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Abstract: The discovery of compounds that extend lifespan is a key objective in aging research. The nematode Caenorhabditis elegans is an
established model organism for studying aging due to its short lifespan and conserved molecular pathways related to longevity. This study
aims to develop a predictive model for lifespan-extending compounds using a machine learning (ML) approach with mljar-supervised, an
automated ML (AutoML) Python package. Various ML algorithms, including Decision Trees, Random Forest, Extra Trees, XGBoost,
LightGBM, CatBoost, and Neural Network, were explored to analyze and predict the efficacy of compounds in extending C. elegans
lifespan. In this work, we analyze data from the DrugAge database, which contains chemical compounds and their effect on the lifespan
of model organisms. Predictive models were built using ML to predict whether a chemical compound will increase lifespan, using
chemical descriptors calculated from each compound’s chemical structure. The performance of the models was evaluated using metrics
such as accuracy, precision, and recall. These evaluations demonstrated the exceptional predictive capability of the algorithms, achieving
a remarkable accuracy rate. The results of this exploration provide insights into optimal ML models for predicting potential lifespan-
extending compounds and highlight the importance of AutoML in accelerating research in aging and longevity.
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1. Introduction

Aging is an intricate biological process that causes a slow decline
in cellular capabilities, raising the risk of a variety of age-related
disorders [1]. These mechanisms cause cumulative damage over
time, gradually inhibiting the body’s capacity to maintain
homeostasis and adapt to stress. This contributes to the emergence
of chronic diseases often associated with aging [2]. Identifying
compounds that might extend life or reduce the effects of aging is
an important field of research in biogerontology [3]. As a result,
various model organisms are used in aging research, with the
nematode Caenorhabditis elegans (C. elegans), being one of the
most prominent [4]. C. elegans, a worm with well-defined genetics
and a short lifespan, is a prominent model organism for aging
research because of its simplicity and ease of manipulation in
laboratory settings. Its short life cycle enables researchers to rapidly
observe the impact of genetic and environmental influences on

aging, making it an essential tool for studying the biological
mechanisms that underlie longevity and age-related disorders [5, 6].

Over the last few decades, the DrugAge database, a curated
collection of chemicals known to alter the lifespan of model
organisms such as C. elegans, has evolved as an invaluable
resource for drug development and aging studies [7]. This database
offers a detailed list of compounds that may have antiaging effects
and information on how they work and the biological pathways
they affect. Scientists can use this data to pinpoint potential subjects
for more in-depth study and to create tests that examine how these
substances impact lifespan [8]. Moreover, the database helps
uncover new targets for drugs and assists in confirming current
antiaging treatments. As geroscience progresses, DrugAge remains
essential in connecting basic research to clinical uses, stimulating
innovation in therapies for aging [9].

Machine learning (ML), especially deep learning, has
revolutionized drug discovery by analyzing large datasets to predict
molecular properties, identify drug candidates, and optimize clinical
trials. A review in Artificial Intelligence (AI) in Medicine highlights
how AI, including ML and deep learning, has enabled extensive
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data analysis and molecular prediction in drug discovery [10]. In
oncology, ML has helped predict cardiac risks from cancer
treatments [11], and in cardiology, it has been applied to identify
cardiovascular risks in cancer patients for early intervention [12].
While ML applications in aging are still emerging, AI’s ability to
analyze biological data offers promise for identifying biomarkers
and therapeutic targets for age-related diseases.

ML algorithms significantly enhance the discovery process by
analyzing vast and complex datasets to predict novel antiaging
compounds and optimize therapeutic strategies [13]. ML bridges the
gap between raw data and actionable insights, offering a
transformative approach to predictive modeling in biological
systems [14]. By evaluating molecular characteristics and
interactions, ML algorithms can uncover hidden patterns and
relationships that are challenging to identify using traditional
methods, enabling researchers to prioritize potential compounds for
experimental validation effectively [15]. This method speeds up the
discovery process and improves the comprehension of intricate
biological mechanisms [16]. Ultimately, leveraging ML in this field
could revolutionize our approach to aging and facilitate the
development of new treatments that enhance longevity [17, 18].
Through the examination of extensive datasets like DrugAge
[https://genomics.senescence.info/drugs/], ML methods can identify
trends and forecast the effectiveness of new compounds in
prolonging lifespan. The emergence of automated ML (AutoML)
platforms, like mljar-supervised, provides a convenient method
to experiment with various ML algorithms without extensive
knowledge of model optimization [19, 20]. AutoML can
automatically assess various metrics, such as accuracy, recall,
precision, and ROC-AUC, to compare and choose the most suitable
ML models.

In this study, we aim to develop a predictive model using various
ML algorithms to assess potential lifespan-extending compounds inC.
elegans. By leveragingmljar-supervised, anAutoMLPython package,
we explore and compare the performance of several ML algorithms,
including Decision Trees, Random Forest, Extra Trees, XGBoost,
LightGBM, CatBoost, and Neural Network (NN) classifiers. The
selection of ML algorithms in this study is informed by their
proven success in similar research focusing on lifespan extension
and the identification of compounds with geroprotective properties.
Algorithms such as Decision Trees and ensemble methods like
Random Forests and Extra Trees were chosen for their proficiency
in handling high-dimensional and intricate datasets, while
effectively identifying nonlinear interactions between variables.
Random Forests, for instance, have been successfully applied in
predicting lifespan-extending chemical compounds, demonstrating
their capability in such complex tasks [21]. XGBoost, LightGBM,
and CatBoost were preferred for their exceptional performance in
classification tasks, particularly with large datasets such as those in
the DrugAge database, offering both speed and high accuracy. NNs
were incorporated due to their ability to detect complex patterns and
relationships that traditional models might miss. Together, these
methods provide a robust and versatile approach to evaluating
compounds that may extend lifespan, ensuring reliable and accurate
predictions across diverse tasks. The DrugAge database provides a
robust foundation for training and testing the predictive models,
allowing us to identify promising candidates for further biological
validation [22]. This exploration seeks to comprehensively evaluate
different ML models for lifespan extension, highlighting the
potential of AutoML-driven approaches to accelerating the
discovery of geroprotective compounds.

This primary objective is to create a powerful predictive model
ML technique to identify compounds that may help extend the

lifespan of C. elegans. By integrating large-scale biological
datasets and advanced computational approaches, the model is
designed to evaluate and forecast how different compounds
impact aging in this model organism. Given that C. elegans is
widely used for aging research, the findings of this study could
provide crucial insights into potential treatments for age-related
diseases in humans. Ultimately, the goal is to accelerate the
identification of lifespan-modulating compounds, facilitating more
efficient screening processes and enhancing our understanding of
the biological mechanisms of aging.

2. Materials and Methods

2.1. Dataset collection and preprocessing

The dataset utilized in this analysis includes positive and negative
instances of chemical compounds according to their impact on the
lifespan of C. elegans. Positive instances were obtained from the
DrugAge database (Build 4, released on October 20, 2021) [23],
which compiles substances with verified lifespan-extending effects
(available at: genomics.senescence.info/drugs).

In contrast, the negative example compounds that did not
demonstrate a beneficial impact on the lifespan of C. elegans—
were primarily derived from supplementary material in an earlier
study by Barardo et al. in 2017 [23]. This dataset was expanded
in two key ways. First, we included compounds listed in DrugAge
that showed lifespan-increasing effects in other organisms but
were found to be detrimental to C. elegans. Second, some
compounds originally categorized as negative in the Barardo
et al., study were reclassified as positive due to updated findings
in DrugAge, reflecting advancements in research since the original
dataset was compiled six years ago. The DrugAge database may
have biases, including data imbalance, incomplete annotations,
and publication bias favoring well-studied compounds.
Addressing these requires dataset balancing, feature engineering,
and unbiased metrics for accurate model evaluation.

Before modeling, the datasets underwent rigorous cleaning and
preprocessing to address missing values, and normalization
techniques were applied to maintain consistency throughout the
data. The final dataset included 448 positive entries and 1,141
negative entries following this curation process, resulting in 1,589
compounds. These compounds were labeled for classification
purposes: those associated with longevity (active) were marked
as (1), while compounds lacking positive longevity effects were
labeled as (0), indicating inactive. Consequently, from the pool of
1,589 compounds, 448 were designated as 1 and 1,141 as 0.

Chemical descriptors, essential attributes of small molecules that
dictate their biological activity,were generated for each compound. All
compounds were formatted in SMILES (Simplified Molecular Input
Line Entry System) notation using Open Babel software [24], and
the data were then processed using Mordred, a specialized software
for descriptor calculation [25], within the Anaconda 3 environment
(https://www.anaconda.com/). In total, this study yielded 1,613
molecular descriptors, encompassing both two-dimensional and
three-dimensional features (see Supplementary file).

2.2. Exploration of various supervised machine
learning algorithms for predictive modeling

For predictive modeling, we utilized the mljar-supervised
AutoML Python package [https://github.com/mljar/mljar-supervised]
to explore various supervised ML algorithms. The mljar-supervised
AutoML Python package automates ML tasks such as data
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preprocessing, model construction, and hyperparameter tuning for
tabular data. Its computational efficiency is influenced by several
factors, including the choice of algorithms (e.g., decision trees,
ensemble methods), which affects training and inference times.
Extensive hyperparameter tuning can increase computational
demands, while automated preprocessing may add load, especially
with large datasets. Additionally, the package supports parallel
processing, utilizing multiple CPU cores to improve efficiency and
reduce processing time.

The research used a Core i5 CPU, 8 GB RAM, and a 512 GB
SSD. The software environment included Python 3 with Scikit-learn,
TensorFlow, and other dependencies, utilizing local machines, cloud
services (e.g., AWS, Google Cloud), or HPC clusters as needed. In
this study, mljar-supervised package automatically tested multiple
ML algorithms, optimized hyperparameters, and selected the best-
performing model based on various metrics using the competing
mode. Several ML algorithms, including Decision Trees, Random
Forest, Extra Trees, XGBoost, LightGBM, CatBoost, and NNs,
were applied to the dataset. The package also allows for stacking
and ensembling models to improve predictive accuracy.

Hyperparameter optimization is essential for enhancing the
predictive performance of ML models. In this study, the mljar-
supervised AutoML package uses various strategies to fine-tune
hyperparameters for each algorithm. For Decision Trees, Random
Forests, and Extra Trees, optimization focuses on parameters like tree
depth, minimum samples, and splitter, with methods such as grid and
random search applied. For boosting algorithms like XGBoost,
LightGBM, and CatBoost, important hyperparameters include
learning rate, depth, and several estimators, optimized using grid
search and Bayesian techniques to improve accuracy. NNs undergo
tuning of layers, neurons, learning rate, and batch size, with
optimization methods like Bayesian search ensuring the best
architecture. The mljar-supervised package automates these processes,
enhancing model generalization and minimizing overfitting, leading to
improved performance across diverse datasets [26].

2.3. Data splitting

The Kennard-Stone method was employed to split the dataset
into training and testing sets, ensuring both sets effectively
represented the descriptive space of the dataset. The training set
comprised 70% of the dataset, while the leftover 30% was
allocated for testing purposes. A 70/30 train-test split ratio was
adopted in this study to balance the amount of data available for
model training and the robustness of the test set for performance
evaluation. This ratio, widely used as a heuristic, ensures the
model has sufficient data to learn effectively while retaining a
test set large enough for meaningful validation. Additionally,
this approach minimizes the risk of overly optimistic or biased
performance results on the training data. This technique is well
known for its efficiency in choosing representative samples from
a heterogeneous dataset [27].

2.4. Machine learning algorithms

SeveralMLalgorithmswere implemented. Such asDecisionTrees
are a classification technique that divides a dataset into subgroups
according to the most useful attributes. The model builds a tree-like
structure, where each internal node represents a feature test, and each
leaf node represents an outcome or class label. The model is
renowned for its simplicity and interpretability [28]. Random Forest
is a technique that involves merging multiple decision trees and
averaging their forecasts to prevent overfitting and enhance

generalization. The key feature of a Random Forest is that it
introduces randomness into the process of building the trees by
selecting a random subset of features at each split in the tree [21].
Extra Trees is similar to Random Forest, but with more
randomization in feature selection and cut-point determination,
making it more resilient and successful for classification and
regression features [29]. XGBoost is a widely recognized gradient-
boosting algorithm, praised for its scalability and high performance
with huge datasets [30]. XGBoost optimizes both the training
process and model performance using techniques such as
regularization (to prevent overfitting), handling missing values, and
parallelizing the computation [31]. LightGBM is a fast, scalable
variation of the gradient boosting decision tree technique that excels
at handling huge datasets. It uses histogram-based learning to group
continuous features into discrete bins, reducing memory consumption
and speeding up training [32, 33]. The CatBoost algorithm
effectively mitigates overfitting and addresses the challenge of
class imbalance. It performs well with default parameters,
eliminating the need for extensive hyperparameter tuning [34].
NNs are strong models that can capture nonlinear interactions
between input variables and outputs. They are made up of
several layers, with each neuron giving weight to the inputs and
using an activation function to calculate the output [35].
AutoML refers to the automation of the entire ML workflow for
real-world problems. AutoML frameworks automatically select,
optimize, and evaluate ML models, eliminating the need for
manual intervention. This allows users to develop high-
performing models with minimal ML expertise. These
algorithms were used to create a robust screening framework,
with AutoML automating the selection of the best-performing
model [36, 37].

2.5. Model training validation

To validate the models, a fivefold cross-validation procedure
was employed. Metrics such as accuracy, F1 score, precision,
recall, and Matthews correlation coefficient (MCC) were
calculated for each fold [38]. Receiver operating characteristic
(ROC) curves and confusion matrices were also used to assess
model performance, including true and false-positive rates [39, 40].

2.6. Performance metrics

Each ML method’s performance was assessed using a range of
important criteria. Accuracy refers to the ratio of accurate predictions
generated by the model [41]. Precision measures the proportion of
correct positive class identifications, while Recall measures the
proportion of true positives that were correctly identified [42, 43].
The F1 Score balances precision and recall by calculating their
harmonic mean. Furthermore, MCC provides a comprehensive
statistic that accounts for both true and false positives and negatives
in a balanced manner [44]. Finally, Log-Loss measures how closely
predicted probabilities match actual values, which is an essential
indicator of model success [45].

2.7. Model performance assessment

Model performance was analyzed using the above metrics, with
particular emphasis on the area under the curve (AUC) of the ROC
curve. This measure evaluates the model’s ability to discriminate
between lifespan-extending and non-extending compounds. The best-
performing model was selected based on its balanced performance
across these criteria.
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3. Results and Discussion

3.1. Exploration of various supervised machine
learning algorithms for predictive modeling

Exploring various supervised ML algorithms for predictive
modeling, we utilized seven different ML algorithms—Decision
Trees, Random Forest, Extra Trees, XGBoost, LightGBM,
CatBoost, and NN classifiers—to develop an effective prediction
model using the C. elegans lifespan-extending chemical database.
The mljar-supervised AutoML method selected these classifiers
based on their performance in the fivefold cross-validation of the
training dataset [46]. The dataset was split into training and
testing sets using the Kennard–Stone method to ensure a balanced
distribution across the compound’s descriptive space [47, 48].

Each ML model was trained on the dataset using fivefold
cross-validation to develop cost-optimized models. The outcomes
were assessed by generating confusion matrices and ROC curves for
every algorithm.

3.2. Performance of machine learning models

The confusion matrix was the primary tool for assessing the
performance of each model. The diagonal elements represent the
true-positive (TP) and true-negative (TN) values, while the off-
diagonal elements correspond to false positives (FP) and false
negatives (FN) (see Table 1). By analyzing the confusion
matrices of seven ML models (Figure 1A-G), we can assess their
performance in terms of TP, TN, FP, and FN.

Among the models, the Decision Tree (Figure 1(A)) and
Default_Random Forest (Figure 1(B)) performed the best, achieving
perfect classification with no false positives or negatives. Both models
recorded 45 true positives and 114 true negatives, making them the
top performers. While still effective, the _Default_Extra Trees model
(Figure 1(C)) had 10 false positives, slightly lowering its accuracy
compared to the Decision Tree and Random Forest models. The
_Default_XGBoost model (Figure 1(D)) performed better than Extra
Trees with only 1 false positive, though it still fell short of the perfect
scores achieved by the Decision Tree and Random Forest models.
The _Default_LightGBM (Figure 1(E)) and _Default_CatBoost
(Figure 1(F)) models each had 14 false positives, placing them behind
Decision Tree, Random Forest, and XGBoost in terms of accuracy.
Lastly, the _Default_Neural Network (Figure 1(G)) showed the
weakest performance, with 20 false positives and 5 false negatives,
making it the least accurate of the models evaluated.

The ROC curves, which evaluate classifier performance across
different thresholds, are presented in Figure 2. The curves depict the
true-positive rate (sensitivity) versus the false-positive rate, with the
AUC representing the crucial performance metric. The Decision
Tree (DT), _Default_Random Forest (RF), _Default_Extra
Trees (ET), _Default_XGBoost (X), _Default_LightGBM (L), and
_Default_CatBoost (C) models all achieved an AUC of 1.00,
indicating perfect classification. In contrast, the _Default_NN
model had an AUC of 0.94, which, while still strong, is slightly

lower than the other models. Overall, the models with an AUC of
1.00 are considered optimal, while the NN model, despite its good
performance, lags slightly behind due to its lower AUC score.

3.3. Predictive model development through
machine learning algorithm comparison

The comparative analysis of ML algorithms presented in
Table 2 highlights Decision Trees and _Default_Random Forest
as the most effective predictive models. Both models achieved
optimal performance across all evaluated metrics, including an
exceptionally low log loss of 1e-06, an AUC of 1, an F1-score
of 1, 100% accuracy, precision, and sensitivity/true-positive rate
(TPR), along with an MCC of 1. These results indicate that
both models are highly suitable for classification tasks in this
study, exhibiting perfect predictive accuracy without any
misclassifications.

Other models performed well but did not achieve the same
level of perfection. The _Default_XGBoost model showed
remarkable predictive capacity, with an AUC of 1 and an
F1-score of 0.98, although its log loss (0.45) was slightly
higher compared to the Decision Tree and Random Forest,
suggesting that while its predictions were generally accurate, it
was slightly less precise in minimizing error. The
_Default_Extra Trees model showed good performance, with an
F1-score of 0.90 and accuracy of 93%, but its lower precision
(81%) and MCC (0.86) positioned it behind the leading models.
Similarly, the _Default_LightGBM and _Default_CatBoost
models yielded F1-scores of 0.86, accuracy of 91%, and
precision of 76%, but their higher log loss values (0.30 and
0.07, respectively) and lower MCC scores (0.81), which
suggest that although they performed reasonably well, they
were not as reliable or consistent as the top models. These
results point to areas where refinement may be needed,
particularly in reducing error rates and enhancing model
stability across different data distributions.

The _Default_Neural Network model exhibited the weakest
performance, with the lowest F1-score (0.76), accuracy (84%),
precision (66%), and TPR (88%), as well as the highest log loss
(0.61), making it the least effective classifier in this context. This
performance suggests that, although NNs are capable of modeling
complex patterns, the model’s architecture or training procedure
may require further optimization to improve its effectiveness in
this specific classification task.

Our results outperform similar studies, such as Ribeiro et al. [49],
where the Random Forest model showed good performance but lacked
consistency across all evaluation metrics [49]. The use of advanced
validation methods, including fivefold cross-validation and the
Kennard-Stone method, contributed to our enhanced results. Despite
strong performance, the Default XGBoost model exhibited a slightly
higher log loss, suggesting it could benefit from further optimization.
Similarly, Extra Trees, LightGBM, and CatBoost showed higher log
loss and lower MCC shown in Figures 3 and 4 respectively, pointing
to areas for improvement. The Default NN model underperformed,
requiring adjustments to its architecture.

3.4. Feature importance

In ML, feature importance involves evaluating the impact of
each input feature (also called a predictor, attribute, or variable)
on a model’s ability to make predictions or classifications. It
shows which features matter the most for the model’s results,
giving insights into how inputs relate to the outcome [50]. Even

Table 1. Confusion matrix

Actual value
Predicted as 0
(Inactive)

Predicted as 1
(Active)

Labeled as 0 (Inactive) True negative (TN) False positive (FP)
Labeled as 1 (Active) False negative (FN) True positive (TP)
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though the provided dataset was perfectly balanced, conducting
analysis using significantly weighted desired features aids in
achieving results that are more accurate and precise [51]. Figure 5
presents a heatmap that illustrates the importance of features using
feature engineering. This process involves employing data mining
techniques to select a diverse array of attributes from a raw

dataset. The selection of these attributes enhances accuracy and
optimizes outcomes, thus boosting the performance of ML models.

This heatmap visualizes the feature importance of the top 25
chemical descriptors used in predictive modeling, offering insights
into their influence on model predictions. Each row corresponds
to a specific chemical descriptor, such as AATS0p, BCUTm-1h,

Figure 1. Confusion matrix of models. A. Decision Tree, B. _Default_Random Forest,_C. Default_Extra Trees, D. _Default_XGBoost,
E. _Default_LightGBM, F. Default_CatBoost, and G. Default_Neural Network
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and SMR_VSA4, which represent various molecular properties,
including atomic, structural, and functional group features. The
columns on the x-axis denote different models or prediction sets,
likely representing individual ML algorithms. The importance of
descriptors varies across these models, providing a clearer
understanding of their impact on specific predictions. The color
intensity of the heatmap, ranging from lighter to darker blue,
reflects the magnitude of feature importance, with darker shades
indicating a higher influence on the model’s predictions, while
lighter or white areas signify lower or negligible importance.
Among the descriptors, features such as name_diff_JGI2,
AATS0p, and SMR_VSA4 demonstrate the highest influence, as
indicated by the darker regions along their rows, suggesting their
critical role in shaping the model outcomes. Overall, this
visualization helps identify the most significant chemical
descriptors for prediction accuracy, enabling researchers to refine
models and prioritize these key features in future studies.

Overall, Decision Trees and Random Forest models exhibited
flawless metrics, including near-zero Log-Loss (1e-06), perfect
AUC (1), and an F1 score of 1, indicating exceptional
performance. However, such perfection may signal overfitting,
where the models rely heavily on memorizing the training data
rather than identifying patterns that can extend to new datasets.
Their notably short training times further suggest a potential
over-reliance on specific dataset characteristics. In contrast, a

sensitivity analysis through algorithm comparison revealed that
models like Extra Trees and XGBoost demonstrated slightly less
perfect performance (F1 Score: 0.9–0.98, MCC: 0.86–0.98),
indicating a better balance between fitting the training data and
generalizing to unseen data. NNs, LightGBM, and CatBoost with
lower F1 Scores and MCC values further suggest a reduced risk

Figure 2. AUC curve values for seven classification algorithms
as depicted in the ROC plot (X-axis: false-positive rate, Y-axis:
true-positive rate)

Table 2. Comparative evaluation of performance metrics employing different classifiers

Machine learning algorithm logloss AUC F1 score Accuracy Precision (%)
Recall/TPR/

Sensitivity/ (%) MCC Train_time

Decision Trees 1e-06 1 1 1 1 100 1 33.23
_Default_Random Forest 1e-06 1 1 1 1 100 1 47.57
_Default_Extra Trees 0.01 1 0.9 0.93 0.81 100 0.86 45.36
_Default_Xgboost 0.45 1 0.98 0.99 0.97 100 0.98 33.48
_Default_LightGBM 0.30 1 0.86 0.91 0.76 100 0.81 28.7
_Default_CatBoost 0.07 1 0.86 0.91 0.76 100 081 119.9
_Default_Neural Network 0.61 0.94 0.76 0.84 0.66 88 0.66 34.81

Note: logloss: cross-entropy loss; AUC: area under the curve; TPR: true-positive rate; MCC: Matthew’s correlation coefficient.

Figure 3. Comparative analysis of Log-Loss across models
highlights superior performance of CatBoost, Decision Trees,
Random Forest, and Extra Trees with minimal error

Figure 4. Matthews correlation coefficient (MCC) for seven
machine learning models showcases CatBoost’s exceptional
predictive accuracy
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of overfitting. Furthermore, testing the models with noisy data could
provide insights into their robustness and generalization capabilities,
helping to assess how well they perform under different conditions
and ensuring that the models are not overly sensitive to specific data
characteristics.

The compounds predicted by our models may be involved in key
biological processes related to lifespan extensions, such as cellular
stress response, inflammation regulation, and autophagy, all of
which have been shown to impact aging and longevity, consistent
with findings from López-Otín et al. [52], which explores how
modulating these pathways can extend lifespan and delay aging-
related diseases [52]. The ability of our models to predict
compounds that target these pathways is promising, suggesting that
these predictions could uncover potential drug candidates with
lifespan-extending effects. However, experimental validation is
essential to confirm these findings. The predicted compounds
should be tested in in vitro cell cultures or in vivo C. elegans
lifespan assays, to assess their true efficacy in extending lifespan or
promoting healthy aging. These experiments will provide essential
data to substantiate the predicted effects of these compounds and
clarify how they interact with biological systems at themolecular level.

Moreover, understanding the molecular mechanisms through
which these compounds act on the identified pathways is essential
for further development. Investigating how specific compounds
regulate autophagy, reduce oxidative stress, or control

inflammation can enhance our understanding of their therapeutic
potential. Such insights would allow for the design of more
targeted, effective geroprotective agents capable of delaying the
onset of age-related diseases and extending healthspan.

In the broader context of drug discovery, the computational
models developed in this study offer a robust tool for identifying
promising compounds for aging-related diseases. By narrowing
down the most likely candidates for lifespan extension, ML can
help prioritize compounds for experimental testing, thus
accelerating the drug development process. However, the accuracy
of these in silico predictions is contingent on the quality of the
input data and the assumptions made during model training. Further
optimization of these models, combined with rigorous experimental
validation, is essential to ensure that the predicted compounds can
translate into viable therapies for aging-related diseases.

4. Conclusion

In conclusion, this study successfully developed a predictive
model of lifespan-extending compounds for C. elegans from the
DrugAge database using the AutoML platform, mljar-supervised.
By exploring various ML algorithms, including Decision Trees,
Random Forest, Extra Trees, XGBoost, LightGBM, CatBoost, and
NNs. Decision Trees and Random Forest models showed perfect
metrics, suggesting potential overfitting. In contrast, Extra Trees

Figure 5. Feature importance heatmap: Top 25 chemical descriptors influencing model predictions
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and XGBoost demonstrated a better balance between fitting and
generalizing, while NNs, LightGBM, and CatBoost with lower
scores showed a reduced risk of overfitting. This robust
performance highlights the capability of AutoML systems to
accelerate aging research by efficiently predicting compounds
with potential lifespan-extending properties. Using the DrugAge
database and chemical descriptors further validated the model’s
ability to analyze compound efficacy, setting the stage for future
research to discover therapeutic interventions in longevity science.
However, experimental validation through biological testing is
crucial to verify the predictions made in this study, especially to
determine the actual efficacy of these compounds in extending
lifespan and enhancing health in aging populations. This research
lays the groundwork for integrating computational approaches into
drug discovery and aging research, offering the potential to
accelerate the identification of new therapeutic candidates that
target pathways associated with aging.
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