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Abstract:Machine learning (ML)-based in-home electrocardiogram (ECG) systems have emerged as transformative tools, advancing beyond
traditional cardiology methods by offering innovative techniques for cardiac care. These systems enable sustained data collection, real-time
monitoring of cardiac status, and individualized treatment plans, all while minimizing the need for frequent clinic visits. By leveraging
advanced analytics and ML algorithms, in-home ECG systems analyze large-scale datasets to detect patterns and anomalies that might
otherwise go unnoticed, providing early alerts and improving patient outcomes. This review examines the latest trends in ML-enhanced
in-home ECG technology, emphasizing its functionality in anomaly detection, continuous monitoring, and decision-making processes.
The integration of ML not only enhances diagnostic precision but also opens avenues for scalable, personalized, and remote healthcare
solutions. Despite these advancements, significant challenges remain, including issues related to data privacy, algorithmic biases, and the
reliability of real-world implementations. Addressing these challenges is essential for optimizing the performance and ethical use of
these systems. This review also explores opportunities for future research, particularly in improving algorithm robustness and addressing
biases to ensure equitable and accurate cardiac care for diverse populations. By integrating state-of-the-art ML techniques, in-home ECG
systems are poised to revolutionize contemporary cardiology, reducing healthcare costs and enabling a progressive shift toward
accessible, patient-centered care. This comprehensive exploration highlights the potential of ML-based in-home ECG systems to redefine
cardiac monitoring and treatment, contributing to the broader transformation of modern healthcare.
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1. Introduction

Machine learning (ML) is a subfield of artificial intelligence
(AI) in which an endeavor is made to design model that help the
computer to learn from the data to make prediction or decisions
[1]. It involves allowing systems to expose themselves to a certain
type of task in order that they themselves learn how to enhance
their performance in that area without more programming. This is
done by using big datasets in which the phenomena’s algorithms
learn and make predictions by developing their models with
regard to more data in the processes, as they occur. In the
healthcare domain, ML has proven to be a useful technology,
especially when it comes to computation as well as interpretation
of large amounts of medical data. An electrocardiogram (ECG) is
a medical procedure that measures electrical activity of the heart
over a period of time [2]. This diagnostic tool is useful in
managing and diagnosing the different types of heart diseases, for
example, arrhythmias, ischemic heart disease, and any conditions
that affects the electrical conduction in the heart. The ECG
produces data in form of a graph that depicts timing and duration
of each electrical phase in heart cycle with help of which we
diagnose. However, with clinical ECG monitoring, the patient
needs to visit the healthcare facilities frequently as a lot of data
are collected, and this may be costly for the patient, especially

where the patient requires long-term monitoring [3]. To overcome
these drawbacks, in-home ECG monitoring system have been
designed. These systems enable tracking of the heart activity of a
patient without the need to be in a clinical setting, hence making
it convenient and noninvasive to a patient. Some of the in-home
ECG devices can be worn and are portable and easy to use thus
requiring the patient to collect ECG data for a longer duration [4].
This data can then be transmitted to physicians for analysis or in
more and more cases can be analyzed using ML algorithms built
in where any potential for a cardiac event is flagged for patient
attention immediately.

The healthcare sector has changed because of new technologies
and the need for more personalized, easy to reach, and effective
healthcare solutions. One of these improvements is the expansion
of in-home medical devices that help people with long-term
illnesses like cardiovascular diseases (CVDs) manage their
conditions. Heart diseases and strokes are still the leading causes
of death in the world, affecting 17.9 million people each year [5].
This scary number shows how important it is to keep an eye on
heart health and act quickly when problems arise. ECGs have
been very helpful in identifying and treating heart problems for a
long time. On the other hand, these ECGs were mostly only
useful in hospital settings where healthcare professionals could
read those [6]. ECGs have gotten a lot better since ML
technology emerged out. This has led to the creation of home
tracking devices that could change the way cardiac care is
performed forever. Converging medical expertise with AI, home
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ECGs enabled with ML offer improved diagnostics that surpass
long-established techniques [7]. This means they keep a close
look on cardiac activities, analyzing huge amounts of data in real-
time to identify deviations from normalcy, predict possible heart
issues, and make immediate observations. On the other hand, ML
algorithms are used to integrate these technologies as this helps
detect complex patterns in ECG signals that may not be seen
using standard analysis [8]. This has the advantage of not only
improving accuracy of diagnosis but also early detection of
cardiovascular conditions hence better patient management and
reduced cases of adverse heart events. Switching to in-home ECG
monitoring from clinic-based comes with several advantages
associated with accessibility and patient empowerment. In
addition, home-based ML-driven ECG machines allow for
continuous noninvasive monitoring while in comfort zones and
hence reduce clinic visits for patients’ convenience and lighten up
pressure on healthcare systems [9]. Furthermore, individuals get to
control their heart health by managing it themselves through such
tools thereby making them more involved in their own care. Apart
from the fact that it improves patients’ conditions, ML-facilitated
ECG systems at home may provide a way out of this predicament
as they can be implemented on a large scale. As people get older
and older, there is an increase in chronic diseases while healthcare
resources are limited. Therefore, this gives rise to the need for
new ideas aimed at reducing the load on global healthcare
facilities [8]. These systems could minimize chances of
emergency hospitalization and improve general healthcare
efficiency when used continuously.

Nevertheless, implementingML-enabled in-home ECGs comes
with challenges. Data privacy issues, algorithmic biases, and proper
integration into existing healthcare infrastructure are some of the
main concerns to be addressed [10]. Similarly, it is fundamental
that clinical investigations and trials are conducted extensively to
establish its reliability within widespread populations and efficacy
under real-life conditions. Generalizability of these systems
depends greatly on teaching ML algorithms using diverse
representative datasets to ensure no biases exist towards certain
groups or individuals which lead to unequal delivery of care. The
objective here is to give a detailed account of what the current in-
home ECG ML-enabled technology looks like. This research
therefore tries to explain how ML is used to enhance home-based
ECG monitoring that would have implications for the future
healthcare system at large.

Contributions of this review: To provide clarity and emphasize
the focus of this article, the contributions of this review are outlined
as follows:

1) Analyzing the latest trends and advancements in ML-enabled
in-home ECG monitoring systems.

2) Comparing various ML algorithms used for in-home ECG data
processing in terms of accuracy, scalability, and real-world
applicability.

3) Identifying the challenges and limitations, including algorithmic
biases, data privacy, and implementation issues.

4) Proposing future directions for research to enhance the
robustness, equity, and effectiveness of in-home ECG systems.

5) Highlighting the role of ML in transforming traditional cardiac
care into remote, patient-centered, and cost-effective solutions.

2. Methodology

Similar to most systematic reviews, a systematic approach was
used to identify relevant articles for this review by considering the

application of ML in supporting ECG monitoring at home. This
approach to the research strategy was intended to capture all the
important and recent studies related to the subject. The first
research question was to identify how ML could be used to
improve ECG monitoring systems that are used at home.
Secondary research questions were also developed so as to gain a
deeper insight of the specific area of the discussion. These arose
in regard to the kind of ML algorithms employed in this domain,
the efficiency of these algorithms in the identification of cardiac
concerns, the issues that characterize the application of ML in
ECG tracking, and the differences between home-based ECG
monitoring and clinical ECG systems. It was also necessary not
only to use index terms recommended by the TPB but to apply
the correspondent free-text search terms also. Such a twofold
search strategy proved the most effective in terms of retrieving the
maximum amount of data pertaining to the subject both in its
totality and in its detailed aspects. Some of the words and phrases
used in the search included “machine learning” “in-home
monitoring” “electrocardiogram” “wearable ECG systems” and
“remote cardiac monitoring”. Boolean operators like AND, OR,
NOT were employed to perform search and filter the obtained
results so that they were relevant to the research questions. The
search strategy used for the articles was geared towards the
interdisciplinary nature of the research area with an emphasis on
medicine and technology. This review also focused on including
articles in the databases from different disciplines in order to
gather multicategory articles concerning in-home ECG monitoring
and the utilization of ML for enhancing such systems. The search
covered medical and engineering libraries as well as computer
science to get all kinds of researches and modern developments in
the topic area. Because of this, several databases that include
medical research, technological innovation, and general academic
sources were chosen for a review of in-home ECG monitoring
using ML. Clinical databases including PubMed and Cochrane
Library were useful in identifying articles and perspectives on
clinical use and evidence of the ECG systems. The use of
databases associated with Engineering and computer science
including IEEE Xplore, ACM digital library, and Springer link
help to makeup information on the modern ML algorithms and
technologies applied to ECG monitoring. The general academic
databases Google Scholar Web of Science, and Scopus further
expanded the search scope for interdisciplinary and future trends.

These criteria limited the search results from the present till the
year 2024 to contribute only the recent developments in the ML-
aided ECG systems. Incorporated papers had to be published in
scientific journals or conference proceedings wherein the major
concern was to focus on the ML approaches in in-home or remote
ECG monitoring, technical and clinical issues, and the ethical
issues such as privacy concerns and fairness of algorithm. The
papers excluded were those which did not use ML in their
research or were published prior to 2015, unless the Technique
was medically historic.

Two sets of inclusion criteria were employed: an initial title and
abstract screening to determine relevance of the studies found in the
search and subsequent full-text review to extract data relating to the
ML algorithms used, the accuracy of the identified algorithms, and
benefits of in-home ECG systems that are powered by ML. The
recruited papers were analyzed to contrast and compare various
ML models and explore their applicability to clinical practice, as
well as to define the directions for further development. The use
of this systematic search strategy guaranteed that the review
provided a diverse and complete view of the studies available in
this area of research and find out some of the issues and/or
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progress that have been made in this area of research. Figure 1
represents complete flow of search strategy.

3. Notable Datasets in In-Home ECG Research

Datasets play a crucial role in the development and validation of
ML models for in-home ECG monitoring, enabling accurate
anomaly detection and classification. Among the most widely
used datasets, the MIT-BIH Arrhythmia Database stands out as a
gold standard in ECG signal analysis, with over 48 half-hour
recordings from 47 subjects, capturing a variety of arrhythmias
and cardiac conditions. Similarly, Physio Net provides a series of
challenge datasets that include multi-lead ECG recordings
annotated for arrhythmias, noise, and other anomalies, making
them invaluable for evaluating ML algorithms in real-world
scenarios. The ECG5000 dataset, a reduced version of a larger
Physio Net database, is popular for multi-class classification and
anomaly detection tasks, offering 5,000 labeled ECG samples
across five categories. Additionally, the Chapman-Shaoxing and
Ningbo Database comprises over 10,000 12-lead ECG recordings
collected from diverse populations, providing an opportunity to
train models that generalize across different demographics.
Another important resource is the St. Petersburg INCART
Database, which contains 75 annotated 12-lead ECG recordings,
enabling researchers to test the robustness of algorithms for
detecting complex cardiac events. The PTB Diagnostic ECG
Database, with 549 records from 290 subjects, includes

high-resolution signals from 15 leads, making it ideal for
evaluating multi-lead ECG analysis and diagnostic precision.
Together, these datasets provide the diversity, annotation quality,
and real-world relevance needed to develop robust and scalable
ML models for in-home ECG systems, ensuring they meet the
diverse and complex needs of cardiac care.

4. Rise of Wearable and Portable ECG Devices

In the last few years, portable and wearable ECG devices have
become increasingly popular part of life especially when it comes to
monitoring heart health in absence of clinical environment [11].
Previously, ECG monitoring could only be done within clinics
where patients had to go for tests at set intervals. However, with
the need of having constant monitoring of heart conditions and
real-time monitoring due to other factors such as chronic heart
disorders, wearable ECG monitoring devices provide a
breakthrough both in the realms of preventive and precision
medicine. Modern smartwatches, chest patches, and some types of
fitness trackers are now capable of capturing ECG signals and
recording them with the subjects’ continuous activity [12]. It is
worth noting that these devices are fitted with sensors that can
pick and record the electrical activity of the heart and relay such
data to the mobile apps or cloud for real-time digestion. This
continuous data stream allows identifying cardiac abnormalities,
including arrhythmia or atrial fibrillation (AFib) that may be
undiagnosed between visits.

Figure 1. Research strategy flow diagram
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The mobility of such devices also assists the patients to be in
control of their heart health without having to travel to hospital so
often. By contrast, CGM eliminates the need for frequent finger
prick measurements confirming that another advantage of
wearable ECG devices is real-time feedback [13]. When
combined with algorithms based on ML, these devices can
interpret the data as it is being recorded, and warn patients and
doctors about emerging problems. The real-time analysis is
particularly useful when trying to monitor transient or sporadic
pathologies afflicting the heart since they will not manifest during
normal physical assessments. Additionally, wearable ECG
systems help in delivering personalized healthcare since the
monitoring is done depending on individual patient’s health state,
his or her heart rhythm, and patterns that may be obtained as time
progresses [14]. Another unique healthcare service that has
cropped up because of in-home wearing devices is the ECG
monitoring that has also been propelled by the culture of
preventive health checkups. Through the constant monitoring of
activity in the heart these devices enable timely management of
potential life-threatening episodes like heart attacks or stroke.
Wearable ECG technology has one of its major advantages in
shifting from a reactive form of healthcare to a proactive one
because patients can be monitored even when their conditions are
not yet critical. In addition, the size and functionality of these
devices have been reduced and optimized and hence have been
adopted by persons with chronic conditions, and other persons
who want or need to monitor their health status. As wireless
communication systems and cloud-based platforms are
incorporated with the wearable ECG devices, the collected data
can be easily transmitted to physicians and other healthcare
providers to manage the patients via telemedicine [15]. Therefore,
the emergence of the portable and wearable ECG devices has
made cardiac care less facility-bound and more frequent,
consistent, and patient-tailored. These devices are a clear step-up
from previous devices established in the United States’ health
industries and can potentially enhance benefits for patients
through the identification and treatment of the disease in its early
stages.

5. ECG Monitoring

ECG is the most common and easy cardiac diagnostic test, with
over 300 million recorded annually [16]. ECG tracking can be

categorized into short-term and long-term monitoring. Long-term
recording involves using bedside monitors in ICUs or Holter
monitors for monitoring patients. Short-term ECG tracking can be
done through medical-grade ECG recordings or hand-held
wearable devices. Body surface ECG is a biosignal used in
consumer and medically recommended monitors, while
ambulatory ECG monitors have three or more chest electrodes
linked to an external recording or patch monitor [17]. Implantable
or insertable loop recorders provide long-term ECG monitoring
for months or years. Devices like the Reveal LINQ system from
Medtronic, Confirm Rx insertable heart monitor from Abbott, and
Bio-Monitor from Biotronik are examples of these devices [18].
They are placed under the skin over the chest or under the
collarbone to improve ECG readings. Implantable loop recorders
offer benefits like uniform ECG wave shapes and can detect atrial
arrhythmias. However, they may not be suitable for finding
rhythms that last only a few seconds or minutes. Early adopting
wearable ECG devices like Apple Watch and KardiaMobile can
help provide constant ECG data [19]. As wearable tech becomes
more flexible as shown in Figure 3 [5], it will be easier for
doctors to use these technologies when needed as Figure 1 shows
the innovative wearable technologies.

6. ML Based In-Home ECG

ML-based in-home ECG has become an innovative leap in the
field of cardiology as it allows real-time, home-based cardiac health
check [20]. For almost all heart issues, ECG has been part of the
standard diagnosis and a component of the management plan,
although with a need for clinical visits and professional
interpretations. The ECG acquisition system is shown in Figure 4
[3]. The integration of the ML has transformed the growth of
ECG systems towards the one that focusses on sophisticated
intelligent systems which can diagnose the cardiac disorders,
predict the probable occurrence heart-related incidences, and
respond to it without having to consult a doctor repeatedly.
In-home ECG systems improve with the help of ML algorithms as
they can process large amounts of data in real time and find
trends in data that will signify cardiovascular disorders early [21].
The continuous monitoring capability addresses issues associated
with transient events that patients with cardiac problems may
experience but which will go unnoticed during standard clinical
checkups. The key aspect is ensuring that a diagnosis of these
conditions occurs early, thus decreasing the probability of severe
cardiac events and a resulting rise in the load on healthcare
facilities and the overall improvement in the conditions for
patients [22]. In-home ML-enabled ECG systems also help the
patients by enabling them to be more proactive about their health
care. These systems help to enhance responsibility and follow
patient’s treatment plans closer since they allow individuals to
keep track of their cardiac health on their own [23]. Moreover, the
large volumes of data that may be accumulated over time could
be utilized to deliver more sensitive patient healthcare in the
ability to target most of the different individuals specifically. An
up-to-date ML approach of ECG monitoring at home through the
development in technology has yet shown great potential to
transform cardiovascular care and medicine by making it more
personalized, accessible, effective care.

In-home ECG systems provide continuous cardiac monitoring
in non-clinical environments, reducing the need for frequent hospital
visits. These systems are widely used for the early detection of
cardiac conditions such as arrhythmias. Devices such as portable
ECG monitors and wearable sensors are integrated with ML

Figure 2. Revolutionizing heart health monitoring
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models to ensure accurate analysis and real-time feedback [24]. ML
has significantly enhanced ECG signal processing, enabling accurate
anomaly detection and noise filtering. Convolutional neural
networks (CNNs) and long short-term memory networks (LSTMs)
are commonly employed for these tasks due to their ability to
process sequential and high-dimensional data effectively. CNNs,
for instance, are extensively used for feature extraction and
classification, with studies showing accuracy improvements of up
to 92% in specific datasets [25]. The collaboration of wearable

ECG devices and ML algorithms facilitates the efficient
processing of large-scale ECG datasets. Devices equipped with
hybrid CNN-LSTM models have shown remarkable performance,
with some achieving high sensitivity and specificity rates. For
instance, the integration of these models into wearable devices has
reduced latency and improved power efficiency [26]. Despite their
success, these systems face challenges such as data variability,
model generalization across diverse populations, and data privacy
issues. Addressing these issues will require further research into

Figure 3. Innovative and current wearable technologies

Figure 4. ECG acquisition system
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robust training methodologies and the development of lightweight
ML models optimized for resource-constrained environments.

7. ML Algorithm Testing for Utilization in ECG
Monitoring

Many ML methods have been examined for improving the
clinical management of cardiovascular ailments with the aid of
ECG monitoring. A recently published international study known
as LINK-HF compared the efficacy of an ML algorithm
functioning on a smartphone and cloud-based infrastructure in
estimating the rehospitalization risk of patients with HF [27]. The
sample size was 100 and used data collected from a wearable
patch that recorded a number of physiological indexes including
temperature, physical activity level, and ECG. The algorithm was
given up to 88% sensitivity in predicting the need for
hospitalization similar to the implantable devices, which has been
used for traditional heart failure monitoring. Another study is
underway to evaluate the possibility of this method for avoiding
rehospitalization in HF patients, which is a major advancement in
applying ML for at-home ECG devices [28]. Since mobile
tracking devices will be providing large volumes of data, there is
need for automated and efficient systems that can help doctors in
arriving at fast decisions. To this, ML responds with flexible,
Historical techniques to review the clinical information are labor-
intensive and cumbersome, which make it impractical for large
population [29]. Computerized analysis of data that can greatly
facilitate mobile tracking to identify emergent conditions such as
the exacerbation of heart failure, early stages of coronary
syndrome, or the onset of actual cardiac arrest. With the help of
ML analysis, such events can be spotted earlier, and doctors can
take action, while at the same time, the system can provide
feedback and statistics on milder situations. Previously, the mobile
monitoring systems mainly depended on some simple biosignals
monitoring, including simple rules of heart rate and rhythm of the
heart and so on [30]. Some of these methods proved to be
imprecise and, with no clinical involvement, brought a set of
small errors into the analysis. A relatively young subfield of AI,
ML has demonstrated probable solutions in cardiovascular
medicine by detecting patterns in large datasets. For instance,
studies have shown that using ML, it is possible to diagnose
myocardial ischemia from the cardiac CT images and also
categorize the types of human arrhythmias based on data recorded
by wearable ECG monitors. This is because the analysis of
biosensor data from several sensors using ML algorithms to
predict the effects of heart failure, arrhythmias, or other cardiac
illness will eventually help in foster care without lengthy rule
making and testing. This automation is critical especially for
continuous monitoring of patients’ ECG while at home since
timely response is vital to protect the patients and manage them
appropriately.

In ECG monitoring, the flows are used in conjunction with ML
and rule-based expert systems for the automated interpretation of
ECGs and the rapid exclusion of amenable diagnoses without the
need for intervention by a human expert [31]. Thanks to new
wireless ECG monitors, one can turn to actual-time, remote heart
monitoring in a home environment, relying on the ML algorithms
able to analyze ECG signals. Most prominent on this last subset,
deep learning (DL), a subfield of ML, exhibits tremendous
prowess in classifying ECG signals with high accuracy by
extracting features from the raw data. DL measures which
preceded CNNs include SAE and DBN. In a similar manner,
CNNs that are popular in image recognition are also used in ECG

signal and have been developed from advanced DL ventures [32].
Also, the recurrent neural network (RNN), one of which is LSTM,
is beneficial in analyzing time series data and then making it
suitable for ECG classification [33]. There have been significant
advances in the application of DL in ECG signal classification as
well as feature extraction. SAE and DBN are used for the
unsupervised coding of ECG segments while CNN and RNN
architectures can process the ECG data in one of the two forms
which is as a one-dimensional time series signal or in image form
[34]. Other hybrid networks that include CNN and RNN models
have been found to improve the training of spatial and temporal
features, hence improving the classification of ECG signals.
Incorporation of DL in ECG has also greatly eliminated the need
for manual interpretation thereby leading to more important tasks
being attended to by the healthcare professionals. But at the same
time, DL models are very sensitive to the input data quality and
can be faced with issues in the case of unbalanced datasets
especially in case of less frequent types of heartbeats. In addition,
DL models are computationally expensive, which is a challenge
when it comes to integration of the technology into Wearable
devices that have either limited processing powers and or limited
battery capacity. In ECG monitoring, the application of DL has
proven to produce better results than the traditional approach, with
least interference by human beings [35]. However, there are some
issues that still have to be addressed as follows; real-world data
often contains noisy data and the model should not be very
computationally expensive. For future work, the focus should be
on designing models that are stronger, lighter, and requiring less
parameters to be trained for the purpose of broadened usage of the
ML algorithms in the context of wearable devices. However, the
application of DL algorithm for diagnosing ECG has a vast
potential, which has been progressing through research studies in
recent years. Although previous studies have reviewed the subject
of using ML in ECG monitoring in different perspectives, to the
best of the authors’ knowledge, the literature does not encompass
a systematic review on the application of DL in the ECG
diagnosis. This review intends to help to fill that gap provides a
systematic and comprehensive overview of DL-based methods
currently implemented in ECG diagnostics to describe their
features, the possible improvements, and the unresolved issues
that should be overcome for deeper penetration of the approaches
into clinical practice. ML has become the key factor in the current
ECG monitoring techniques expanding the possibilities of home
and remote cardiac management. It has been argued that by
incorporating advanced ML algorithms in such systems, they are
also able to provide real-time analysis and increase diagnostic
accuracies besides aiding in early identification of potential
dangerous cardiac incidents. It enhances the quality of care of the
patients and the experience of care for cardiac health that has the
potential to shift the paradigms of care for heart diseases outside
the formal clinical settings.

Limited studies have attempted to use different ML techniques
to improve outcomes attained from in-home ECG monitoring. An
international trial named LINK-HF assessed the capacity of an
ML created using smartphone and cloud some in predicting
rehospitalization in HF individuals via analyzing information from
a wearable patch [36]. The algorithm used in this study was found
to have 88% [28] accuracy in determining the need for a
hospitalization, effectiveness that is as good as implantable
devices that are normally used in clinical settings. This result also
emphasizes the fact that even a non-clinical population of HF
patients can build a strong foundation for early detection and
intervention via using ML situated in household environments.
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This is rather important since the in-home ECG monitoring
creates a significant amount of data. It has been seen that manual
review of the data is a tedious process which not only takes a lot
of time, cost a lot of money, but is scarcely scalable as well. ML-
based systems provide this solution by analyzing the ECG data in
the real time and provide alerts for both critical and non-critical
situations such as the onset of worsening heart failure, or any
changes in the type and rate of the arrhythmias. While the earlier
concepts and implementations of mobile monitoring included the
basic rules as well as the HRV, the systems based on ML can
better interpret the biosignal data without constant supervision of
the clinicians. Specifically, the component of ML known as DL
has shown great potential to analyze ECG signals with high
accuracy; therefore, they are very suitable for home monitoring
[37]. For instance, CNN and RNN have been applied in the
classification of ECG signals, detection of arrhythmias, and
forecasting of possible cardiologic disorders. CNNs which
originally are good in image recognition have been utilized in
analyzing ECG signals where the signals are transformed into
time series or even images [38]. In particular, RNNs involve the
LSTM networks that are especially used in processing the
sequential data such as ECG to identify long-term relationships in
the heart rhythms.

8. Existing Work on ML-Enabled In-Home ECG

Over the past few years, some research works have sought to
incorporate ML into in-home ECG monitoring systems to change
the way cardiac disorders are diagnosed and managed outside
healthcare facilities. Notable here has been the potential of ML in
improving diagnostic accuracy of ECG data; several authors have
presented a host of models and algorithms touching on the hurdles
of in-home monitoring. Among the first studies in this field was
an experiment which decided to design the deep neural network
(DNN) to determine the presence of arrhythmias based on 91 218
single-lead records made with ambulatory ECGs [39]. In their
work, the authors exposed that the DNN in question reached the
equivalent diagnostic performance with no supervised
cardiologists at identifying various forms of the arrhythmia and
therefore the incorporation of ML into ECG analysis in non-
clinical settings can be considered as effective. This work went far
to help shed more light on the possibility of using ML in
designing in-home ECG systems that do not necessarily require
supervision or monitoring from the professors in real time.

In the same vein, another study [40] utilized CNNs to diagnose
AF based on data gathered from wearable ECG devises. Their model
was able to detect AF in asymptomatic patients which was to explain
the preventive nature of the ML algorithms in in-home ECG
monitoring. The authors found out that with the help of ML,
cardiac disorders could be diagnosed before the symptoms are
manifested themselves clinically and appropriate treatment
measures can be taken. This is even more the case in home
monitoring where constant data transmission and nearly real-time
analysis are required for identifying paroxysmal or episodic ECG
abnormalities that may not necessarily manifest during in-clinic
evaluations. Another important contribution was made by
researcher by putting forward a new small-sized CNN model for
the detection of arrhythmia using MIT-BIH Arrhythmia Database.
In their study, they obtained result of 91% from their model
which actually surpassed Google Net a complex model, and it was
appropriate use in wearable ECG devices [41]. Due to this, it was
suitable for contexts with limited resources like portable and
wearable gadgets, thus showing the need for designing model that

does not heavily drain the resources of in-home monitoring
systems. This research was very important in showing that even
with more simplified models’ high levels of accuracy were
achievable and hence more practical in Wearable devices that are
in the market for continuous ECG monitoring.

Other developments in this area where they focused on the use
of wearable ECG devices combined with arrhythmia detection by
using AI algorithms. They used CNNs and the LSTM networks in
their study to analyze ECG but in a real-time manner, making
heart monitoring possible all the time [42]. The above strategy
enhanced the possibility of identifying arrhythmias beyond the
hospital setting especially for individuals who need close
monitoring of their hearts. DL models used in this context
allowed to have a stable and almost real-time analysis of the data
recorded by the devices so as to detect, for instance, arrhythmias
or other kinds of disturbances which suggest an urgent action.
Such real-time feedback is crucial especially in home setting
because timely interventions that aim at averting serious heart-
related problems can be facilitated. Further, the researcher
improved the above methodology by proposing a new model,
which integrates CNN and LSTM for ECG examination [43].
Another advantage for their model was the outstanding features of
identifying arrhythmias, being designed for home use – the
increased diagnostic performance and the real-time signal
processing. Specifically, integrating the advantages of CNNs and
LSTMs in this manner allowed this hybrid model to obtain both
the spatial and the temporal information from ECG signals,
thereby improving its predictive accuracy [43]. Their work helped
to understand how it is possible to achieve better performance of
in-home ECG monitoring with the help of integration of different
ML methods. A significant contribution is inculcated by study
[44], in their study where they proposed the Parallel GRNN for
classifications of ECG signals in in-home monitoring systems.
Using the GRNN, they were able to get heartbeat classification
with an accuracy of 95% which enhances the possibility of the
model to be applied at home. Different authors’ work is
summarized in Table 1. That is why the high performance and
simplicity of the construction of the GRNN model made it
possible to use the developed approach to real-time ECG analysis
in portable devices. This study also reaffirmed the possibilities of
employing more basic but equally efficient models in such
contexts as wearable ECG devices.

Apart from classification, two functionalities of noise reduction
and signal enhancement have been two vital applications ofML in in-
home ECG monitoring. CNNs-based noise reduction model was
proposed [45] to enhance the ECG signals recorded through
wearable devices. In this method, they employed nonlocal means
for denoising, and thus, they obtained high-quality ECG data to
feed the ML algorithms. This step is essential in the in-home
environment because wearable devices are liable to noise and
motion artifacts to a significant extent. The quality of the signal
was boosted which positively impacted the precision and adroit
performance of functional diagnostics and ML analysis of ECG.

Another important field where great attention has been devoted
is feature selection and feature optimization methods. The methods
of SVM combined with PSO in classification of ECG signals are
utilized [46]. Their approach enhanced the classification of ECG
signal for wearable technology making it appropriate for home
use. PSO type of concepts assists to fine-tune the optimization of
the models, ML to achieve the optimum results given the limited
resources in portable and wearable ECG devices [47]. Altogether,
these papers prove the increasing role of ML to develop in-home
ECG monitoring. Recent studies have demonstrated that the
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Table 1. Summary of previous work on the ML-enabled in-home ECG monitoring

Author
Technology
utilized Features

ECG signal lead
number ML algorithm

No. of
patients Accuracy

Katal et al. [56] ECG signal
analysis

Time and
frequency
analysis

2 to 12 leads Long short-term
memory and
convolutional
neural networks
(CNN)

162 Up to 93% in
analyzing the
ECG signal &
determination of
arrhythmias

Madan et al. [57] ECG signal to
scalogram
images

Dimensional
scalogram
images

12 leads Two-dimensional
convolutional
neural network and
long short-term
memory

126 98.7% (ARR) and
99% (NSR)

Hannun et al. [40] Ambulatory
ECG

Analysis of
time series

Single lead Deep neural network
(DNN)

9,132
Records of
ECG

Up to or
comparable to
cardiologists

Chang et al. [58] ECG signal
analysis

Morphological
features

Multiple leads Support vector
machine (SVM),
Convolutional
neural network
(CNN)

Combination
of different
records

Approx. 90%

Somani et al. [59] ECG signal
Analysis

Time and
frequency
domain,

morphological
features

12 leads Recurrent
neural
network,

Convolutional
neural network

774,783 Comparable to
cardiologist

Xiao et al. [60] Processing of
ECG signals

RR intervals
and QRS
complex

12 leads Convolutional neural
network, Deep
learning model
with multi-
structure

126,526 Up to 99% with
variability in
interpatient
performance

Sattar et al. [61] Classification of
ECG signal
after
digitization of
these signals

Wavelet
transform
features,
Digitized
ECG signal
features

Single lead
(Lead II)

Convolutional neural
network, Self-
supervised learning
(SSL)

2914 Approx. 92%

Adasuriya et al. [62] ECG signal
analysis

PQRST wave
detection
intervals

12 leads Convolutional neural
network, support
vector machine,
decision tree

53549 High accuracy with
variability in
numbers

Al’Aref et al. [63] ECG
Classification

Wavelet
transform
features.

12 leads Convolutional neural
network, Hybrid
Machine Learning
models

67,001 Accuracy is high in
different cardiac
conditions

Vu et al. [64] ECG signal
classification

Time domain
features

1–3 leads Convolutional neural
network

21,241 97.5%

Sing et al. [65] Remote ECG
monitoring

RR intervals 1–12 leads Convolutional neural
network

12,186 95%

Dıker et al. [66] Classification of
ECG signals

Waveform
characteristics

3–12 leads Support vector
machine,

1000 94%

Ansari et al. [67] Classification
and
augmentation
of ECG data

Augmented
features of
ECG

Single lead
(II leads)

Convolutional neural
network

38,241 99%

Abubaker et al. [68] Processing of
ECG Signals

PCA feature
selection

1–12 leads Convolutional neural
network, Random
Forest

66,321 93%

Sraitih et al. [69] Classification of
ECG Data

Analysis of ST
segment,
HRV

12 leads Convolutional neural
network and multi-
layer perceptron

16,385 97.9%
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application ofML algorithms in analyzing ECG signals has proven to
be highly effective in real-time monitoring of patient’s atrial and
ventricular arrhythmias and other pathological conditions. The
combination with wearable ECG devices increases the chances of
accurate diagnosis using ML [48], which in the same breath
makes the monitoring continuous and independent from several
visits to clinical facilities. As these technologies become more
advanced, this means that even more detailed models, that offer
patients real-time individualized recommendations of cardiac
health, will be developed, thus dissolving the traditional
boundaries between the patient and the traditional medical
approach to the prevention of cardiac diseases outside of the
clinic. Altogether these works draw attention to progress in the
use of ML in conjunction with in-home ECG. Thus, they
highlight the ever-evolving possibilities of ML to offer timely,
accurate, and contactless cardiac examination for moving from
disease-centered to risk-centered care. Constant research works
will breed better models and the refinement of the existing models
in enhancing the efficiency of in-home ECG monitoring rendering
the management of CVDs even more crucial.

9. Real-World Case Studies of ML-Enabled Home
ECG Devices

AliveCor’s KardiaMobile is a portable, FDA-approved ECG
device that uses ML to detect heart conditions like AFib. The
device works by capturing ECG signals and sending them to a
smartphone app, where ML algorithms analyze the data in real
time. These algorithms compare the user’s ECG signal to patterns
of normal and abnormal heart rhythms, alerting users if any
irregularities are detected [49]. This real-time feedback allows for
early detection and intervention, providing users with peace of
mind and reducing the risk of undiagnosed heart issues. However,
one challenge is ensuring the device’s accuracy, particularly when
noise or interference affects the ECG signal, requiring ongoing
updates to the ML models.

The Apple Watch with its ECG functionality is another
prominent example of a wearable ECG device that uses ML for
heart health monitoring. The watch captures ECG signals and
processes them using ML models to identify conditions like AFib
and normal sinus rhythm. By analyzing the data in real-time, the
device provides immediate feedback to users, which can be sent
to healthcare providers for further review [50]. The Apple Watch
is a powerful tool for continuous health monitoring, offering users
the ability to track their heart health easily. However, ensuring

accurate readings during physical activity, where motion artifacts
can distort the ECG signal, remains a challenge for the device.

Biobeat’s wearable device combines ECG and blood pressure
monitoring in one compact design, making it an effective tool for
continuous cardiovascular health monitoring. This device uses ML
to process both ECG and blood pressure data in real time,
detecting irregular heart rhythms and changes in blood pressure
that may indicate cardiovascular risks. By offering timely alerts,
Biobeat enables users and healthcare providers to take action
before problems escalate [51]. However, like other wearable ECG
devices, the challenge lies in ensuring accurate readings during
physical activity and managing battery life while processing data
continuously. Despite these challenges, Biobeat’s device is paving
the way for more advanced, comprehensive home health monitoring.

10. Future Prospect

The future of ML in home ECG monitoring shown in Figure 6,
holds immense potential for advancing personalized healthcare, but
several challenges must be addressed to fully realize its benefits [52].
One critical issue is the limited battery life of wearable ECG devices,
which constrains their long-term usability. Future research should
focus on developing energy-efficient hardware and algorithms that
minimize computational overhead without compromising
accuracy. For instance, lightweight ML models, such as pruned or
quantized neural networks, could significantly reduce the power
consumption of on-device processing. Another pressing challenge
is computational overhead, particularly for real-time anomaly
detection in resource-constrained environments. Deploying ML
algorithms on embedded systems requires optimization techniques
such as model compression, knowledge distillation, and edge AI
integration. These approaches could enhance the performance of
in-home ECG systems, making them more scalable and practical
for widespread use.

Data privacy and security concerns also pose significant barriers
to adoption [53]. As in-home ECG systems collect and transmit
sensitive medical data, ensuring compliance with regulations such
as GDPR and HIPAA is paramount. Future developments could
explore decentralized storage solutions, such as blockchain
technology, and advanced encryption methods to safeguard patient
data [54]. Improvement directions also include advanced data
augmentation techniques to address the issue of limited and
imbalanced datasets. Synthetic data generation using generative
adversarial networks or domain adaptation techniques could help
create diverse training datasets, improving the robustness and

Figure 5. Machine learning in ECG devices
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generalizability of ML models. Additionally, fairness-aware
algorithms must be developed to mitigate biases in predictions,
ensuring equitable care for all demographic groups. Looking
ahead, ML applications in home medical devices are expected to
expand significantly over the next 5–10 years [55]. Emerging
technologies such as federated learning could enable collaborative
model training across multiple devices without compromising
patient privacy. Real-time health monitoring systems powered by
explainable AI may also enhance trust and adoption by providing
interpretable diagnostic feedback to patients and clinicians.
Furthermore, integration with other wearable devices, such as
smartwatches and fitness trackers, could pave the way for
comprehensive, multi-modal health monitoring ecosystems. By
addressing these challenges and pursuing these improvement
directions, ML-enabled in-home ECG systems can revolutionize
cardiac care, providing accessible, efficient, and personalized
solutions for a wide range of patients.

11. Discussion

This review summarizes the significant achievements and
unresolved challenges related to ML-supported in-home ECG
monitoring systems. AI has demonstrated its ability to enhance
diagnostic precision, enable real-time evaluation, and optimize the
early detection of potential cardiac pathologies in a home setting.
These advancements have contributed to the development of
preventive medicine, where patients’ cardiac health can be closely
monitored without requiring frequent intervention from healthcare
professionals. Among the trends identified, the use of DL models,
particularly CNNs and RNNs, for interpreting ECG data was
found to be the most promising [35]. These models have shown
remarkable performance in identifying arrhythmias, heart failure,
and other cardiac abnormalities, making them highly suitable for
home use. For instance, DNNs have achieved diagnostic accuracy
comparable to expert cardiologists in detecting arrhythmias,
underscoring the potential of ML-enabled ECG systems to
provide independent monitoring [70]. This capability, which
supports early warning systems, plays a crucial role in the timely
detection of critical events. Despite these advancements, there are

several challenges that need to be addressed for the widespread
deployment of ML-enabled in-home ECG systems. One of the
primary concerns is the quality and source of data collected from
wearable devices. Wearable ECG devices often capture noisy
signals with motion artifacts [71] and unpredictable signal quality
due to user movements. To address these issues, researchers have
employed signal enhancement techniques. While current methods
have shown improvements in reducing noise and interference,
further advancements are required to produce cleaner and more
reliable ECG signals for accurate interpretation.

Another critical challenge is the generalization of ML models
across diverse populations. Many ML models are trained on
datasets that lack representation from different demographic
groups, which can lead to biased diagnoses and inequitable
healthcare outcomes. Ensuring equity in healthcare requires
training ML algorithms on datasets that encompass diverse
populations, including different ages, genders, and ethnic groups.
Such an approach would help reduce bias and improve the
broader applicability of ML-enabled ECG systems [72].
Achieving this goal will necessitate close collaboration between
hardware developers, medical practitioners, and regulatory
authorities to establish standardized data collection formats and
ethical guidelines for the use of in-home monitoring systems with
ML models. To summarize, the integration of ML with in-home
ECG monitoring has brought significant benefits [4]. However,
key issues such as data quality, model generalization, and
integration with the existing healthcare system remain unresolved
and require further improvement. Addressing these challenges will
enable ML-enabled ECG systems to become the foundation for
real-time, personalized cardiac care in homes and other out-of-
hospital settings.

12. Conclusion

ML has revolutionized electrocardiography (ECG), enabling
more accurate diagnostics, early detection of cardiovascular
conditions, and personalized risk assessments. In-home ECG
systems powered by ML provide a convenient, noninvasive
solution for continuous cardiac monitoring, reducing the need for

Figure 6. Advancing ML in-home ECG monitoring
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frequent healthcare visits. DLmodels, particularly convolutional and
RNNs, have shown exceptional performance in real-time arrhythmia
detection and myocardial infarction classification, proving highly
effective in both clinical and non-clinical environments. However,
challenges such as data privacy, algorithmic biases, and the need
for diverse training datasets must be addressed to ensure equitable
and reliable healthcare delivery. As advancements in ML
algorithms and wearable technologies continue, ML-enabled ECG
systems have the potential to transform cardiovascular care,
making personalized and preventive medicine more accessible and
efficient.
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