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Abstract: Autism spectrum disorders are reported to be one of the most intriguing neurodegenerative conditions, while disinterring the
possible causes of this malady has been a topic of intense research in the recent past. Many studies trace the origin of autism to gene
mutations. However, it has been reported that analyzing hundreds of genes present in the human body led to extensive use of
resources in terms of expertise, capital, and time. This in turn paved the way for computational investigations on gene expression
data, which also proved to be a challenging task owing to the momentous number of attributes and the relatively low number of
instances that were available to train the machine learning models. This research work thus explores the use of automated machine
learning, deep learning, and traditional machine learning models to detect possible gene signatures that play the most contributory
role in characterizing the presence of autism. The results suggest that the Bayesian classifier model fused with correlation feature
filtering yielded higher accuracy, this being reported for the first time on this gene expression data. The proposed Bayesian machine
learning model generated an accuracy of ~87% with a minimal yet optimal gene signature that ranks a subset of 22 genes as

significant gene markers from a total of 9454 genes.
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1. Introduction

Autism spectrum disorder (ASD) is identified as a
neurocognitive  degenerative  condition that exhibits
symptoms such as indifferent social interactions, weakened
communication, and cyclic mode of actions [1]. It has also
been reported in previous studies that genetic similarity
among identical twins who belong to the same ecological
environment and inherit similar parental chromosomes is
high [2, 3].

Recent research on autism and the application of computational
methods for the diagnosis of this condition has revealed the need to
unearth its causes, such as the role of inheritance in autism, the most
contributing gene, the most contributing mutation, environmental
factors, exposure to abuse, and so on [4]. Most of the studies in
the recent past have focused on real-time data collected from
individuals restricted to a certain region. Some published reports
have reported that ethnicity or familial history is not a major
contributing factor to autism. Yet another challenging factor in
autism research is identifying the kind of therapeutic measure to
treat autistic children based on their age, cause of autism, socio-
economic status, and educational standards of the family
members [5].

*Corresponding author: Shomona Gracia Jacob, School of ICT, Bahrain
Polytechnic, Kingdom of Bahrain. Email: shomona.jacob@polytechnic.bh

Presently, gene biomarkers have not yet been precisely identified
since manual processing and statistical analysis of the available patient
data have proved to be a herculean task, thus inhibiting major
breakthroughs in identifying ASD triggers from genetic information
[6, 7]. Most studies have concentrated on the role of hereditary
factors but have fallen short of the expected results owing to the
complex structure of ASD genetics. Some reports claim that a
collection of genes played a major role in triggering ASD, thereby
augmenting the complexity of genome-based investigations [8—11].

This research work emphasizes the role of machine learning
techniques in generating gene signatures that could lead us to the
most contributing genes that can classify autism based on the
gene expression values. Gene signature refers to the set of genes
whose values can computationally detect the prevalence of autism
with high accuracy. To portray the need for this study
with suitable evidence, the recent research on the application of
machine learning and data mining in the classification of autism is
concisely tabulated here.

Based on the review of recent and related work in the
classification of gene signatures for autism, it can be summarized
based on the review in Table 1, to state that:

1) There is a lack of robust machine learning models and
standardized databases that can predict the role of contributing
factors for autism.

2) A comprehensive database of possible contributing factors from a
social/medical perspective is unavailable.

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/

licenses/by/4.0/).

327


mailto:shomona.jacob@polytechnic.bh
https://doi.org/10.47852/bonviewMEDIN52024698
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Medinformatics

Vol.2 Iss.4 2025

Table 1. Summary of recent and related work on genetic factors affecting autism

S.No Reference

Objective

Findings

Inference

CAPS2 was the most discriminative
gene identified by the GBPSO-
SVM algorithm with 86.3%
accuracy but was a highly time-
consuming process.

There was ample scope for
improvement in the accuracy of the

Only uses the TADA score to
substantiate the results

Gradient boosted tree model was
recorded to yield the highest
accuracy in detecting high-risk
genes for autism.

Genetic mutations can affect brain
development in a fetus, leading to

Identify significant genes that trigger
ASD in children.
Focused on multinomial classification

1. Hameed Identify discriminatory genes for
et al. [11] autism.
2. Gunning Review on the application of machine
et al. [12] learning models to detect autism.
models.
4. Brueggeman Proposed an ensemble method,
et al. [9] forecASD, which integrated brain
gene expression, diverse brain
network data, and existing gene-
level predictors of autism association
into an ensemble classifier. The
score yielded by the classifier was
treated as the evidence of each
gene’s involvement in the etiology
of autism.
3. Lin et al. Proposed an ML technique on the
[13] SFARI gene database to detect
potential genetic causes for autism.
5. Zaman et al. Detect genes that play a key role in
[14] cognitive function.
ASD
6. Wu et al. Review on the significance of gene
[15] function in ASD onset.
7. Rastagari Proposed the FA_gene algorithm to
et al. [16] find a minimal set of genes involved

8. Gogate et al.

in autism.

The focus was on ASD genetics to

that distinguished between different
autism classes, namely, Asperger’s
syndrome, autism spectrum
disorder, pervasive developmental
disorder (PDD)-NOS (not
otherwise specified), and control
cases.

Computational investigations were

» No computational studies were
done to substantiate the findings.

« High level of preprocessing done
on the data.

* More precise evaluation metrics to
be used for unbalanced datasets.

* More work on generating and
validating statistical models for
predicting the association of rare
gene variants and disease is
needed.

* Does not record the evaluation
metrics of the classifiers.

* Works only on balanced data.

» The method was tested only on the
de novo mutation genes, so it does
not explain inherited autism.

* Lack of methods to investigate the
onset of ASD during gestation.

* Lack of in vitro/in silico methods
for early diagnosis of ASD.

* No evaluation metrics were
recorded to justify the findings
with statistical significance.

 Unearths the need for

[1] detect ample variants across diverse
ancestral backgrounds.

9. Singh et al.
[17]

A graph convolution network with
logistic regression was used to
identify potential genes based on the
data retrieved from the PPI network.

not included in the study, and the
work involved a molecular study
and diagnosis.

The findings were compared with the
SFARI database and the EAGLE
framework to substantiate the
derived results.

computational methods to detect
potential genetic markers for
autism.

* More computational investigations
using multimodal data and graph
theory were suggested to identify
the complex genetic interactions in
autism.

3) Unbalanced dataset predictions have not utilized appropriate
evaluation metrics to substantiate the findings with the
required statistical significance.

The focus of this article is to identify the most discriminative
gene signature for autism classification from the NCBI Geo Gene
Expression Data [18] using machine learning approaches. The
proposed model in this work is trained on the gene expression
data comprising ~9500 genes and 146 records. The highly
predictive gene signature comprises ~22 genes that generated a
classification accuracy of ~87%, the highest reported thus far in
the literature. The objective of this study is:
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1) To identify the optimal set of genes that could direct further
biological and genetic assays on the highly discriminative
genes that could serve as biomarkers for autism.

2) Investigate the comparative performance of automated machine
learning (AutoML) models, conventional machine learning,
and deep learning models.

3) This is only the second reported study on this dataset, which is
continuous, highly variant, with an extensive domain of
values, and unbalanced. Hence, the authors propose to explore
the optimization of hyperparameters that would yield the most
accurate results in the classification of autism with the
potential gene signatures.
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The remaining sections of the manuscript are organized as
follows: Materials and Methods, followed by Experimental
Results, Discussions, and Conclusion.

2. Materials and Methods

The proposed methodology in this work is portrayed in
Figure 1.

The gene expression data utilized to carry out this research were
downloaded from the GEO expression database available at NCBI
[18]. The data comprised 146 instances and 54,613 genes/attributes,
the description of which is given in Figure 2. This dataset could be
used only for binary classification as the target class was divided
into the control class, containing 66 observations, and the autism
class, comprising 80 records. This work highlights the results of the
earlier work on the same dataset as reported by Hameed et al. [11],
who had recorded a different number of samples in the respective
classes, although they used the same source for data collection.
Further details on the mode of data collection and the microarray
experiments done have been described in Hameed et al. [11]. This
work attempts to unveil the performance of traditional, neural
network-based, and automated machine learning models in autism
classification from gene expression data. This research work was

focused on discovering whether a single gene or certain gene
combinations (gene signatures) acted as potential ASD triggers.

The GEO expression dataset comprised ~9454 genes that were
obtained after removing covariate features that had little bearing on
the dependent variable. This dataset also contained information on the
age of the child and the paternal and maternal ages of the parents.
The author primarily investigated the role of parental age in genetic
association and autism cause. However, there was ample missing
data, and hence, the performance of machine learning algorithms in
classification seemed out of line. Hence, the author placed emphasis
only on the complete genetic data of the individual cases and
evaluated the classifier’s performance. It is evident from the statistical
description of the dataset that there is an attribute-instance imbalance
in the data, with the number of independent variables spanning ~
9500 while the number of instances is restricted to 146.

This moved the author to assess the classifier performance
based on the statistical metrics for unbalanced data, namely
Mathew’s correlation coefficient and balanced accuracy, both
measures being reported for the first time in the literature. The
117_at gene has a domain spanning from a few hundred to many
thousands, whereas the 244071_at gene has a domain restricted
to 2-digit values. Such diverse domain distribution of continuous
values makes it an arduous task for classification. This is one of

DATA PRE-PROCESSING

DATA ACQUISTION [

Original Data - 54613 genes

> Filter out similar features

based on
Variance/Mean/Mode

REDUCED DATA SET

] | (With all instances and reduced
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U

|

Deep Learning

]

!

Traditional

Machine Learning

]

feature set - 9514 genes)

Automated Machine

Learning

U

EVALUATE CLASSIFIER PERFORMANCE
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4

Figure 1. Proposed methodology for gene signature detection through machine learning
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Figure 2. Data description of autism gene expression data — GEO database
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Figure 3. Statistical distribution of smaller domain sample gene attributes — GEO dataset

the potential causes for limited classifier performance as reported in
the literature. Hence, the statistical features of the dataset were also
recorded, and the diverse distribution of values is evident from
Figures 3 and 4.

The author performed a comprehensive survey of existing work
on the classification of autistic cases from gene expression data. The
most recent work on this dataset reported that Support Vector
Machine (SVM) classifier [11] yielded the highest performance of
~92% on 124 observations with 101 genes. The previously
reported results did not make use of all the instances and, hence,
yielded biased results that were inconsistent and susceptible to
change based on the observations included in the sample.

Hence, the authors in this work attempted to execute and
analyze the performance of the standard traditional, deep, and
automated machine learning [19-21] algorithms on the original
dataset with a suitable feature ranking algorithm to identify the
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minimal yet optimal set of genes that could distinguish between
autistic and control patients.

This work records the performance of the Naive Bayesian classifier
that yielded an Matthew’s correlation coefficient (MCC) of ~70%,
reported for the first time in literature on gene expression data for
autism, along with an accuracy of ~87%, higher than SVM on
feature-reduced data. The previous work did not report on the ranking
of classifiers for unbalanced data. Nevertheless, the authors in this
work report on the statistical performance measures for unbalanced
data as well, and the Naive Bayes algorithm with the Fast Correlation-
Based Feature Selection (FCBF) feature ranking method outperforms
the other methods in terms of MCC, balanced accuracy, and accuracy.
The methods utilized in this work are described below.

The Orange data mining suite [22, 23] available in Anaconda
v3.11 was utilized to train the traditional and deep learning
classifiers post-feature selection. Many feature selection
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Figure 4. Statistical distribution of larger domain sample gene attributes — GEO dataset
IG(A|B) = H(A) — H(A|B) 3)

algorithms were implemented on the gene expression data. It was
found that FCBF algorithms generated the best combination of
features that improved the classifier performance.

2.1. Fast correlation-based feature filtering

Feature selection is a highly regarded step in machine learing as
most of the classifiers rely on the goodness of features to raise their
performance [24]. The goodness of the features is measured by how
well the feature values contribute to discriminating between the
classes [25, 26]. In practice, it is essential to retain as good and
significant those attributes whose values are not correlated or
dependent on other attributes but those that are highly correlated to
the target class values [27, 28]. The FCBF is an entropy-based
measure that also considers the pairwise correlation between
features, thereby eliminating redundancy [29, 30]. This also makes it
a suitable and scalable algorithm for large and unbalanced datasets.
Predominant correlation based on symmetric uncertainty (SU) is the
entropy-based measure that plays the key role in deciding the
elimination of a feature from the subset. The SU is based on the
entropy of each feature and the information gain of feature pairs [31,
32]. The entropy of individual feature A is calculated as:

ZP

The pairwise relationship between any 2 attributes A, B is
measured by Equation (2).

)log, (P(a;)) (1)

H(A|B) =

Zp

ZP azlb 1082 (at|b)) (2)

The information gain is calculated from Equations (1) and
(2) as:

From Equation (3), the SU of A and B is defined by:
IG(A|B) ]

SU(A,B) =2 |— 4

48 =2 s @

From Equation (4), the predominant correlation heuristic states
that a feature “a” is accommodated into the feature subset iff, the
SUa,c >¥, where “¥” is a predefined threshold for correlation value
for the given dataset. It is also to be noted that there exists no other
feature “b” in the dataset such that SUa,b >= SUa,. Hence, a
feature is a predominantly correlated one if it is highly correlated to
the class “c” (based on SU) or becomes predominant after the
removal of its redundant peers that are correlated by a lower value
to the target variable [33-35]. The different feature selection
algorithms analyzed in this research are listed below in Figure 5.

The FCBF, Relief-F, information gain, and ANOVA feature
ranking methods [35, 36] were applied to the gene expression data.
However, the features ranked by the FCBF yielded the highest
performance in classification. A combination of hybrid feature
selection was also attempted to measure the gene rank across the
algorithms. However, the ranking made by the FCBF proved to hold
the most contributing gene signature for autism classification. Post-
feature ranking and selection, the classifier models were evaluated on
both the entire set of features and the subset ranked by the feature
selection methods. The entire dataset consumed a lot of time while
also yielding poor performance. The choice of methods was based
on the scalability of the algorithm and the classifier performance
recorded during the literature review as shown in Figure 6.

2.2. Naive Bayes
Classification is faster and more accurate, especially on scalable

datasets when dimensionality reduction is done, and the classifier can
focus on the significant factors in the dataset that contribute most to
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Figure 5. Feature ranking methods for gene signature detection
from autism gene expression data

the decision-making process [36, 37]. The Naive Bayes classifier is a
probabilistic machine learning model that is scalable and has proven
to yield high accuracy in binary/multinomial classification problems.
However, it works on the assumption that the features involved in the
dataset are independent of one another and that all attributes
contribute equally to determining the target [38, 39]. The Naive
Bayes classifier works primarily based on the Bayes theorem given by:

P(Y[X)P(X)

PXIY) = =5

)

The probability of X occurring given the certainty that Y is true
is calculated from Equation (5). The detailed algorithm description is
given in [37, 38].

2.3. Neural network

Neural network classifiers were explored in this paper to establish
the performance of network-based classifiers, deep network classifiers,
and convolutional neural networks in predicting gene expression data
[25]. Neural networks also provide estimates of posterior probability
but carry along the advantages of being a nonlinear model-free
method. Since this research addresses a binary classification
problem, the neural networks here directly decide the membership
of an instance based on the following discriminant function.

G(a) = P(w, [a) — P(wy|a) (6)

The record “a” is assigned to class w; if the probability G(a) > 0
as calculated from Equation (6); otherwise, it is classified as class wy.

The performance of the classifiers can be enhanced by
modifying the bias, number of hidden layers, the computation
function at the nodes, and using recurrent and feedforward
networks [39, 40]. The neural network classifier was implemented
with different parametric values, and as the number of layers
increased, the performance of the classifier dwindled. Hence, the
neural network was set to computation at just one hidden layer
with 100 neurons. The more the number of layers, the more
computation time and the lower the performance was recorded on
this dataset.

2.4. AutoML (automated machine learning)

The JADBiIo (Just-Add Data) software suite was employed for
experimenting with the AutoML models and evaluating their
performance on autism classification from gene expression data
[40]. The dataset was loaded, and the basic steps for data
formatting were done. The classification models were evaluated
based on both the complete set of features and the gene sets
selected by the feature selection algorithms. AutoML in JADBio
reported the SES (statistically equivalent signature) algorithm to
be the most effective in detecting the gene signatures. The SES
algorithm also applied the Bayesian networks’ constraint-based
learning [41]. The SES method discovered latent feature subsets
that had high predictive information while also maintaining
statistically equivalent performances [42]. The ridge logistic
regression and the SVM methods also yielded good classification
results. However, the performance was much lower in comparison
to the traditional and deep machine learning models.

The results of the different models and the effect of feature
signatures on the classifier performance are discussed elaborately
in the ensuing section.

3. Experimental Results and Discussions

The results of this research are presented in three sections. The
first section emphasizes the effect of feature selection and the gene

Machine Learning Models

Traditional Methods

Neural Network Based Methods

Naive Bayes

K-Nearest Neighbour
Random Forest

AdaBoost

Support Vector Machine
Stochastic Gradient Descent
Neural Network

Logistic Regression

Automated Machine Learning Models

Figure 6. Machine learning models for autism classification
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sets that were discovered by the feature selection model. The second
section portrays the influence of the gene sets on classifier
performance, wherein the performance of the traditional, neural
network-based, and Auto ML methods is discussed. The final
section compares the results of this work to previous reports on
similar data.

3.1. Feature selection

Identifying the most significant genes\gene signatures
(combination of genes) that contribute to good discrimination
between the class values is one of the most important tasks while
building machine learning models for data science applications
[15, 21, 36]. In this work, four traditional feature ranking methods
and one AutoML feature selection technique were evaluated. The
number of features to be ranked was chosen based on the
measurable values given by the FCBF algorithm. All the features
that had a significance rating of more than 0 were included in the
gene subsets.

The gene signatures and their relevant ranking according to the
feature selection methods are displayed in Figure 7.

Moreover, it was also supported by the fact that raising or
reducing the count of features showed much lower classification
performance across the different classifiers. The features not
considered significant by FCBF are ranked high by the ANOVA
test, Relief-F, and information gain. On proceeding with the
features ranked by the different feature selection methods, it was
found that the classifier performance was maximum when the
FCBF feature subset was input to the classifiers. The number of
features was restricted to 22, as beyond that, the filtering value
was 0 for all the other genes.

Figure 8 displays the distribution of classes based on the
probability values of the pairwise gene combinations taken in the
order of their ranking.

The selected genes can distinguish between the classes based on
the probability values, thereby signifying the FCBF wrapped in the
Naive Bayes model to be a good choice for autism classification from
gene expression data. The gene signatures and their contribution to
the respective classes are evident from the distribution of records.

# Info.gain ANOVA  ReliefF FCBF
00 1553569 at —163 2287 . 0004 ___0122
O 1556314 a at 0157 20333 0030 0117
00 230530 at —0]49 12954 0051 0111
00 222815 at —0]38 _ 4882 __ 0005,  0.000
0 221948 s at 0136 23256 0.019 0,100
00 207084 at —135 15348 0017 ,  0.000
O 1555309 a at —133 o 5423 0012 0097
OJ 1566690 at 0128 16461 0028 ,  0.000
0 217055 x at —0]27 o 8294 ___0017 ,  0.000
091682 at —0J23 16245 ___0015,  0.000
0 34449 at 0J22 15.940 0.028 0,089
0 215497 s at —QJ19 o 5577 0021,  0.000
00 1570102 at —0J19 15460 ___0013,  0.000
00 208819 at 0119 22.447 0043,  0.000
O 1557993 at —0J18 4434 ___0016,  0.000
00 220165 at —0J18 10345 0032,  0.00
0 209159 s at —]18 19767 0018,  0.000
0 233835 at —O116 15962 0014,  0.000

Figure 7. Gene ranking based on the assessed feature ranking
methods

Figure 8 shows the distribution of classes when the gene signature
pairs in the descending order of rank, generated by the FCBF
method, were used to distinguish between the autistic and control
instances.

The experimental results derived from Figure 9 indicate the
presence of a few outliers, and hence, the author believes that
handling outliers in the data prior to feature selection and
classification may also contribute to enhancing the classifier
accuracy and discovering more accurate gene signatures. Figure 9
also displays the projection of class distribution based on the gene
signature generated by FCBF. The classes are clearly distinguishable
by the gene signature. The gene signature generated by the AutoML
SES feature selection algorithm is displayed in Figure 10.

The contribution of the highly ranked features by the AutoML
models generated a very low MCC/accuracy and hence was not
considered for further study. Automated methods work on the
principle of self-improvement, and hence, it does not provide
room for human intervention that minimizes the chances of
parametric adjustments, trial and error methods, and hybrid
models of implementation.

3.2. Evaluation of classifier performance

Classification is the final step of designating the class of an
unknown test dataset. In this work, since the data was unbalanced,
it was required to identify appropriate statistical measures to rank
the classifiers [34, 42]. Mathew’s correlation coefficient and
balanced accuracy, along with accuracy, Receiver Operating
Characteristic (ROC) analysis, and F-1 score, were measured in
this work to establish the classifier performance. This is reported
for the first time in the literature. The metrics applied in this
research are MCC, Balanced Accuracy (BA), Accuracy (AC) and
F1 Score (F1S). They are calculated from Equations (7), (8), (9)
and (10) respectively.

(TP x TN)—(FP x FN)
/(TP +FN) x (TN + FP) x (TP + FP) x (TN + FN)
)

wherein TP, FP, TN, and FN represent the number of true
positives, false positives, true negatives, and false negatives,
respectively. In this research, the presence of autism is considered
positive, while the accurate classification of a control is
considered as true negative [8, 9].

MCC =

BA = (Sensitivity + Specificity) /2 (8)

where sensitivity is denoted by the true positive rate and specificity is
calculated as the true negative rate. The calculation of the accuracy
and F1-score from the TP, FP, TN, and FN values is denoted below.

TP + TN

AC =
TP + FP + TN + FN

&)

2 x TP

FIS=—————
2 x TP +FP +FN

(10

It is clear from the way the metrics are calculated that the accuracy
and F1-score are more biased toward the positive predictions (both
true and false) and give lesser weightage to the negative class,
thereby causing the results to be biased toward the more
populated target value. The evaluation of the models based on the
metrics for unbalanced data is a requirement that makes the well-
performing models applicable to augmented gene expression data
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Figure 10. Gene signature for autism classification generated by automated ML models

as well, irrespective of the classes to which the new instances belong.
Thereby, the need for sampling and balancing of class values is
alleviated even when the machine learning models work on
datasets with unbalanced class distribution. The 10-fold cross-
validation methods were used across all the learning models [16,
17]. The cumulative results of the different learning models with
the features (gene signatures) selected by the FCBF are presented
in Table 2.

The ROC curve is a data visualization technique that portrays the
relationship between the sensitivity and specificity of a classification
model [21, 22, 34]. The curve is plotted for pairs of the TP rate and FP
rate for every possible decision threshold of a classification model. The
graphical representation of the classifier model performance is shown
in Figures 11 and 12.

The gene signature defined by the FCBF model yielded the
highest accuracy and MCC with the Naive Bayes model when
compared to the previous work that generated a high accuracy

only on an independent test set and the train-test method of
evaluation.

Figure 13 exhibits the class distribution as generated by the gene
signatures given by the information gain, ANOVA, and Relief-F
methods. The gene signatures are not as effective as those
generated by the FCBF method (Figure 9) in distinguishing
between classes.

3.3. Comparison to existing work

Prior work by Hameed et al. [11] on this gene expression data
was reported in 2017. The work involved immense preprocessing of
data, and the final evaluation of the classifiers was done based only
on the train-test method of evaluation along with an independent test
set. Moreover, the authors reported only on the accuracy of the
classifiers but did not evaluate the classifiers using statistical
performance measures for unbalanced datasets. While

Table 2. Comparative performance of machine learning models on the gene signature generated by FCBF algorithm

S.No Classifier MCC Balanced accuracy (%) Accuracy (%) F1-score AUC
Conventional learning models

1. Naive Bayes 0.74 86.93 86.99 0.88 0.93

2. K-Nearest Neighbor 0.29 64.55 65.07 0.69 0.7

3. Random Forest 0.57 78.50 78.77 0.81 0.82

4. AdaBoost 0.29 64.45 64.38 0.66 0.65

5. Support Vector Machine 0.65 82.25 82.88 0.85 0.88

6. CN2 0.36 68.11 67.81 0.69 0.77
Neural Network Models

7. Neural Network 0.67 83.67 83.56 0.85 0.87

8. Stochastic Gradient Descent 0.41 71.00 69.19 0.72 0.82

9. Logistic Regression 0.56 78.00 78.23 0.80 0.82
Automated ML

10. Ridge Logistic Regression with SES 0.295 64.7 64.4 0.663 0.68
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Figure 11. Visualization of classifier performance metrics on gene signature selected by FCBF
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Figure 12. The AUC visualization of the classifier models on autism gene expression data

preprocessing the data, it was also noted that two records were
classified as normal in the training set, while the actual data was
recorded as autistic in the NCBI database. The previous work
implemented only the traditional classifiers with many filtering
methods. Automated and deep learning approaches were not
considered in the previous work.

The accuracy reported by the previous researchers records a
highest of 84.7% on the independent test set when close to 200
genes were involved in the classification [17]. However, in this
work, through repeated cross-validation, with a minimal yet
optimal gene signature, the Naive Bayes classifier reports an
accuracy of 86.9% along with a balanced accuracy of ~86% and
MCC of 0.74, the highest and first reported thus far in literature.

336

The author, however, believes that analyzing the effect of
incremental/decremental feature selection methods on the gene
expression data is a definite extension to this work. The
possibility of exploring the performance of hybrid feature
selection methods and fusion classifiers would be a great step
forward in enhancing classifier accuracy on gene expression data.
The role of feature construction methods would also open new
areas for exploring the possibility of genetic variants in autism
and how possible medication/therapy could bring about the
constructed feature characteristics in affected individuals. This
gene expression data also contains information on the paternal and
maternal age of the parents of the individuals involved in the study,
both control and autistic. However, there were many missing
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Figure 13. Projection of gene signature and their contribution to autism classification: (A) information gain method, (B) ANOVA, (C)

Relief-F

values, and hence, they were not included in this research. A possible
way forward would be to identify suitable data cleaning and missing
value handling methods in data science and attempt to unearth the
effects of maternal/paternal age on triggering autism.

4. Conclusion

Autism is identified as a mental health condition that has been
on the rise in recent years across all ethnicities, economic/social/
educational backgrounds, parents with normal genetic and medical
histories, healthy lifestyles, and safe drug ingestions/absence of
complications during pregnancy. Although multiple researchers
across diverse backgrounds spanning medical, genetic, and
computational fields of study are working hard to identify the
possible triggers for this uninvited growth suppression in

unsuspecting individuals, there has been very little progress in this
area. In vivo assays of gene expression and genetic mutations are
a herculean task owing to the intensive number of resources they
consume in terms of time, labor, and capital. Computational
models have proved to be faster, accurate, and scalable in
analyzing and processing large datasets with the advancement of
data science and data analytics using machine learning models.
This research has placed focus on the expertise of
computational models in acquiring, transforming, processing,
analyzing, and evaluating machine learning models to identify
potential gene signatures that carry information on autism triggers.
This work has evaluated diverse feature ranking and classifier
models and has reported on the FCBF with Naive Bayes classifier
to be more accurate in distinguishing between autism and control
cases on gene expression data. Analyzing gene expressions is a
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noninvasive manner of detecting autism triggers/the presence of
autism and hence calls for more research in this sphere for
providing advanced care and possible preventive therapy for
individuals and parents at greater risk.

Recommendations

The finding revealed that more real-time data and scalable
machine learning models would enhance the possibility of
automating early autism detection. This would also open avenues for
personalized therapy and better survival rates of affected individuals.
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