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Abstract: Liver disease is any condition that negatively affects the liver’s function or structure, resulting in impaired liver function and various
health complications. Abnormal conditions are rapidly increasing day by day. In this study, we used a dataset of key liver disease-related blood
sample biomarkers to utilize various machine learning (ML) techniques to enhance the accuracy of liver disease prediction. Specifically, we
integrated the artificial neural network (ANN) model with five ML models: Stacked Generalization (Stacking), Bootstrap Aggregating
(Bagging), Adaptive Boosting (AdaBoost), Gradient-Boosted Decision Tree (GBDT), and Support Vector Machine (SVM)—resulting in
five distinct hybrid models: Stacking with ANN (SANN), Bagging with ANN, AdaBoost with ANN (ABANN), GBDT with ANN
(GANN), and SVM with ANN (SVMANN). We tested all these hybrid models with feature selection techniques, including linear
discriminant analysis (LDA), principal component analysis (PCA), recursive feature elimination (RFE), and also without feature
selection. Through extensive testing, we found that these five hybrid models performed best when combined with LDA rather than PCA,
RFE, or no feature selection. This discovery led us to create a max voting ensemble (MVE) of these LDA-optimized hybrid models.
Remarkably, our prediction accuracy increased from 79.15% to 98.38% using the MVE. Furthermore, we employ explainable artificial
intelligence techniques such as Local Interpretable Model-agnostic Explanations, Shapley Additive Explanations, and Individual
Conditional Expectations to analyze and enhance trust in the predictions. We also implemented 10-fold cross-validation to ensure the
robustness and reliability of our results. This research underscores the significance of advancements in neural network systems and
highlights the potential for hybrid models to improve predictive accuracy in liver disease diagnosis. Our findings pave the way for a new
generation of computational technologies endowed with intelligence, ultimately contributing to better health outcomes and a deeper
understanding of liver disease dynamics.
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1. Introduction

Liver disease is a primary global health concern, affecting
millions and burdening healthcare systems. Early detection and
accurate prediction can significantly improve patient outcomes
[1]. Over 100 million people in the U.S. have liver disease, with
4.5 million diagnosed and an estimated 80—100 million with fatty
liver disease. Untreated liver disease can lead to liver failure and
cancer, resulting in 51,642 deaths in 2020 (15.7 per 100,000).
Chronic liver disease/cirrhosis was the 12th leading cause of death
in 2020 and the 8th for non-Hispanic African American/Black
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individuals aged 45-64 in 2019. Prevalence rates from a 2016
study include Japanese Americans (6.9%), Hispanic/Latino
persons (6.7%), White persons (4.1%), and African American/
Black and Native Hawaiian persons (3.9%). Nonalcoholic fatty
liver disease is the most common cause of cirrhosis, with risk
factors including heavy alcohol use, obesity, type 2 diabetes, and
certain medical and lifestyle factors. Cirrhosis also increases
stroke risk, with an incidence of 2.17% annually compared to
1.11% without cirrhosis. Death rates from liver cirrhosis have
been higher for Black/African American men and women than for
their white counterparts since the 1950s [2].

Recent research efforts have extensively explored the utilization
of machine learning (ML) techniques for predicting liver disease,
showcasing a variety of methodological approaches and their
corresponding accuracies. All these studies focused on classification
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for liver disease prediction. For instance, Choubey et al. [3] adopted
Decision Tree (DT) algorithms and achieved an accuracy of 75.10%,
while Shetty and Satyanarayana [4] enhanced Support Vector
Machine (SVM) with Random Sampling for a 71% accuracy rate.
Alyabis et al. [5] turned to Neural Network Analysis and obtained a
79.6% success rate, and Singh and Agarwal [6] experimented with
an Extreme Learning Machine (ELM), resulting in 77.77% accuracy.
Further contributions include Azam et al. [7], who integrated
K-Nearest Neighbor (KNN) with Feature Selection Techniques
(KNNWFEFST) for a 74% accuracy, and Choudhary et al. [8], who
applied Logistic Regression (LR) with a 70.54% accuracy rate.
Additional studies by Khan et al. [9] and Thirunavukkarasu et al.
[10] utilized Random Forest (RF) and LR to achieve accuracies of
72.17% and 73.97%, respectively. Muthuselvan et al. [11] used
Random Tree, and Yasmin et al. [12] studied KNN, yielding 74.2%
and 76.03% accuracy, demonstrating the diverse range of ML
methodologies being explored for liver disease prediction.

In our study, we critically analyzed the limitations and scopes of
these previous studies, seeking to bring novelty to our research
methodology. In the discussion section, we provide a
comprehensive comparison of these studies with our findings to
highlight the advancements and contributions of our approach.

In recent years, the emergence of advanced computational
techniques, such as artificial neural network (ANNs) and
explainable artificial intelligence (XAI), has provided promising
avenues for enhancing the predictive capabilities of liver disease
diagnosis models. This research investigates the potential of ANN-
based models integrated with XAI techniques for predicting liver
disease from optimal features extracted from patient data. Unlike
traditional statistical methods, ANNs offer the advantage of learning
complex patterns and relationships from large datasets, enabling
more accurate and robust predictions. Moreover, incorporating XAI
methods allows for interpreting and understanding the ANN
model’s decision-making process, addressing the critical need for
transparency and explainability in medical Al systems [13]. The
primary objective of this study is to develop ANN-based models
trained on a comprehensive dataset of clinical variables associated
with liver disease, utilizing feature selection techniques to identify
the most informative features for prediction. By leveraging XAI
methods, such as Local Interpretable Model-agnostic Explanation
(LIME) and Shapley Additive Explanation (SHAP), we aim to
elucidate the underlying factors driving the model’s predictions,
enhancing its interpretability and trustworthiness.

This research is motivated by the potential of advanced
computational techniques to revolutionize medical diagnostics and
decision-making processes. By harnessing the power of ANNs
and XAI, we aim to develop more accurate, transparent, and
clinically relevant predictive models for liver disease. Specifically,
this study integrates ANNs with robust ML models to enhance
predictive accuracy, employs advanced XAI tools to ensure
transparency in decision-making, and optimizes feature selection
to target the most informative clinical variables for liver disease
prediction. These advancements can potentially inform clinical
practice and improve patient outcomes through early detection and
personalized treatment strategies.

2. Materials and Methods

The main goal of this study is to accurately predict liver disease
by employing various ANN-based hybrid models and subsequently
assembling them for improved performance. The research workflow
is outlined in Figure 1. Sections 2.1 to 2.9 provide a brief working
structure of the study.
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2.1. Dataset

We obtained a dataset from the UCI ML Repository [14]
containing 583 samples of individuals, both affected and unaffected
by liver disease. The dataset comprises 10 features, excluding the
target variable indicating the presence or absence of liver disease. Of
the 583 instances in the dataset, 416 samples are affected by the
disease, while the remaining 167 are free. These 10 features contain
vital information related to various blood parameters and liver
conditions, including Age, Gender, Total Bilirubin (TB), Direct
Bilirubin (DB), Alkaline Phosphatase (ALPH), Alanine
Aminotransferase (ALAT), Aspartate Aminotransferase (ASAT),
Total Proteins (TP), Albumin (AL), and Albumin and Globulin
Ratio (AGR). The dataset comprehensively represents individuals’
liver health features, incorporating key biochemical markers and
demographic information. This diverse set of features will serve as
the foundation for constructing and evaluating predictive models for
liver disease diagnosis. Additionally, Table 1 provides a detailed
description of all 10 features and their corresponding value types,
facilitating a better understanding of the dataset’s composition and
characteristics.

2.2. Analysis and visualization

Data analysis and visualization are crucial in understanding
datasets, especially when applying different ML models [15].
These techniques provide valuable insights into the distribution,
patterns, outliers, and relationships within the data, essential for
making informed decisions during model development, feature
selection, and evaluation. In our liver dataset analysis, we utilize
various visualization techniques, including histograms [16], violin
plots [17], and correlation heatmaps [18].

2.3. Preprocessing

We employed various preprocessing techniques to address
missing values and transform textual values into numerical
representations [19]. In our dataset, we encountered missing
values in the “AGR” feature, totaling four instances. Additionally,
we converted gender values, where females were represented as
one and males as 0. Missing values in the dataset were addressed
using data imputation techniques. Specifically, we utilized the
mean imputation method to fill in the missing values of the AGR
feature. The mean imputation formula is given as follows:

Mean(X) :% (1)

Here, Mean(X) is the mean value that is used to fill in missing values
in the dataset, ) x denotes the sum of all non-missing values in the
feature, and » indicates the total number of non-missing values in the
feature.

We employed one-hot encoding to convert textual values into
numerical representations [20]. This technique transforms
categorical variables into binary vectors, effectively representing
each category as a separate feature. In our case, we encoded gender
information, where females were mapped to 1 and males to 0.

2.4. Ideal feature finding

The process of selecting the most relevant and informative
features from a dataset to improve the performance of ANN-based
ML models. This step is essential in building efficient and
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Figure 1. Working outline of the research

accurate predictive models as it helps reduce dimensionality,
minimize overfitting, and enhance model interpretability.

In this study, we applied feature selection techniques such as
linear discriminant analysis (LDA), principal component analysis

(PCA), and recursive feature elimination (RFE) [21] to identify
optimal features for ANN-based ML models, aiming to enhance
predictions of liver disease outcomes. We identified the most
compelling feature selection approach among the tested methods
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Table 1. Analysis of different features of the dataset

Feature  Description Value type Unit

Age Represents the age of the individual Numerical Years

Gender Indicates the gender of the individual Nominal -

TB Measures the total amount of bilirubin in the blood, indicating liver function and potential abnormalities. =~ Numerical =~ pmol/L

DB Elevated levels of direct bilirubin may indicate obstructive liver disease Numerical ~— pmol/L

ALPH  Reflects the levels of alkaline phosphatase enzyme in the blood, produced by the liver, bones, and other =~ Numerical  pkat/L
tissues. Elevated levels of alkaline phosphatase may indicate liver or bone disorders.

ALAT  Measures the levels of alanine aminotransferase enzyme in the blood, primarily found in the liver. Numerical U/L
Elevated levels of alanine aminotransferase may indicate liver damage or disease.

ASAT  Indicates the levels of aspartate aminotransferase enzyme in the blood, which is also predominantly Numerical U/L
found in the liver. Elevated levels of aspartate aminotransferase may suggest liver damage or
inflammation.

TP Represents the total protein concentration in the blood, including albumin and globulin. Abnormal levels ~ Numerical g/dL
of total proteins may indicate liver disease or other underlying health conditions.

AL Specifies the albumin concentration in the blood, which is synthesized by the liver and plays a crucial Numerical g/dL
role in maintaining osmotic pressure and transporting various substances in the blood.

AGR It provides the ratio of albumin to globulin in the blood, which can indicate liver function and overall Numerical -
health. Albumin and globulin ratio abnormalities may suggest liver disease or other underlying
conditions.

Result Individuals with liver disease are labeled “1”, while those without liver disease are labeled “0”. Nominal -

and integrated it into our models to improve predictive performance.
Furthermore, we employed a max voting ensemble (MVE) technique
to combine multiple ANN models utilizing the best feature subset,
significantly boosting accuracy and robustness.

LDA is a dimensionality reduction technique that finds linear
combinations of features to best separate different classes or
categories in the data. It is commonly used for classification tasks
to maximize the separation between classes while minimizing the
variance within each class [22].

PCA is another dimensionality reduction technique that transforms
the original features into a lower-dimensional space while preserving as
much variance as possible. PCA identifies the principal components that
capture the most significant variation in the data, allowing for
dimensionality reduction and simplification of the dataset [23].

RFE is a feature selection method that recursively removes
features based on their importance from the dataset. It trains the
model on the remaining features and evaluates their performance,
continuing this process until the optimal subset of features is
identified. RFE helps select the most informative features while
discarding redundant or irrelevant ones, thereby improving model
efficiency and interpretability [24].

2.5. ML model construction

Our study thoroughly examined the preprocessed dataset by
integrating various ML models with ANN to enhance prediction
accuracy. Our approach involved leveraging ANN as the base
model and implementing five distinct algorithms. These
algorithms are designed to improve predictive performance by
incorporating unique methodologies and characteristics. This
comprehensive analysis aims to identify the most effective model
for accurately predicting liver disease outcomes. Our methodology
underscores the importance of neural network systems in
maximizing prediction accuracy across different ML models [25].

2.5.1. Stacking with ANN (SANN)
Model stacking, or stacked generalization, is an ML technique that
combines multiple models to enhance predictive performance. It trains
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several base models and uses their predictions as input features for a
meta-model, which learns to refine and integrate these predictions.
The meta-model addresses errors and biases of individual models,
yielding a more robust and accurate prediction [26]. Mathematically,
the stacking process with an ANN is as follows:

Xineta = [ANNI (X) ANNZ(X) ANNn(X)7 Y] (2)
Here, X represents the input features, y represents the target variable,
ANNi(X) represents the prediction made by ANN model i,
and RF(X,.,) represents the prediction made by the RF as a
meta-model. Then, the RF meta-model is trained on X0/,

RE(Xera) = ([ANN(X), ANN;(X), ..., ANN,(X)]) - (3)

The performance metrics are then calculated based on the predictions
of the RF meta-model.

2.5.2. Bagging with ANN

Bagging is an ensemble method that enhances ML stability and
accuracy by bootstrap sampling to create multiple training subsets.
Each subset trains a base model, and their predictions are aggregated
for the final output [27]. By introducing model diversity, bagging
reduces overfitting and improves generalization. This study employs
Bagging with ANNs as base models to mitigate prediction variance.
While ANNs excel at capturing complex data patterns, they are
sensitive to training subsets. Bagging reduces this sensitivity,
enhancing prediction stability.

The Bagging Classifier aggregates predictions from multiple
ANN base models through averaging. For N base model, predictions
are the average of all base model predictions. Mathematically, this is
represented as:

N
BC(X) = % > ANN(X) (4)
i=1

Here, ANN;(X) represent the prediction made by the i-th ANN model
on the input features X, BC(X) represent the prediction made by the
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Bagging Classifier on the input features. X. N represents the number
of ANN models used in the ensemble method.

2.5.3. ABANN

Adaptive  Boosting (AdaBoost) enhances classification
performance by combining weak learners, typically shallow DTs,
through iterative training that assigns higher weights to misclassified
samples [28]. In AdaBoost with ANNs (ABANN), ANNs replace
traditional weak learners. Multiple ANNs are trained sequentially,
with each focusing more on previous misclassifications. The
final ABANN prediction is a weighted sum of individual ANN
predictions, with weights based on their accuracy during training.
Mathematically, this process is expressed as:

N
ABANN(X) = sign( a; - ANN; (X)) (5)
=1

i=

Here, ANN;(X) represent the prediction made by the i-th ANN model
on the input feature. X, ABANN(X) represent the prediction made by
the AdaBoost model on the input features. X, AdaBoost model com-
bines predictions from multiple base models ANN through a
weighted sum. Considering N base models and «; Represents the
weight assigned to the i-th base model. The sign function ensures
the final prediction is binary, typically {—1, 1} in classification tasks.
The weights «; are determined during the training process, favoring
models with better performance. This iterative approach of combin-
ing multiple ANNs with AdaBoost enhances the model’s overall pre-
dictive accuracy and robustness.

2.5.4. GBDT with ANN (GANN)

Gradient Boosting, mainly represented by the Gradient Boosting
Classifier in scikit-learn, is a powerful ensemble learning technique
that builds a strong predictive model by sequentially adding weak
learners (typically DT) to an ensemble [29]. Each subsequent weak
learner corrects the errors made by the previous ones, leading to a
final strong learner that combines the predictions of all weak learners.

In this implementation, Gradient Boosting with ANNs isused as a
base learner, and GANN utilizes ANNSs instead of DT as weak learners.
Mathematically, the GANN model is represented as follows:

N
GANN(X) = > ANN;(X) (6)
i=1

Here, ANN;(X) represent the prediction made by the i-th ANN model
on the input features. X, GANN(X) represent the prediction made by
the Gradient Boosting model on the input features. X and N represent
the number of ANN models.

2.5.5. SVM with ANN (SVMANN)

SVM is a supervised algorithm for classification and regression
that identifies the optimal hyperplane to maximize class separation,
using support vectors to define the margin [30]. It solves a convex
optimization problem to minimize errors and employs kernel
functions for non-linearly separable data. In the hybrid SVMANN
model, SVM’s high-dimensional handling is combined with ANN’s
ability to capture complex patterns, enhancing classification accuracy.

Let’s denote the output of the SVM model as fsyy (X) and the output
of the ANN model as fyxy(X). Then, the combined prediction )
SVMANN can be obtained by applying the outputs of both models to
a decision function, which could be a simple sum or another function,
depending on the specific implementation. Here’s the mathematical
representation:

Y = decision_function (foyp (X) + fann (X)) (7)

This equation encapsulates the idea of integrating the predictions
from both the SVM and ANN models to form the output of the
SVMANN hybrid model.

2.6. ML model evaluation

We evaluate our hybrid ANN-based ML models for liver disease
prediction using an 80:20 train-test split, ensuring robust training and a
realistic performance assessment. Predictions are analyzed through a
confusion matrix (CM), which categorizes predictions into True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN), forming the basis for calculating key performance metrics [31].

Accuracy is the proportion of correctly classified instances and
is calculated as:

TP+ TN «
TP+ TN + FP + FN

100 (8)

Precision measures the accuracy of optimistic predictions, which is
crucial for minimizing FPs in medical contexts. It is calculated as:

TP

%100 9
TP+ FP ©)

Recall reflects the model’s ability to identify actual positive cases,
ensuring minimal missed diagnoses. It is computed as:

TP

———— x 100 10
TP +EN (10)

F1 Score balances precision and recall, comprehensively evaluating
the model’s performance. It is given by:

Precision X Recall
e X 100 (11)
Precision + Recall

Based on these performance metrics, we selected the models with the
highest Accuracy, Precision, Recall, and F1 Score to determine which
should be taken forward for the MVE. This approach ensures that only
the most reliable models, demonstrating strong diagnostic capabilities
in liver disease prediction, contribute to the ensemble, enhancing our
final model’s robustness and overall predictive accuracy.

To evaluate the stability of the Max Voting model, we generated
the standard deviation (SD), 95% confidence interval (CI), and
receiver operating characteristic (ROC) curve.

The SD indicates the variability of the model’s performance
across different runs. A lower SD suggests the model’s performance
is more stable and consistent [32].

The 95% CI gives us a range of values within which we can be
95% confident that the true model performance lies [33]. This helps
us understand the potential variability of the model’s effectiveness,
ensuring it performs reliably.

The ROC curve was generated to visualize the model’s ability to
distinguish between classes at various threshold values. A higher
area under the curve (AUC) indicates that the model is more
stable and reliable in its discrimination between classes [34].

2.7. Max Voting

After evaluating various feature optimization techniques, we
found that LDA outperformed PCA and RFE. We then applied
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MVE [35] to combine predictions from five hybrid ANN models,
leveraging their diverse strengths to improve accuracy and
robustness. This approach enhances prediction using ANN'’s
learning capabilities and LDA’s discriminative power.

¥ =MajorityVote

(VSANN + LDA> YBANN +LDA s YABANN + LDA» YGANN + LDA» YSVMANN + LDA)

(12)

2.8. Performance analysis with XAI

We analyze our best model’s predictions using XAl techniques,
such as SHAP, LIME, and Individual Conditional Expectation (ICE)
plots, to gain transparency into its decision-making process. SHAP
attributes prediction contributions to individual features, while
LIME provides local explanations for specific predictions. ICE
plots reveal feature effects across instances. These techniques
enhance the interpretability of our ANN-based Max Voting model,
improving its transparency for clinical applications [36-38].

2.9. External validation

To further evaluate the performance of our MVE model, we test it
in various ways. We gather real-time patient information from multiple
internet sources [39, 40], collecting three patient data sets representing
diverse demographic and health conditions. These datasets are then
tested against the pre-trained model, developed using a well-
established dataset, allowing us to assess how well the model
generalizes to unseen real-time data. Additionally, we apply the
model to a multiclass classification dataset instead of the original
binary classification task to examine its performance with more
complex classification problems. This approach helps us evaluate
the model’s adaptability and scalability across a broader range of
potential outcomes. The results from both the real-time patient data
and the multiclass dataset provide valuable insights into the model’s
capabilities and highlight areas for future improvement.

3. Results and Discussion

After preprocessing the liver dataset, we evaluated ANN-based
models and applied feature reduction techniques, finding LDA to be

Table 2. Model performances with and without feature reduction

the most effective. We then implemented a MVE model with LDA,
addressed outliers through scalarization, and used 10-fold cross-
validation for results. Finally, XAI techniques were applied to
enhance the interpretability and trustworthiness of the predictions.

We gain valuable insights into the dataset’s structure and feature
relationships through comprehensive data analysis using visualizations
such as histograms, violin plots, and correlation heatmaps. Histograms
reveal that Age, TPs, and AL follow near-normal distributions, while
features like TB, ALPH, and ASAT exhibit right-skewed distributions
with notable outliers, indicating the presence of extreme values that
could impact model performance. Violin plots further confirm that
bilirubin and enzyme levels are highly skewed. In contrast, protein
levels and Age maintain more symmetric distributions, providing a
clearer view of data spread and potential anomalies. Additionally, the
correlation heatmap highlights strong positive relationships, such as
between TB and DB and Alamine Aminotransferase and ASAT,
suggesting collinearity among liver function markers. Moderate
negative correlations, like the inverse relationship between AL and
Age, also emerge, offering insights into potential dependencies. These
analyses are crucial in understanding data characteristics, guiding
feature selection, and optimizing model performance.

Table 2 consolidates the performance metrics for six models
across different feature optimization scenarios—no optimization,
LDA, PCA, and RFE—providing a comprehensive comparison of
accuracy, precision, recall, and F1 score. Without feature reduction,
SVMANN leads with an accuracy of 78.03%, while SANN trails at
76.32%, setting the baseline for model effectiveness. With LDA
applied, overall performance improves, with SANN achieving the
highest accuracy of 79.15% and SVMANN recording the lowest at
75.72%, underscoring the nuanced impact of LDA on these models.
When PCA is used, SVMANN emerges as the top performer with a
77.44% accuracy, contrasting with ABANN’s lower accuracy of
74.70%, while corresponding precision, recall, and F1 scores
further delineate these differences. Finally, under RFE, SVMANN
again attains the highest accuracy at 78.03%, whereas GANN
shows the lowest at 75.81%. This table highlights how various
feature optimization techniques distinctly influence model
performance, offering detailed insights into their relative strengths
and weaknesses across multiple evaluation metrics.

Table 3 summarizes the LDA model’s feature importance
rankings and coefficients within the Max Voting framework
across ten cross-validation folds and the Final Optimal Feature

Feature optimization Models ANN SANN BANN ABANN GANN SVMANN
No Optimization Accgrgcy 76.92 76.32 75.73 76.41 76.32 78.03
Precision 70.94 49.17 67.66 68.76 49.17 39.02
Recall 58.98 51.48 58.84 67.23 51.48 50
F1 Score 58.17 47.57 59.23 67.65 47.57 43.83
LDA Accuracy 78.03 79.15 78.55 78.21 78.55 75.72
Precision 39.02 39.64 39.28 39.1 39.28 37.86
Recall 50 49.89 50 50 50 50
F1 Score 43.83 44.18 43.99 43.88 43.99 43.09
PCA Accuracy 76.49 75.81 76.07 74.7 76.75 77.44
Precision 70.98 56.81 68.33 64.88 67.23 38.75
Recall 57.18 52.64 57.35 60 61.27 49.95
F1 Score 56.2 50.16 56.86 60.42 62.33 43.64
RFE Accuracy 77.35 77.44 77.26 77.01 75.81 78.03
Precision 47.02 55.19 46.08 69.12 66.89 39.02
Recall 50.52 50.95 50.38 61.62 58.22 50
F1 Score 45.63 46.22 453 62.77 58.42 43.83
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S 222 = feature optimizations for liver disease prediction. The MVE method,
2 integrating multiple ANN models with LDA, achieves the highest
; RN SRS accuracy (98.38%). .and F1 score (81.8%), highlighting its
S AR R8EIEER superiority over individual models.
glEleceeseeeseee g Figure 3(A) presents the CM for the Max Voting model. It shows
S RSN -V = I I - PR ) . e . .

= FIdEEEE< << B <% only one misclassification between disease and non-disease cases,
s é é 21 indicating strong predictive performance. Meanwhile, Figure 3(B)
E‘ displays the ROC curve, where the model achieves an AUC of 1.00,
5 S2LIITr=9 signifying perfect classification and excellent discriminative ability.

‘5 Te88TEERER Figure 4 provides a detailed examination of the features
& ::2% e g influencing the model’s predictions. Figure 4(A) displays the
aﬂ é i 2] j j é g j j 8 é SHAP summary plot, showing that features like DB and ALPH
= strongly contribute to prediction accuracy, while lower values of
A - %) AL and TB negatively affect the predictions. In Figure 4(B), the
235 o é SHAP waterfall plot illustrates the individual feature impacts. It
= p p

R |[E|— oo~ 0o =K

[

highlights that ALPH reduces the likelihood of liver disease while
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discrimination

TPs, along with Age and AL, increase it. Figure 4(C) presents the
LIME explanation for class 0 (no liver disease), where Alamine
Aminotransferase and DB contribute negatively, while TPs have a
small positive impact. Figure 4(D) shows the LIME explanation
for class 1 (liver disease), where Alamine Aminotransferase and
ALPH contribute negatively. Finally, Figure 4(E) illustrates the
SHAP FORCE plot, offering a more granular view of the force
and direction of each feature’s influence on the final prediction,
emphasizing their relative contribution in a visual format. These
visualizations comprehensively understand the feature impacts
driving the Max Voting model’s decisions.

Figure 5(A) presents the ICE plots for each feature, showing how
prediction values change with varying feature values. Features like
Age and TB exhibit a more substantial influence on predictions,
while Gender and TPs have minimal impact. Figure 5(B) shows the
SHAP dependence analysis, revealing that Age and TB contribute
positively to predictions. At the same time, ALPH and AL have
varying impacts, suggesting their effects are more context-
dependent. These analyses provide a deeper understanding of how
individual features drive the model’s decision-making process.

Table 5 compares feature prioritization between various XAl
methods, such as SHAP, LIME, FORCE, ICE, and clinical
experts. DB and TB are consistently high-priority features. This
alignment between the model’s decisions and expert judgment
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underscores the model’s interpretability and potential for real-
world clinical applications.

The performance of Deep Learning models, including Long-Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional
Neural Network-Long-Short-Term Memory (CNN-LSTM) Ensemble
models, was evaluated on a 583-instance dataset. Among these models,
LSTM achieved the highest accuracy at 68.38%, closely followed by
GRU at 68.12%. However, neither LSTM nor GRU outperformed the
Max Voting model. Regarding precision, recall, and F'1 score, LSTM
achieved 52.47%, 52.45%, and 47.56%, respectively, while GRU
showed better precision and recall at 59.01% and 55.47% but slightly
lower F1 at 53.88%. The CNN-LSTM ensemble model, on the other
hand, had the lowest performance across all metrics, with an accuracy
of 50.1%, precision of 51.15%, recall of 50.78%, and F1 score of
45.62%. Despite the strengths of these deep leaming models, they do
not surpass the MVE in predictive accuracy.

We further evaluated the performance of our Max Voting model
using real-time patient data and a different dataset to assess its
accuracy across various contexts. The validation with real-time
sample data involved testing the model on new patient samples,
including data from Mr. Akash (23, male) from Dr. Lal’s
Pathology Lab, Mrs. Sushila (53, female) from House of
Diagnostics, and Mr. Wasif (30, male) from Chughtai Lab. Key
health indicators such as TB, DB, ALPH, ALAT, ASAT, TP, AL,
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Table 5. Comparison of feature importance rankings in liver disease prediction between XAI methods and clinical expert judgment

XAI decision

Experts decision

LIME SHAP

Priority SHAP Disease No Disease WATERFALL FORCE ICE Expert 1 Expert 2
First DB ALAT ALAT ALPH TB TB Both TB and DB are TB/DB
Second ALPH ALPH DB Age ALPH ALPH . ASAT, ALPH

. the most important
Third Age Age AL TP DB ASAT AL, AGR
Fourth ALAT TP ALPH ASAT ASAT DB Age, Gender
Fifth TP DB TP ALAT TP TP -
Sixth ASAT TB AGR DB ALAT AGR -

Table 6. Comparison of our study with previous studies

Existing literatures Dataset Accuracy Feature optimization Cross validation XAl
Choubey et al. [3] 583 Sample 75.10% v X X
Shetty and Satyanarayana [4] 583 Sample 71% X X X
Alyabis et al. [5] 583 Sample 79.6% v X X
Singh and Agarwal [6] 583 Sample 77.77% X X X
Azam et al. [7] 583 Sample 74% v X X
Choudhary et al. [8] 583 Sample 70.54% X v X
Khan et al. [9] 583 Sample 72.17% X X X
Thirunavukkarasu et al. [10] 583 Sample 73.97% X X X
Muthuselvan et al. [11] 583 Sample 74.2% X v X
Yasmin et al. [12] 583 Sample 76.03% v X X
Our Study 583 Sample 98.38% v v v

and AGR were used to evaluate the model’s accuracy. The results of
this validation were compared with the 583-sample dataset,
showcasing the model’s ability to accurately assess and predict
patient health metrics.

The MVE model was tested on an external liver disease dataset of
30,691 patients [41] for validation. The model demonstrates strong
performance with an average accuracy of 88.35%, highlighting its
ability to generalize effectively to external samples and confirming its
robustness in predicting liver disease outcomes. The model’s
precision, recall, and F1 score also reflect solid performance, with
mean values of 92.99%, 79.48%, and 83.26%, respectively. The
standard deviation for accuracy, precision, recall, and F1 score is
1.94, 1.30, 2.77, and 1.43, respectively, indicating relatively stable
performance across the folds. The 95% confidence intervals for these
metrics are +1.20 for accuracy, +1.30 for precision, +2.77 for recall,
and +1.43 for F1 score, further validating the model’s effectiveness in
liver disease prediction.

We collect a Maternal Health Risk (MHR) dataset from Kaggle
[42], which contains 1,014 samples and seven features divided into
three classes: low, mid, and high risk. The results of the Max Voting
model across 10 folds are evaluated using performance metrics such
as accuracy, precision, recall, and F1 score. The model demonstrates
strong performance, achieving an average accuracy of 93.07%,
precision of 92.71%, recall at 93.06%, and an F'1 score of 92.85%.
For each fold, the standard deviation and 95% confidence intervals
are calculated, showing minor variability, with confidence intervals
of +0.74 for accuracy, £0.80 for precision, +1.72 for recall, and
+0.89 for F1 score. The CM reveals that the model accurately
classifies most samples across the three classes, correctly predicting
60 out of 67 Low-risk cases, 67 out of 71 Mid-risk cases, and 61 out
of 64 High-risk cases. Some misclassifications occur, such as 5 Low-
risk cases misclassified as Mid and 2 as High, along with a few
misclassifications in the Mid and High-risk categories, but overall,
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the model effectively distinguishes between different risk levels,
reflecting its robust predictive capabilities on the MHR dataset.

Finally, Table 6 compares with existing literature and reveals
the superior accuracy of 98.38% achieved by the proposed
approach, significantly outperforming the 70.54% to 79.6% range
reported in previous studies. Unlike earlier research, this study
incorporates feature optimization, cross-validation, and XAl
techniques, addressing existing gaps. The ensemble model, built
on ANN-based hybrid approaches, enhances predictive accuracy
and interpretability, distinguishing it from prior work.

The lower accuracies and other performance metrics presented
in Table 4 can be attributed mainly to the limited size of the
dataset, which consists of only 583 samples and 11 features. This
small dataset restricts the ability of individual models to generalize
effectively, especially when it comes to capturing complex patterns.
As a result, the models exhibit lower precision, recall, and F'1 scores.
When trained on such limited datasets with few features, models are
more prone to overfitting or underfitting, as they lack sufficient
information to identify intricate relationships. This ultimately leads to
reduced accuracy and other performance metrics [43].

However, the MVE method with LDA achieves higher
accuracy despite the limitations of individual models. By
combining predictions from multiple models through Max Voting,
this approach mitigates the weaknesses of each model, enhancing
overall performance. LDA’s role in reducing dimensionality
allows each model to focus on the most relevant features,
improving their performance within the ensemble. The ensemble
capitalizes on the strengths of each model. At the same time,
LDA’s feature optimization provides a more transparent, more
robust representation of the data, leading to improved accuracy
and other metrics in the combined outcome.

Even though our dataset contains only 11 features, we used
feature optimization techniques because they enhance model
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accuracy by refining the dataset to its most informative aspects.
These techniques, like LDA, PCA, and RFE, help the model focus
on the features that most significantly contribute to identifying
patterns and improving predictive reliability. By reducing noise
and minimizing irrelevant data, feature optimization allows for
more effective learning and generalization, increasing stability and
reducing computational complexity. This approach is also
valuable in small datasets, where maximizing the signal-to-noise
ratio is critical for robust performance [44].

LDA proved the most compelling feature selection method
because it maximizes class separation, making it ideal for
classification tasks where distinguishing between classes is
crucial. Unlike PCA, which reduces dimensionality based on
variance without considering class labels, or RFE, which does not
directly optimize for class discrimination, LDA enhances class
separability. Additionally, LDA handles class imbalances better
by considering the ratio of between-class to within-class variance,
ensuring that selected features are most relevant for distinguishing
between classes, even in imbalanced datasets [45].

Figure 6 depicts our liver disease prediction framework in the
real-time scenario. Patient data is collected via questionnaires and
blood samples, which are then analyzed in a semi-auto biochemistry
analyzer to measure liver function indicators. This data is tested

against an existing, optimized dataset of 583 samples using LDA,
chosen for its effective feature selection in ANN-based models.
Afterward, predictions are generated using the ANN-based MVE
for improved accuracy. Finally, XAI enables users, including
non-experts, to understand the projections and confidently take
further medical actions in consultation with experts.

4. Conclusion

In conclusion, this study demonstrates a robust approach to
enhancing liver disease prediction by integrating ANN with five
distinct ML models—Stacking, Bagging, AdaBoost, Gradient-
Boosted Decision Tree, and SVM—to create five hybrid models
optimized through LDA. Combined into a MVE, these
LDA-optimized hybrids achieve a significant accuracy increase
from 79.15% to 98.38%. XAI techniques, such as LIME, SHAP,
and ICE, further support the transparency of the model’s decision-
making process. We validate the ensemble model’s effectiveness
by comparing its predictions with doctors’ decisions and testing it
on samples from external sources and a multiclass MHR dataset,
confirming its adaptability beyond the initial dataset. A real-time
demonstration of our model underscores its practical utility,
though the study notes limitations, particularly in applying the
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model to clinical settings due to data constraints. Future work will
address these limitations by implementing Differential Privacy and
Clinical Servers to protect patient data, with plans to extend the
model to support multi-disease prediction. Additionally, we aim to
construct a web server that would enhance the accessibility and
value of this tool for the broader community and end users.
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