionStartLength 10000 —
afterRegionStartLength 10000 — skipZeros.

2.4. Data statistics

We annotated HBV integration sites with host regulatory
elements, including SEs, CpGs, CTCFs, TFBSs, and TSSs.
Logistic regression was used to assess the associations between
host-integrated regulatory elements and HCC. We used a paired
Wilcoxon test to compare the methylation rate of 100bp flanking
integration in a SE and the mean methylation rate of the same SE.
P <0.05 was considered to indicate statistical significance. R
v4.2.2 was used for statistical analysis. Default parameters were
used for logistic regression and paired Wilcoxon test. Logistic
regression and Wilcoxon test functions were in the R base, and R
package ggplot2 was used for plotting.

3. Results

3.1. Integration of SEs was significantly associated
with HCC

Using this logistic regression model, we investigated the
relationships between HCC and integrated host regulatory
elements, including SEs, CpG islands, CTCF-binding sites,
TFBSs, and TSSs (Table 1). Integration into CpG islands was
associated with 634 events and a significantly increased tumor
risk, with an odds ratio (OR) of 2.651. An OR >1 indicates an
increased risk, and an OR <1 indicates a decreased risk. OR =1
indicates no effect. Integration into SEs was more frequent than
that into CpG islands, with a total of 2,807 events (13.0%), but
significantly decreased tumor risk, with an OR =0.580. The
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Table 1. Relationships between HBV integration into host
regulatory elements and HCC

Features Tumor Nontumor P value OR 95%CI
Total 13016 8504 - - -

CpG islands 512 122 0.000 2.651 [1.542,3.760]
SE 1375 1432 0.000 0.580 [-0.462,1.623]
CTCF 49 63 0.000 0.479 [-0.735,1.693]
TFBS 4741 3033 0.041 1.064 [0.033,2.095]
TSS 12 5 0.414 1.554 [-0.161,3.269]

Note: SE: superenhancer; CTCF: CCCTC-binding factor; TFBS:
transcription factor-binding site; TSS: transcription start site; OR:
odds ratio; 95%CI: 95% confidence interval.

proportion of SEs-integrations found in tumor tissues was 10.6%,
while in nontumor tissues, this proportion was 16.8%. Integration
into CTCF-binding sites was also showed to be a protective factor
against HCC (P =0.000, OR =0.479); however, integration into
CTCF-binding sites showed to be relativity rare events (0.5%).
The most integrated host regulatory element was the TFBS, with
7,774 events as a mild tumor risk factor (P = 0.041 and OR = 1.064).

3.2. In the host genome, SE regions flanking HBYV
integration sites are hypermethylated

As integration into CpG islands has been reported to be an HCC
risk factor closely associated with methylation, we analyzed whether the
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lower HCC rate associated with SE integration was associated with host
genome methylation. The methylation rate of CpG islands with 100bp
flanking integration was calculated as described in the Methods section.
To validate our methylation calculation method, we compared the
calculated methylation rate with the result of a fetal liver methylation
panel. The calculated methylation rate was consistent with the panel
results (Figure S1(A)), and the histogram of the methylation rate of
CpG islands had a high count in the low-methylation region
(Figure S1(B)). Thus, our methylation calculation method could
reflect the true methylation state of the host genome.

Regions flanking HBV integration sites in the SE were
hypermethylated compared to non-SE integration flanking regions
(P=0.000). The methylation conditions were classified into three
groups based on the percentage of methylated CpG: low
methylation [0,0.25], moderate methylation (0.25,0.75], and high
methylation (0.75,1.00]. Both tumor and nontumor SE patients
showed a higher rate of high methylation (Figure S2).

Figure 1 shows the histogram of methylation rates of flanking
regions of integration in SEs (a) and CpG islands (b). The
methylation histogram showed comparable patterns between host
whole CpG islands (Figure S1(B)) and flanking regions of
integration in CpG islands. However, for SEs, there are distinct
patterns (Figure 1(A) and (C)). Regions flanking SEs were more
likely to be hypermethylated than those outside SEs (Figure 1(D)).

We then evaluated the methylation rate of 100 bp flanking
integration in SEs and the average methylation rate of integrated
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Figure 1. Different methylation distributions in CpG islands and superenhancers flanking HBYV integration regions. (A) Histogram of
methylation rate flanking integration in SEs. The majority of sites were hypermethylated. (B) Histogram of methylation rate flanking
integration in CpGs. The majority of sites were hypomethylated. The methylation rate distribution of integration in CpGs was similar
to that of CpGs (Figure S1(B)). (C) Histogram of average methylation rate in SEs. A normal distribution was found. Different from the
similar distributions of methylation rate in CpG integrations and CpGs, distinct distributions of methylation rate were found in total
SE regions and integration sites in SEs. (D) The methylation conditions were classified into three groups based on the percentage of
methylated CpG: low methylation [0,0.25], moderate methylation (0.25,0.75], and high methylation (0.75,1.00]. Regions flanking
HBY integration sites in the SE were hypermethylated compared to regions flanking non-SE integration (P = 0.000).
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Figure 2. Flanking regions of HBV integration in superenhancers
showed a higher methylation rate than the mean methylation rate
of superenhancers (P = 0.008, paired Wilcoxon test). The flanking
regions of HBV integration in SEs showed a higher methylation
rate than the mean methylation rate in the same SE (P = 0.008).

SEs with a paired Wilcoxon test (Figure 2). The flanking regions of
HBYV integration in SEs showed a higher methylation rate than the
mean methylation rate in SEs (P =0.008).

These results indicated that methylation in SEs was not uniform
and that HBV DNA integration in SEs was more likely to occur in
hypermethylated regions.

3.3. The hypermethylated SE region flanking HBV
integration sites showed lower levels of epigenomic
markers

SEs are characterized as clusters with high levels of H3K4mel,
H3K27ac, or other master transcription factors. We then evaluated the
relationship between CpG methylation and histone modification in the
SE region flanking HBV integration sites. Integration sites in SEs
were grouped into 3 classes according to the methylation rate of the
flanking host genomic region (low: 0-0.25, moderate: 0.25-0.75,
high: 0.75-1). The histone modification levels of HepG2 were overall
higher than that of human liver tissue. However, these reported
integration sites in SEs showed similar histone modification level
patterns when aligned to HepG2 and human tissue Chip-seq data.
Compared with the centers of SEs, all integration sites showed low
H3K4mel values. Integration sites with high and moderate
methylation levels exhibited relatively low H3K4me3 and H3K27ac
levels, whereas integration sites with low methylation levels had
much greater H3K4me3 and H3K27ac levels than those with
moderate or high methylation (Figure 3).

Histone modification markers in liver tissue or in vitro cultured
cell lines showed some differences; however, regions annotated as
SEs in liver tissue (right lobe of liver)/hepatocyte (in vitro
differentiated cell)/HepG2 were enriched with H3K4mel, a
marker of SEs, in human tissue Chip-seq data (Figure S3). This
result indicated that SEs annotated in cell lines were also likely to
be annotated as SEs in human liver tissue.

4. Discussion

In this study, we constructed a logistic regression model to
evaluate the relationships between host regulatory elements
integrated with HBV DNA and HCC. SEs are newly defined
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Figure 3. Histone modifications flanking HBV integration sites with high, moderate, and low methylation levels in superenhancers (SEs).
These figures showed H3K4mel, H3K4me3, and H3K27ac modification levels in HepG2 cells and human liver tissue from a female
adult. All Chip-seq data were collected from ENCODE database. The y-lab was the fold-over control and the x-lab showed the
distance from the integration site or the center of the SEs. Integration sites were grouped into 3 classes according to the
methylation rate of the flanking host genomic region (low: 0-0.25, moderate: 0.25-0.75, high: 0.75-1). High and moderate
methylated integration sites showed low histone modification levels, while low methylated integration sites showed a much higher
H3K4me3 level. The H3K27ac level of low methylated integration sites in SEs was also higher than that of high and moderate

methylation sites, but were not higher than that of SE centers.
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regulatory elements that play important roles in cell identity and
oncogenes. Interestingly, we found that integration into SEs was
frequent but was significantly associated with a nontumor status
(P =0.000, OR = 0.580). This protective effect might be attributed
to hypermethylation. Integration into CTCF was also showed to
be a protective factor against HCC in our logistic model
(P =0.000, OR =0.479). This protein cooperates with host CTCF,
repressing viral transcription of HBV [32].

HBV DNA integration into the host genome is common in
chronic HBV infection. Viral DNA preferentially establishes
contacts at active chromatin regions. HBV DNA-host DNA contacts
are significantly enriched at H3K4mel-marked regions [16],
indicating that HBV integration in SEs could be a frequent event. In
this study, we annotated 21,520 integration sites from the ViMIC
database. Among them, 13.0% occurred in SEs. Among the
integrations found in tumor tissues, 10.6% were located in SEs.
However, in nontumor tissues, this proportion was 16.8%. The
absolute value of the OR of integration into SEs was approximately
half of that of integration into CpG islands, a reported risk factor
for HCC [10]. The most important feature of CpG islands is that
they are hypomethylated. The methylation level of integrated HBV
DNA was associated with that of the flanking host genome [33].
Therefore, we analyzed the methylation conditions of 100 bp
flanking HBV integration sites in SEs and found that more than
half of these host genome regions were hypermethylated. This
finding indicates that HBV DNA integrated into SEs was more
likely to be hypermethylated. The methylated viral genome had
decreased levels of hepatitis B e antigen in patients with HBV
genotypes B and C [34]. Moreover, hypomethylation near HBV
integration sites was reported to be a risk factor for HCC [35].

However, hypermethylation is not a feature of SEs. The
methylation distributions of host whole SEs and flanking regions of
integration were markedly different, indicating that methylation in
SEs was not uniform and that HBV DNA integration in SEs was
more likely to occur in hypermethylated regions. In enhancers,
DNA methylation is inversely correlated with H3K4mel and
H3K4me3 enrichment [36]. High DNA methylation was detected in
regions with low H3K4mel and H3K4me3 levels. This finding was
consistent with our results showing that the regions of integration in
SEs with high methylation rates had low H3K4mel, H3K4me3,
and H3K27ac levels. The majority of integration sites in SEs were
hypermethylated, indicating that these sites were enriched in regions
with low levels of histone modifications.

DNA with low histone modifications seems to be more
vulnerable to integration in SEs. Histone chaperones are histone-
binding proteins that can regulate nucleosome assembly and
shield histone surfaces [37, 38]. Whether histone modification or
histone chaperones influence HBV integration into the host
genome remains unclear. Histone and chaperones regulating HBV
viral chromatin assembly [39] and HIV integration into the host
genome [40] have been reported.

Ideally, the features in a logistic regression model should be
independent of one another. The presence of multicollinearity
among features can lead to unstable estimates and an expansion of
the 95% confidence interval (CI) for OR. In this study, we
included five features. Integration sites within SEs were found to
be more likely to be hypermethylated, whereas hypomethylation
was a key characteristic of CpG islands. These findings suggest
that SEs and CpG islands may exhibit multicollinearity, which
could explain why the lower bound of the 95% CI for the OR
associated with SEs was less than 0. In normal conditions, OR
values should be greater than 0. A similar pattern in OR 95% CI
was also observed for CTCF-binding sites, which can similarly be

attributed to feature multicollinearity. CTCF bindings were
reported to be related with genome methylation [41]. Furthermore,
TSS located near or within TFBS regions could contribute to
feature multicollinearity. However, complete avoidance of
multicollinearity is challenging in real-world medical datasets.
Transcription  factors could upregulate or downregulate
downstream genes either in cis or trans. In this study, we did not
differentiate between these mechanisms since integration into
TFBS was not our primary focus.

Finally, we will discuss the annotation sources of CpG islands
and SEs used in this study. CpG island regions were obtained from
UCSC Genome Browser and were predicted by genome sequence
(https://genome.ucsc.edu/cgi-bin/hgTables). It was not tissue-
specific but still worked in our logistic model. Integration into host
CpG islands showed to be a significant risk factor of HCC with
ORe [1.542, 3.760]. This finding aligns with previous clinical
studies by Zhao et al. [10]. Liver SEs were collected from SEdb, as
described in Methods. SEs predicted by all cell types and tissues
from the liver were included in the study, reflecting a comprehensive
approach. All SE regions derived from liver tissue (right lobe of
liver), hepatocytes (in vitro differentiated cells), and HepG2 cells
exhibited H3K4mel enrichment according to human tissue Chip-seq
data and HepG2 Chip-seq data, as illustrated in Figure S3.

5. Conclusion

Overall, our results suggested that HBV DNA integration into
host SEs was not a rare event and might not be a risk factor for HCC.
Integration sites in SEs were more likely to be hypermethylated and
to have lower H3K4mel values. However, further studies are needed
to validate the impact of HBV integration into SEs on HCC risk.
Investigations on the mechanisms underlying HBV integration
enrichment in hypermethylated regions in SEs are also needed.
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Supplementary Figure S1. Methylation rate calculated as described in Methods. (A) A validation of our methylation rate calculation
method with methylation panel. In methylation chip results, 0 means not methylated and 1000 means hypermethylated. (B) The
distribution of methylation rate of CpG islands in the whole genome calculated as our method.
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Supplementary Figure S2. In superenhancers, both tumor and nontumor integration sites (with 100 bp flanking regions) showed a
higher rate to be hypermethylated.
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Supplementary Figure S3. Histone modification levels of SE regions from SEdb. We additionally collected Chip-seq data of homo
sapiens liver tissue of a female adult (25 years) from ENCODE database. se.hg38.bed were SE locations obtained from SEdb. Though
HepG2 cell line showed higher histone modification levels than hepatocyte and liver tissue, the genomic regions that were annotated as
SEs in liver tissue and HepG2 showed similar H3K4mel and H3K4me3 levels when aligned to tissue Chip-seq data.

Abbreviations

CTCF CCCTC-binding factor
HBV hepatitis B virus
HCC hepatocellular carcinoma
OR odds ratio
SE superenhancer
TFBS transcription factor-binding site
TSS transcription start site
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