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Abstract: The application of machine learning (ML) to genomics has transformed the process of analyzing and interpreting large-scale,
complex datasets, leading to important breakthroughs in our knowledge of biological systems. This review provides a comprehensive
overview of ML applications in key genomic areas: Whole genome sequencing (WGS), whole exome sequencing (WES), single-cell
genomics, and spatial transcriptomics. In WGS and WES, ML techniques are employed for variant calling, genome-wide association
studies, rare variant analysis, and the prediction of pathogenicity. In single-cell genomics, ML facilitates clustering, trajectory inference,
and cell type identification, while in spatial transcriptomics, it aids in deciphering spatial patterns of gene expression and tissue
heterogeneity. This review further explores the application of ML in related omics fields, including proteomics, transcriptomics,
metagenomics, epigenomics, and microbiome research. These applications encompass protein structure prediction, functional annotation,
microbial community profiling, and the analysis of epigenetic modifications. We address the challenges caused by high dimensionality,
variability in the data, and the requirement for interpretable ML models when dealing with genomic data. Emerging technologies like
explainable AI and federated learning are highlighted for their potential to address these challenges. Additionally, the review addresses
ethical considerations, data privacy issues, and the necessity for standardized protocols in ML applications. This comprehensive
examination underscores the transformative impact of ML in genomics and highlights its potential to drive future innovations in
personalized medicine and biological research.

Keywords: machine learning, genomics, whole genome sequencing (WGS), whole exome sequencing (WES), spatial transcriptomics,
metagenomics, epigenomics

1. Introduction

1.1. Overview of machine learning (ML) in genomics

ML has been a transformative force in genomics,
revolutionizing the processing and interpretation of complex
biological data. By utilizing the massive volumes of high-
dimensional data produced by cutting-edge sequencing
technology, ML techniques have been integrated into genomics to
provide insights that were previously unattainable by conventional
statistical methods. This integration improves the capacity to
identify trends, forecast results, and produce theories that inform
future investigations and therapeutic uses [1]. Numerous
approaches are involved in the use of ML in genomics, and each
one has advantages over the other when it comes to examining
various kinds of genomic data. Supervised learning is widely used
for applications like disease outcome prediction, mutation impact

prediction, and gene expression classification. It involves training
algorithms using labeled data. Among the algorithms commonly
used to build predictive models that classify samples, identify
biomarkers, and elucidate the biological mechanisms causing
genomic variations are support vector machines (SVMs), random
forests, and neural networks [2].

Conversely, unsupervised learning methods are vital for
uncovering the underlying structures in genomic data in the
absence of predetermined labels. Using expression profiles or
other genomic markers, clustering techniques like k-means and
hierarchical clustering are used to identify different groups of
genes or samples. Principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE) are two
dimensionality reduction approaches that are useful for
visualizing complex multi-dimensional data and revealing
hidden patterns that guide the functional categorization of genes
and pathways. The use of multi-layered neural networks, or deep
learning, is a subset of ML that has improved the capabilities of
genetic data analysis [3]. While recurrent neural networks and
transformers are useful for managing sequential data, such as
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DNA or RNA sequences, convolutional neural networks (CNNs)
are skilled at understanding spatial hierarchies in genomic data,
such as chromatin interactions and sequence patterns. Deep
learning techniques enable the extraction of high-level
characteristics from unprocessed genomic data, improving
accuracy in tasks like functional genomics, variation
interpretation, and alignment of genomic sequences [4].

The use of ML in whole genome sequencing (WGS) and whole
exome sequencing (WES) data has one of the biggest effects in
genomics. ML techniques are used to predict the functional effects
of genetic changes, identify benign and pathogenic variations, and
improve the accuracy of variant calling. This feature is especially
noteworthy in the context of precision medicine, where patient
categorization based on genetic profiles and the identification of
novel genetic variations linked to complicated diseases are made
possible by ML algorithms. ML tackles the problems caused by the
high levels of noise and intrinsic heterogeneity in single-cell RNA
sequencing (scRNA-seq) data in the field of single-cell genomics [5].

Traditional methods in genomics, such as rule-based algorithms
and statistical tools, predominantly emphasized linear models,
sequence alignment, and hypothesis-driven strategies, depending on
established rules and simple computations. These methods proved
useful for small-scale data but encountered constraints with high-
dimensional and big datasets. Contemporary ML techniques,
particularly deep learning and ensemble methods, provide enhanced
flexibility by autonomously discerning complicated patterns from
data without explicit programming, rendering them optimal for the
analysis of the extensive and intricate data produced in genomics
today. However, present hurdles exist, including the integration of
multi-omics data, model interpretability, and scalability of algorithms
to manage exponentially expanding genomic datasets. These
problems underscore the compelling need for breakthrough ML
algorithms that might address these limits and generate new insights
into genomics [6].

The application of ML in genomics originated in the late 20th
century, as the increasing accessibility of genetic data from initiatives
such as the Human Genome Project necessitated sophisticated
computer methods. Early efforts concentrated on sequence
analysis, including gene prediction and motif identification,
employing fundamental statistical models. With the increase in
processing power and data accessibility, advanced techniques such
as SVMs and hidden Markov models were utilized for gene
expression analysis and functional annotation. The advancement
of deep learning in the 2010s signified a pivotal transformation,
facilitating intricate applications including WGS, variant
identification, and precision medicine. Currently, ML is crucial in
genomics, facilitating developments in personalized medicine,
drug discovery, and single-cell analysis, underpinned by ongoing
improvements in algorithms and computational frameworks that
accommodate the increasing complexity of genomic data [2].

1.2. Case studies of ML in genomics

1.2.1. WGS for the detection of disease variants
A notable case study examines the application of ML

algorithms in WGS to identify harmful variations associated with
genetic disorders. DeepVariant, a ML tool created by Google,
utilizes deep learning to identify variations from sequencing data.
Utilizing millions of genomic samples, it surpasses conventional
techniques by enhancing the precision of single nucleotide
polymorphism (SNP) and indel identification, which are essential
for elucidating the genetic foundations of disorders like cancer,
cystic fibrosis, and congenital heart disease [7].

1.2.2. Single-cell genomics and cell types classification
ML algorithms are progressively employed in scRNA-seq to

categorize and forecast cell types based on gene expression
profiles. An illustrative example is the utilization of Seurat, a
widely used R-based software that implements dimensionality
reduction and clustering methods to categorize cells into discrete
kinds. Researchers can discover unusual cell types, such as cancer
stem cells, that contribute to tumor heterogeneity and medication
resistance by employing this method. This is essential in cancer
research, as targeted medicines are designed based on the
molecular and cellular properties of the tumor [8].

1.2.3. Cancer genomics and neoantigen discovery
In cancer genomics,MLhas been employed to predict neoantigens

tumor-specific antigens that originate from mutations facilitating
individualized cancer vaccinations. One notable use is the use of
deep learning to model and forecast the binding affinity of
neoantigens to major histocompatibility complex molecules, a vital
step in assessing whether new antigens might elicit an immune
response. For example, NetMHCpan, an ML tool, has been
effectively applied to predict possible neoantigens for building cancer
immunotherapies, presenting a new approach in tailored treatment.

1.2.4. Genomic prediction in agriculture
ML is also transformative in agricultural genomics, particularly

in genomic selection to boost crop yields and disease resistance. In
this scenario, ML models like genomic best linear unbiased
prediction and random forests have been applied to predict
phenotypic features based on genomic data. For example, in
maize (Zea mays), ML algorithms have helped forecast resistance
to diseases such as Northern Corn Leaf Blight, enabling breeders
to select for resistant genotypes with higher accuracy, hence
enhancing crop resilience and productivity [1].

1.2.5. Epigenomics and predictive modeling of gene
regulation

In epigenomics, ML models are utilized to predict regulatory
elements, like as promoters and enhancers, from chromatin
immunoprecipitation sequencing (ChIP-seq) and ATAC-seq data.
A case in point is the use of CNNs in the DeepSEA framework,
which analyzes genomic sequences and epigenomic profiles to
identify functional non-coding variations and their possible impact
on gene regulation. This use is crucial in understanding
complicated disorders like schizophrenia and diabetes, where
regulatory alterations in non-coding areas play significant roles [6].

1.3. Importance of genomics in understanding
biological systems

Understanding the genetic makeup of all living things through
genomics provides a comprehensive understanding of biological
systems, which is crucial to comprehending them. Researchers can
examine the complex relationships, roles, and interactions
between genes in various biological contexts by studying
genomes, the entire collection of DNAs within an organism. This
in-depth exploration of an organism’s genetic code provides
important new understandings of physiology, development, and
disease causes. Clarifying the genetic basis of complex traits and
diseases is one of genomics’ most significant contributions
categories. Genetic variables that contribute to susceptibility and
resistance to diseases can be found by studying changes in the
genome, such as copy number variations (CNVs) and SNPs [9].
The identification of genetic variations associated with
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complicated ailments like cancer, cardiovascular diseases, and
neurological disorders has been made possible through the use of
genome-wide association studies (GWAS). These findings provide
opportunities for the development of tailored medicine and
focused therapeutics in addition to improving our understanding
of the origins of disease [10].

Furthermore, genomics makes it easier to investigate gene
activity and regulation using a variety of high-throughput
methods. Through the use of functional genomics techniques like
gene knockdown and overexpression studies, scientists may
examine how specific genes affect cellular functions and the
development of entire organisms. Transcriptomics offers insights
into the regulation of genes in various tissues, developmental
stages, and in response to environmental stimuli by analyzing
gene expression profiles. Understanding how genetic and
epigenetic variables affect cellular activity and organismal features
requires knowledge of this material. Genomic research not only
clarifies gene function but also provides important insights into
the dynamics of gene networks and interactions [11].

2. WGS

ML techniques play a significant role in processing WGS data
by automating and optimizing numerous key procedures. Initially,
raw WGS data require preprocessing, which includes quality
control, read alignment, and error correction. ML models, such as
random forests and SVMs, are typically applied to increase the
accuracy of these processes by learning patterns from the data.
For variant detection, deep learning models like CNNs are used to
discover single nucleotide variations (SNVs), insertions, and
deletions by examining the alignment data and separating real
variants from sequencing errors. Feature selection approaches are
utilized to minimize the dimensionality of the huge WGS datasets,
enabling more efficient model training. Additionally, ensemble
learning approaches can incorporate many algorithms to increase
forecast accuracy, making ML a vital tool in handling the
complexity and quantity of WGS data [7].

2.1. Definition and significance

WGS is a comprehensive and high-resolution sequencingmethod
that identifies every variation of an organism’s DNA (Figure 1) [12].
The whole genome, including all coding and non-coding areas, is
covered in great detail by WGS, in contrast to targeted sequencing
techniques that concentrate on particular regions of interest. By
sequencing both nuclear and mitochondrial DNA, this method
enables a comprehensive examination of genetic variants
throughout the whole genome. The value of WGS is in its capacity
to offer a comprehensive picture of an organism’s genetic makeup,
which is essential for several applications in both clinical and
scientific settings. Researchers can identify a variety of genetic
changes, including SNPs, insertions, deletions, and structural
variants, by sequencing the entire genome. These differences may
have significant effects on our comprehension of hereditary
susceptibilities to illnesses, our comprehension of the genetic
foundation of intricate features, and our investigation of the
functional functions of various genomic areas [13].

One of the primary advantages of WGS is its capacity to uncover
rare and novel genetic variants that may be missed by targeted
sequencing approaches. This comprehensive coverage is especially
helpful when researching complex genetic disorders, as the risk of
the condition is influenced by several genetic factors. For example,
WGS has helped uncover novel genes and pathways involved in

disease processes, clarified the genetic basis of uncommon
and inherited illnesses, and identified earlier unidentified
disease-associated variations [14]. WGS is also an effective method
for investigating the structure and function of the genome.
A comprehensive investigation of genomic characteristics, including
gene structure, regulatory elements, and non-coding RNA
sequences, is made possible by it. Understanding transcriptional
networks, gene regulation, and the functional effects of
chromosomal changes all depend on this knowledge. Furthermore,
WGS makes it easier to investigate epigenetic changes and how
they affect gene expression, offering insights into the dynamic
interplay between genetic and epigenetic variables. WGS advances
our knowledge of genetic diversity and population structure in the
context of population genomics and public health [15].

2.2. ML applications in WGS data analysis

The ability of ML to analyze complicated and high-dimensional
genetic information has greatly increased the interpretation of WGS
data. These computational methods are applied to variation
discovery, functional annotation, and illness association, among other
WGS-related difficulties. Accurately identifying and classifying
genomic variations is one of the main uses of ML in WGS data
analysis. To increase the accuracy of variant calling, algorithms like
deep learning models and SVMs are utilized to differentiate between
actual variations and noise and sequencing artifacts. By using
extensive datasets for training, these models can identify patterns and
characteristics that point to real genetic differences, which improves
the accuracy of the variant identification procedure [16].

By predicting their possible functional consequences, ML
approaches can make it easier to interpret variant effects. Neural
network- and ensemble-based tools examine the connection between
genetic variations and phenotypic outcomes, offering insights into the
potential roles of particular mutations in disease. In therapeutic
situations, where it facilitates the discovery of pathogenic variations
and helps determine their significance for patient diagnosis and
therapy, this predictive ability is especially useful. ML is also used to
integrate WGS data with other omics data, such as transcriptomics
and proteomics, to give a deeper understanding of gene function and
regulation [15]. ML methods can anticipate the downstream effects
of genetic variants on cellular processes and clarify the biological
pathways they affect by merging genomic information with gene
expression profiles and protein interaction data. The ability to find
new insights into disease mechanisms and possible therapeutic
targets is improved by this integrative approach [17].

2.2.1. Variant calling and annotation
UsingML approaches has substantially helped variant calling, a

critical step in WGS data interpretation. The process involves
identifying genetic variants, such as SNPs and structural
alterations, that differ from a reference genome. Two ML
techniques that increase the accuracy of variant detection are
SVMs and deep neural networks. These techniques learn from
large datasets and discern patterns amid sequencing noise and
artifacts that signal the presence of genuine genetic variants.
Several issues with WGS data processing are addressed by the
ML integration in variant calling. Conventional techniques
frequently have trouble telling the difference between sequencing
errors and true variations, which can result in missed or false
positives. By training on annotated variant datasets, ML
algorithms overcome these drawbacks and become more adept at
distinguishing between real genomic changes and sequencing
artifacts [18].
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Beyond improving the accuracy of variant detection, ML
approaches facilitate the analysis of complex variant types,
including structural variants and CNVs. These types of genetic
alterations often present challenges due to their complexity and
size, making traditional methods less effective. ML models,
particularly those utilizing deep learning architectures, can analyze
patterns and relationships within large genomic datasets to detect
and characterize these complex variants more efficiently [5].
Some genomic tools/algorithms based on ML architecture for
variant calling and annotations are listed below in (Table 1)

2.2.2. GWAS
ML applications have greatly increased the efficacy of GWAS,

which have become a critical method for discovering genetic
variations linked to complex traits and disorders. To find

correlations between genetic variations and phenotypic variables
across sizable populations, GWAS generally entails scanning the
complete genome. Regression models, clustering algorithms, and
ensemble approaches are a few examples of machine learning
techniques that have been used more and more to increase the
accuracy and power of these investigations. By enhancing the
detection of connections between genetic variations and
characteristics through sophisticated data analysis techniques, ML
improves GWAS [19]. Algorithms that can handle high-
dimensional data and reveal complex patterns that typical
statistical methods can miss include random forests and gradient-
boosting machines. These machine learning algorithms are
capable of processing enormous volumes of phenotypic and
genomic data, and they can decipher intricate connections
between trait outcomes and genetic variants. This skill enables the

Figure 1. Diagram of a WGS process. (A) Illustrates the library preparation process. (B) Discusses the mapping of nucleotide
sequences to genomes of reference. (C) Displays the variant calling and detection (SNP). (D) Gene annotation: identification of
functional elements across the genome. The letters represent functional proteins
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identification of novel loci that may contribute to phenotypic
variation or disease susceptibility, as well as the detection of
modest genetic connections [20].

Furthermore, the integration of GWAS results with other
genomic data types, like gene expression profiles and epigenomic
markers, is made easier by ML approaches (Figure 1) [12].
Through the utilization of integrative models, scientists may
evaluate the impact of detected genetic variations on gene
expression and regulatory networks, thereby offering a more
profound understanding of the biological processes that underlie
observed correlations. Through the connection of genetic
variations to functional outcomes and possible treatment targets,
this integrated method improves the interpretation of GWAS
results. Moreover, the issue of multiple testing in GWAS is
addressed by ML models, as the large number of statistical tests
conducted may result in exaggerated false-positive rates [21].
Table 2 provides a concise overview of some tools and algorithms
used in GWAS that incorporate ML, highlighting their ML
methods, primary functions, and key features.

3. WES

ML techniques are used to process WES data by improving
various phases of data analysis. In the preprocessing phase,
methods like SVMs and random forests help filter out sequencing
noise and enhance read alignment to the reference genome [16].
For variant calling, which focuses on coding regions, deep
learning models such as CNNs are employed to detect SNVs and
small insertions or deletions with high accuracy by examining the
aligned reads. Additionally, ML can be employed in feature
extraction and prioritization to find clinically relevant variants,
decreasing the computational burden by focusing solely on coding
exons. Ensemble approaches, combining the outputs of several

models, can further refine variant categorization, enhancing the
detection of rare variations in WES datasets. These methods boost
both the efficiency and precision of WES data analysis [22].

3.1. Definition and significance

WES is a targeted sequencing method that concentrates on the
exomes, or coding sections of the genome, which make up between
1% and 2% of the human genome. These regions comprise the great
majority of known genetic variants that impact protein function,
while making only a small portion of the genome (Figure 2) [16].
This makes WES an effective method for discovering mutations
linked to a wide range of disorders. Focusing on exomes, WES
enables scientists and medical professionals to thoroughly
examine gene sequences that code for proteins which are thought
to contain the majority of mutations that cause disease. The value
of WES is in its capacity to offer an in-depth examination of
genetic variants that may cause illness [16]. Researchers can
identify pathogenic variations that may go undetected by
traditional diagnostic techniques by sequencing the exomes of
affected individuals. This allows for accurate genetic diagnosis
and informs suitable treatment therapies [20].

Beyond its use in diagnosis, WES is essential to genetic
research since it makes it easier to find new genes linked to
disease. This holds particular significance for complex illnesses
that could entail various hereditary and environmental
components. By analyzing exomes across large datasets, WES
uncovers common and uncommon variants that increase the risk
of disease and sheds light on the genetic architecture of complex
traits. Finding these variations may help us comprehend the
mechanisms underlying the disease and may also point to new
treatment options. Additionally, WES can be applied to
population genomics to investigate genetic diversity and the

Table 1. Genomic tools for variant calling and annotations using machine learning

Tool/Algorithm Machine learning method Primary function Key features

DeepVariant Convolutional Neural
Networks (CNN)

Variant Calling High accuracy, trained on diverse datasets

GATK HaplotypeCaller Random Forest Variant Calling Detects SNPs and indels, widely used in
genomics pipelines

ANNOVAR Decision Trees Variant Annotation Supports multiple annotation databases,
user-friendly interface

SnpEff Rule-based Machine Learning Variant Annotation Fast processing, customizable annotations
DeepSNV Deep Learning Detection of Rare Variants Highly sensitive, suitable for low-frequency

variants
VEP (Variant Effect Predictor) Ensemble Learning Variant Annotation Extensive database support, functional

impact prediction

Table 2. Genomic tools for GWAS using machine learning

Tool/Algorithm Machine learning method Primary function Key features

PRSice-2 Lasso Regression Polygenic Risk Score Calculation Fast computation, automated clumping
GEMMA Bayesian Regression GWAS, Mixed Model Analysis Handles relatedness, population structure
SnpEff Decision Trees Variant Annotation Fast, supports multiple genomes
PLINK Support Vector Machines GWAS, Data Management Efficient data handling, filtering options
DeepVariant Deep Learning (CNN) Variant Calling High accuracy, trained on diverse datasets
PrediXcan Elastic Net Regression Transcriptome Prediction Integrates GWAS and expression data
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evolutionary background of human communities, providing
information on the distribution of genetic variations among
various populations [16]. The affordability of WES in comparison
to WGS is another important benefit. Even though WGS scans
both coding and non-coding sections of the genome, processing
and analyzing the massive quantity of data it produces can be
expensive. Because WES concentrates on the exomes, less data
are produced, which makes it a more feasible choice for
large-scale research and standard clinical diagnoses. Since the
majority of clinically significant mutations are discovered in the
coding regions that WES targets, this cost-effectiveness does not
come at the risk of losing important information. Therefore, WES
achieves a compromise between accessibility and detailed genetic
analysis, leading to its widespread use as a tool in both clinical
and scientific settings [22].

3.2. ML applications in WES data analysis

The processing of (WES) data has been transformed by ML
algorithms, which have improved our capacity to understand and
apply the enormous amounts of genetic data gathered. The majority
of known disease-causing mutations occur in the protein-coding
sections of the genome, which is the focus of WES. Nonetheless,

there are several difficulties in identifying, interpreting, and
translating these genetic variations into therapeutic practice. ML
provides strong tools to overcome these issues and progress the
science of genomics because of its ability to process and evaluate
complicated, high-dimensional data. Variant calling is one of the
main uses of ML in WES data processing [5]. Finding genetic
variations between an individual’s exome and a reference genome,
such as SNPs and insertions or deletions (indels), is known as
variant calling. A few ML techniques that have been applied to
increase the precision and effectiveness of this process are SVMs,
random forests, and neural networks. These algorithms can
discriminate between actual genetic variants and sequencing errors
since they were trained on labeled datasets with known variants and
artifacts. ML models reduce false positives and false negatives by
improving the sensitivity and specificity of variation detection
through learning from these examples [23].

Apart from variants calling, ML is essential for the functional
annotation of variants found using WES. Anticipating the possible
effects of genetic variations on protein function and illness risk is
known as functional annotation. This attempt is difficult because
of the great variety of possible modifications and the subtle nature
of their effects. ML models, particularly those that employ deep
learning techniques, can include a range of datasets, such as

Figure 2. Whole exome sequencing: The steps involved
Note: Firstly, genomic DNA is isolated from the sample. Subsequently, the DNA is fragmented, and these fragments are hybridized to capture
probes that specifically target the exonic regions. The captured exons undergo enrichment and amplification via PCR techniques. The enriched
library undergoes sequencing through high-throughput sequencing platforms. Ultimately, the generated sequence data are aligned with a
reference genome, and computational techniques are utilized to identify alterations within the exonic regions, facilitating the
identification of mutations linked to disease.
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sequence conservation scores, gene expression data, and protein
structural features, to predict the functional implications of
alterations. By spotting minute patterns and connections that
conventional bioinformatics techniques can miss, these models
can provide more precise variant pathogenicity predictions [23].
Prioritizing variations for additional research is another function
that ML makes easier. Prioritizing the variations most likely to be
clinically significant is crucial, as most WES analyses identify a
large number of variants. Based on anticipated pathogenicity,
allele frequency, and correlation with established illness
characteristics, machine learning models can rank variations [24].

3.2.1. Identification of disease-causing mutations
To diagnose and comprehend genetic illnesses, one of the most

important aspects of medical genetics and genomics is the detection of
mutations that cause disease. This technique entails identifying genetic
variants that result in aberrant regulation or function of proteins, which
can induce or predispose people to diseases. In this investigation,WES
is a valuable tool since it concentrates on sequencing the genome’s
protein-coding regions, where the majority of known disease-
causing mutations are found [16]. Bioinformatics and computational
techniques are used to evaluate the possible influence of genetic
variations on gene function after they have been identified by
sequencing. Evaluating the variations’ functional effects, this
involves assessing them in databases of known pathogenic and
benign mutations. Predictive algorithms are also used in this
process. Variables like the biochemical properties of modified
amino acids, the conservation of evolutionary traits, and the
anticipated impact on the structure and function of proteins are
often considered by these algorithms. ML algorithms have
enhanced this procedure by integrating multiple data types and
increasing the accuracy of pathogenicity prediction [11].

Finding the mutations that cause a disease is very important in
clinical settings because it helps with diagnostic and treatment
choices. Finding the causing mutation for uncommon genetic
illnesses can lead to a conclusive diagnosis, saving patients and their
families from a diagnostic maze. Additionally, it makes it possible
to predict the course of a disease and possible therapeutic responses,
which helps to inform individualized treatment plans. Furthermore,
genetic therapy can be made easier by detecting mutations in
patients, enabling at-risk family members to receive testing and
information about their genetic status. Through the identification of
novel genes and pathways involved in pathogenesis, the discovery
of disease-causing mutations in research broadens our understanding
of the genetic basis of disorders [25]. New therapeutic targets and
strategies may result from this understanding. Moreover, the
detection of these mutations aids in clarifying the mechanisms
underlying complex disorders, which frequently involve the
interplay of several genetic and environmental variables. Therefore,
finding the mutations that cause a disease is crucial for improving
public health outcomes, promoting scientific research, and providing
care for specific patients [26].

3.2.2. Predictive models for phenotypic traits
In genetics and genomics, predictive models for phenotypic

traits are a crucial tool that allow the assessment of individual
features based on genetic and environmental factors. These
models use statistical and computational methods to examine huge
datasets that include phenotypic data and genetic variants, which
are frequently obtained from whole genome or WES. Finding
genetic markers linked to particular qualities and predicting how
these traits will manifest in individuals based on their genetic
profile are the main objectives. There are various crucial phases

involved in building predictive models for phenotypic features.
Research has shown that the identification of mutations that cause
disease broadens our knowledge of the genetic basis of diseases
by identifying new genes and pathways involved in pathogenesis.
The accuracy and reliability of these predictions are influenced by
factors such as the sample size, the genetic architecture of the
trait, and the presence of gene-environment interactions [27].

Predictive models for phenotypic features have been developed
and applied with great improvement attributed to ML techniques.
The intricacy and large dimensionality of genetic data are handled
by techniques like deep learning algorithms, SVMs, and
regularized regression. To produce more thorough and precise
predictions, these models might include a wide range of variables,
such as genetic, epigenetic, and environmental influences. These
models are resilient and generalizable to various populations
thanks to the application of cross-validation and other validation
techniques. There are several uses for predictive models of
phenotypic features in agriculture, evolutionary biology, and
customized medicine [28]. These models have the potential to
predict an individual’s susceptibility to specific diseases, which
opens the door to early intervention and tailored therapy in
personalized medicine. They support breeding efforts in
agriculture by forecasting desirable features in animals and crops.
Predictive models aid in the understanding of how genetic
diversity influences phenotypic variation and adaptation in the
field of evolutionary biology. Ultimately, with major ramifications
for both science and society, the creation and improvement of
predictive models for phenotypic qualities represent a crucial
nexus of computational biology, bioinformatics, and genetics [29].

4. Single-Cell Genomics

ML techniques are used to process WES data by improving
various phases of data analysis. In the preprocessing phase,
methods like SVMs and random forests help filter out sequencing
noise and enhance read alignment to the reference genome. For
variant calling, which focuses on coding regions, deep learning
models such as CNNs are employed to detect single SNVs and
small insertions or deletions with high accuracy by examining the
aligned reads. Additionally, ML can be employed in feature
extraction and prioritization to find clinically relevant variants,
decreasing the computational burden by focusing solely on coding
exons. Ensemble approaches, combining the outputs of several
models, can further refine variant categorization, enhancing the
detection of rare variations in WES datasets. These methods boost
both the efficiency and precision of WES data analysis [8].

4.1. Definition and significance

Within molecular biology, single-cell genomics is a cutting-edge
area that focuses on the analysis of the genome, transcriptome, or
epigenome at the level of individual cells (Figure 3) [8].
Researchers can capture the molecular heterogeneity and dynamic
processes taking place within individual cells using single-cell
genomics, in contrast to typical bulk sequencing methods that
evaluate averaged signals from a population of cells. Understanding
complex biological systems requires this ability since it offers
insights into cellular diversity, development, and disease states that
cannot be obtained via bulk analysis [8]. Single-cell genomics is
important because it may reveal the distinct transcriptome and
genetic profiles of individual cells. Even while all cells in
multicellular organisms have the same genetic makeup, they
develop into diverse types with unique roles [8].
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Single-cell genomics has significant implications for
comprehending the cellular basis of illness in the context of
disease. Significant cellular heterogeneity is present in a wide
range of diseases, including cancer, neurological illnesses, and
immune-related problems. Tumors, for instance, are made up of
many subpopulations of cancer cells that have unique gene
expression profiles and genetic abnormalities that can affect how
well a patient responds to treatment and how quickly the illness
progresses. These subpopulations can be recognized and described
through the use of single-cell genomics, which facilitates the
creation of tailored treatment plans and targeted medications. This
technique aids in the understanding of immune evasion and
treatment resistance mechanisms by offering a comprehensive
perspective of the tumor microenvironment, encompassing
interactions between immune cells and cancer cells [30]. Single-
cell genomics is based on technology that includes isolating
individual cells, amplifying their genetic information, and
sequencing the DNA or RNA that is produced. Techniques such
as scRNA-seq and single-cell DNA sequencing are widely used to
study gene expression and genetic changes, respectively. The

ability to characterize epigenetic alterations at the single-cell level
has also been made possible by recent developments, offering a
thorough understanding of gene regulation [31].

4.2. ML applications in single-cell genomics

In single-cell genomics, the study of an individual cell’s
genome, transcriptome, or epigenome, ML has become an
essential tool for data analysis and interpretation. Large and
complex datasets generated by this field represent the variety of
cellular populations, rendering typical analytical techniques
inadequate for deriving biologically significant conclusions. ML is
essential for tackling these problems and expanding our
knowledge of cellular biology because of its ability to handle
high-dimensional data, recognize patterns, and make predictions.
The detection and categorization of cell types is one of the main
uses of ML in single-cell genomics. RNA-seq data obtained from
scRNA-seq may reveal the gene expression patterns of thousands
of distinct cells [7]. However, advanced computational techniques
are needed to identify different cell types and subtypes within this

Figure 3. The principle of single-cell sequencing and analysis
Note: (a–c) Isolated single cells undergo breakdown and are subsequently analyzed for mutations and CNAs: the amplified DNA is employed
for sequencing and library preparation. The sequences are aligned with a specific DNA reference to detect mutations and copy number
alterations. Analysis of the epigenome and methylome involves treating DNA with bisulfite, which converts unmethylated cytosines into
uracil. Thymine undergoes conversion from uracil residues during a pre-amplification process. After that, libraries are organized and
prepared. Methylation levels are determined by mapping the obtained reads with a particular DNA reference; (c) Gene expression
profiling includes cDNA reverse transcription of RNA, pre-amplified, and sequencing and library preparation. After the mapping of the
acquired reads in accordance with exome references, DEG clustering will be carried out; (d) Figure illustrating the principle of spatial
transcriptomics. Both sequencing and in situ hybridization can be used to determine mRNA expression. The acquired data make it
possible to map a single cell’s expression profile to a particular coordinate.
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data. ML algorithms, such as clustering approaches (k-means,
hierarchical clustering) and dimensionality reduction techniques
(PCA, t-SNE), are used to group cells with comparable expression
patterns. These techniques aid in the differentiation of well-known
cell types and the discovery of unusual or uncommon cell
populations, all of which are important for comprehending tissue
formation and heterogeneity [32].

Furthermore, combining single-cell data from several sources is
a common use of MLmodels. Multimodal data, including chromatin
accessibility, protein levels, and RNA expression, are frequently
used in single-cell genomics. Biological insights are more accurate
and have higher resolution when these many data various types
are integrated. To gain a more thorough understanding of cellular
states and functions, deep learning techniques such as
autoencoders and neural networks, for example, can combine
multi-omics data to identify correlations between various cellular
properties. Finding the regulatory networks and pathways that
govern gene expression and cell fate decisions is made easier with
the help of this integration [33]. ML applications in single-cell
genomics have significant implications for disease context,
including biomarker identification and disease mechanism
understanding. ML can recognize unique biological patterns
linked to particular diseases, including cancer, autoimmune
diseases, or neurodegenerative disorders, by examining single-cell
data from diseased tissues [34].

4.2.1. Cell type identification
A crucial component of single-cell genomics is cell type

identification, which makes it possible to characterize the diversity
of cells within tissues in great detail. Through the examination of
gene expression profiles at the individual cell level, scientists
differentiate between different cell types and comprehend their
distinct molecular signatures. Understanding developmental
phases, disease processes, and cellular heterogeneity all depend on
this process. In real terms, scRNA-seq data with high dimensions
must be analyzed to identify the cell type. Computational
techniques are used to group cells according to similarities in their
gene expression profiles. Using techniques like k-means
clustering, hierarchical clustering, and more sophisticated
algorithms like graph-based clustering, cells are classified into
groupings that suggest potential cell types. PCA and t-SNE are
two commonly used methods for reducing the dimensionality of
data and facilitating visualization [35].

After clusters are found, they are annotated by cross-referencing
them with reference cell type atlases or recognized marker gene sets.
Annotation can be done manually or automatically using algorithms
that estimate cell types based on expression profiles using pre-
existing datasets. Precise identification of cell types is crucial for
comprehending typical biology as well as for locating uncommon
or unique cell populations that might be important in the context of
disease. Cell type identification continues to offer important insights
into the intricacy of cellular systems and their implications for
health and illness as single-cell technologies progress [36].

4.2.2. Trajectory inference
A crucial computational method in single-cell genomics,

trajectory inference seeks to clarify the dynamic mechanisms
driving cellular differentiation and development. Reconstructing
the series of cellular states or transitions that give rise to discrete
cell types or stages is the aim of this method. Trajectory inference
offers insights into how cells go through distinct stages of
differentiation, respond to stimuli, or proceed through diseases by
examining high-dimensional gene expression data from individual

cells. Finding cells with similar gene expression profiles is the
first step in the trajectory inference process. These cells are then
arranged into a continuous trajectory or developmental route [37].
This reconstruction is achieved using various computational
methods that model the progression of cellular states as a
trajectory through a high-dimensional gene expression space.
Techniques such as PCA and t-SNE are used to reduce the
complexity of the data and visualize the trajectories in a lower-
dimensional space. Algorithms such as Monocle, Slingshot, and
Pseudotime are specifically designed to infer the ordering of cells
along these trajectories, allowing researchers to trace the path
from precursor states to differentiated cell types [30].

In the research of diseases and developmental biology,
trajectory inference is particularly valuable. It aids in the
understanding of cell differentiation in developmental biology by
highlighting key stages and transitions that take place during
development. Understanding the regulatory mechanisms that
dictate cell fate decisions and the function of particular genes or
signaling pathways in these processes requires knowledge of this
information. Trajectory inference can be used to understand how
disease states change over time, including how immune cells react
to infections or therapies or how cancer cells develop malignant
characteristics. Trajectory inference also makes it possible to
identify important regulatory genes or factors that mediate
changes in cellular states [38].

5. Spatial Transcriptomics

5.1. Definition and significance

Through the use of cutting-edge technology called “spatial
transcriptomics”, researchers can examine the spatial arrangement of
transcriptomes within intact tissues by fusing gene expression
profiling with spatial information (Figure 3d) [8]. Through the
preservation of the spatial context of gene expression, a critical
component in comprehending the structure and operation of
complex tissues, this method overcomes the drawbacks of
conventional bulk RNA-seq and scRNA-seq. Spatial transcriptomics
facilitates a better understanding of the spatial variability and
organization of cellular processes by offering a map of the locations
of particular transcripts within tissue sections. Spatial
transcriptomics is crucial because it can provide light on the in vivo
interactions between cells and their surroundings [39]. Spatial
information is lost when tissues are homogenized or divided into
individual cells in traditional gene expression research techniques.
This is especially problematic in tissues, like the brain, where
different regions have different cellular compositions and functions,
or in tumors, where the interaction between cancer cells and the
surrounding stroma affects the course of the disease and the
patient’s response to treatment. Spatial transcriptomics preserves
this spatial context, enabling researchers to link gene expression
patterns directly to their anatomical locations [40].

Spatially barcoded slides or arrays are used in the technology
that enables spatial transcriptomics to extract mRNA from tissue
sections. Every area on the array is marked with a distinct barcode
and relates to a particular place in the tissue. The spatial barcode
enables researchers to track the gene expression data back to its
original position in the tissue once mRNA from the tissue is
extracted and read. A high-resolution map of the transcriptome
activity across the tissue segment is the outcome of this. The
simultaneous acquisition of morphological data, which can be
combined with transcriptome data for thorough analysis, has been
made possible by technological advancements in imaging, further
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improving spatial transcriptomics [41]. One of the primary areas in
which spatial transcriptomics is applied is developmental biology,
where researchers can learn more about the mechanisms of tissue
patterning and organogenesis by examining the spatial distribution
of gene expression in developing tissues [42].

5.2. ML applications in spatial transcriptomics

ML is essential for analyzing and interpreting spatial
transcriptomics data. This allows researchers to extract valuable
information from this technique’s complex, high-dimensional
datasets. By combining spatial information from tissue sections
with gene expression data, spatial transcriptomics offers a full
picture of the molecular environment inside a biological sample.
To find patterns, recognize different cell types, deduce spatial
organization, and comprehend cellular interactions, the enormous
volume of data generated demands sophisticated computational
techniques. These activities are perfectly suited for ML algorithms
because of their prowess in handling enormous datasets and
identifying complex patterns [43]. The recognition and
categorization of spatial domains inside tissues is one of the key
uses of ML in spatial transcriptomics. Regions of tissue with
unique gene expression profiles are referred to as spatial domains;
these regions are frequently associated with particular cell types or
functional domains. Spots or regions are often grouped based on
the similarities in their gene expression using clustering
algorithms like k-means and hierarchical clustering, as well as
unsupervised learning approaches like PCA and t-SNE. These
clusters can help map tissue architecture and identify regions with
distinct molecular signatures by revealing the spatial organization
of various cell populations [41].

Additionally, the integration of spatial transcriptomics data with
othermodalities, including histology images or other omics datasets, is
made easier by ML. One use of deep learning models is the alignment
and integration of spatial transcriptomics data with corresponding
histology pictures, specifically using CNNs. The incorporation of
this feature improves the spatial resolution and offers a more
comprehensive framework for analyzing gene expression patterns
concerning tissue shape [44]. Also, transcriptome data can be
combined with proteome or metabolomic data through multi-omics

integration utilizing ML, providing a more thorough understanding
of cellular relationships and functions [45].

Inferring cell-cell connections and communication networks
within the geographical context is another important use of ML.
ML algorithms can uncover signaling pathways that are active in
particular places or anticipate possible connections between distinct
cell types by examining gene co-expression patterns and spatial
closeness. Classifiers such as random forests or SVMs, for instance,
can be trained to identify connections based on the ligand and
receptor expression levels in nearby cells. Understanding how cells
affect one another’s behavior and function—especially when it
comes to the tumor microenvironment or immune response—is
made possible by the knowledge provided by this material [43].

6. Proteomics, Transcriptomics, Metagenomics
Epigenomics, Microbiome Research in ML

Proteomics, transcriptomics, metagenomics, epigenomics, and
microbiome research represent critical omics fields where ML has
become indispensable for handling the vast and complex datasets
generated (Figure 4) [45]. In proteomics, ML algorithms are
employed to predict protein-protein interactions (PPI) and
functional annotations, enabling deeper insights into cellular
functions and disease mechanisms. Transcriptomics leverages ML
to analyze differential gene expression and construct gene
regulatory networks (GRNs), facilitating the understanding of
gene activity and its regulation under various conditions. In
metagenomics, ML aids in profiling microbial communities and
predicting their functional potential, which is vital for
understanding microbial dynamics in diverse environments.
Epigenomics benefits from ML in the analysis of methylation
patterns and histone modifications, offering crucial information
about gene regulation and its role in diseases such as cancer [45].

6.1. Overview of each omics field

The large-scale study of proteins, which are essential
macromolecules with a range of structural and functional roles in
cells, is known as proteomics. This study focuses on
understanding the structure, function, and connections of the

Figure 4. ML application in functional genomics
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entire proteome—the collection of proteins expressed by a genome,
cell, tissue, or organism [46]. Proteomics includes identifying and
quantifying proteins, characterizing their post-translational
modifications, and investigating their interactions and localization
within the context of cells. Commonly employed techniques for
protein analysis include mass spectrometry and protein
microarrays. Understanding cellular mechanisms, signaling
pathways, the molecular underpinnings of illnesses, and the
identification of potential biomarkers and therapeutic targets are
all made possible with the help of proteomics [47]. Study of
transcriptomics focuses on the transcriptome, which is the entire
collection of RNA transcripts generated by the genome in a
particular cell or under particular conditions. All forms of RNA,
such as transfer RNA, messenger RNA, ribosomal RNA (rRNA),
and non-coding RNA, are included in this field. A snapshot of the
active genes and their expression levels at a specific time is
provided by transcriptomic studies. High-throughput technologies
are used to measure RNA levels and investigate the dynamics of
gene expression, such as RNA-seq and microarrays.
Understanding gene control, cellular differentiation, and responses
to environmental stimuli is made possible by transcriptomics.
Additionally, it is essential in determining the patterns of gene
expression linked to specific disorders, which facilitates the
identification of therapeutic targets and diagnostic markers [47].

By thoroughly examining genetic material extracted from
environmental samples, a process known as metagenomics makes
it possible to investigate microbial populations without the
requirement for culture. In this field, the diversity, dynamics, and
functions of microbial populations are studied by looking at the
collective genomes of microorganisms in a variety of settings,
including soil, water, and the human body. By identifying and
describing microbial species, their genes, and metabolic pathways
using sequencing technology, metagenomic techniques shed light
on the functions that these organisms play in ecosystems and host
health. Metagenomics has proven to be a valuable tool in the
research of the human microbiome, or the community of bacteria
that live in the human body, and how it affects immunity,
physiology, and illness [48]. The study of epigenetic
modifications, or heritable variations in gene expression without
changes to the DNA sequence, is included in the field of
epigenome research. These alterations control chromatin structure
and gene expression together. They include DNA methylation,
histone changes, and non-coding RNA-associated gene silencing.
The goal of epigenomics is to map these changes throughout the
genome to comprehend how they affect gene activity and support
cellular identity and function. Epigenetic modifications are
important for proper cellular differentiation and development.
They also have a major impact on several diseases, such as
autoimmune diseases, cancer, and neurological disorders [47].

6.1.1. Proteomics: PPI prediction, functional annotation
Understanding cellular functions and molecular pathways

depends on crucial components of proteomics, the large-scale
study of proteins, such as functional annotation and PPI
prediction. PPIs are necessary for almost all biological activities
because proteins often work in complexes rather than alone.
Anticipating these interactions contributes to our understanding of
how proteins work together to perform tasks including metabolic
pathways, signal transduction, and structural organization.
Empirical data on these interactions can be obtained using a
variety of experimental methods, albeit their applicability and
context-specificity may be limited. Examples of these methods
include yeast two-hybrid screening, co-immunoprecipitation, and

affinity purification followed by mass spectrometry [49].
Predicting PPIs involves substantial use of computer tools to
supplement experimental data. By applying techniques like
sequence homology, motif discovery, and structural modeling,
these methods make use of protein sequence and structural data.
The accuracy of PPI predictions has greatly improved due to ML
and deep learning algorithms, which analyze vast datasets of
known interactions and find patterns that point to binding
interfaces and interaction motifs. These prediction models provide
a more thorough knowledge of protein interactions under various
biological settings by integrating a variety of biological data, such
as transcriptomic, functional, and genomic data [50].

Another vital aspect of proteomics is functional annotation,
which attempts to assign biological roles to proteins according to
their interactions, structures, and sequences. Proteins are categorized
using characteristics like conserved domains, motifs, and established
interactions into functional groupings, such as enzymes, receptors,
or structural components. Bioinformatics techniques are frequently
used in conjunction with experimental methods, like mutagenesis
and biochemical experiments, to anticipate the functionalities of
proteins that lack experimental characterization. These methods
offer direct insights into the functioning of proteins. Protein
functions can be systematically annotated with the help of databases
such as Gene Ontology and InterPro, which provide structured
vocabularies and classification schemes. Accurate functional
annotation requires a combination of computational predictions and
experimental validation [51]. Homology-based techniques are
extensively used to predict the function of proteins by comparing
their sequences to those of well-characterized proteins. By assuming
that identical sequences frequently suggest similar functions, these
techniques enable researchers to deduce the purpose of proteins that
have not yet been fully identified. Furthermore, by employing
knowledge about interacting partners to forecast activities, network-
based methods take into account the larger context of protein
interactions. This is predicated on the idea that proteins that interact
are probably engaged in similar biological routes or processes [52].

Proteomics is essential for determining the molecular causes of
disorders as well as for comprehending normal cellular functions.
Diseases including cancer, neurological conditions, and
cardiovascular conditions might result from abnormalities in PPIs
or protein functions. One way to find oncogenic drivers and
possible treatment targets in cancer is to identify disordered
protein networks. Analyzing protein interactions in
neurodegenerative illnesses can also reveal pathways that
contribute to the course of the disease and provide information
about possible treatments. Proteomics technology and
computational methods hold great potential to improve our
comprehension of the intricate networks and roles of proteins as
they develop further [53]. Proteomics’ integration with other
omics technologies, including transcriptomics, metabolomics, and
genomes, expands our understanding by offering a systems
biology viewpoint that is essential for thorough biological and
clinical insights. This comprehensive method is becoming more
and more important in precision medicine, since knowledge of the
proteome may guide individualized treatment plans that are
catered to each patient’s unique molecular profile [53].

6.1.2. Transcriptomics: Differential expression analysis, GRNs
Transcriptomics, a comprehensive study of RNA transcripts

generated by the genome in particular conditions, offers vital
information about the regulation and expression of genes. A key
method in transcriptomics is differential expression analysis,
which contrasts RNA levels at various biological states or
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intervals. The analysis reveals genes whose expression levels
fluctuate dramatically, providing insight into the molecular
mechanisms behind physiological functions or pathological
conditions. Researchers can discover biological pathways, find
possible illness biomarkers, and learn how organisms react to
treatments or environmental changes by measuring these differences
[53]. High-throughput sequencing technologies, such as RNA-seq,
are commonly employed in the process of differential expression
analysis. The quantitative assessment of RNA abundance provided
by RNA-seq makes it possible to identify both known and
unknown transcripts. Following sequencing, the sequences are
aligned to a reference genome, and expression levels are measured
using bioinformatics methods. The significance of expression
variations is then evaluated using statistical approaches that take
sample size and variability into account. With the use of this
thorough method, scientists can accurately and specifically identify
alterations in the transcriptome, giving them a comprehensive
picture of gene activity under various circumstances [30].

Another key aspect of transcriptomics is the study of GRNs,
which concentrate on the intricate relationships that control gene
expression. Genes, transcription factors, and other regulatory
components make up GRNs, which regulate the timing and degree
of gene expression. These regulatory linkages, which can be direct
—like transcription factor binding—or indirect—like intermediary
signaling pathways—must be identified to construct GRNs. GRNs
offer a framework for comprehending how particular cellular
responses are regulated by genes and how these networks are
impacted by illnesses [54]. Integrating several data sources,
including transcriptomic, ChIP-seq, and epigenomic data, is
frequently necessary for the creation of GRNs. From these data,
computational approaches like network inference methods and ML
are used to forecast regulatory connections. These models can
identify important regulators that regulate big gene sets, like master
transcription factors.

Understanding the molecular underpinnings of development,
differentiation, and illness requires an understanding of GRNs.
GRNs, for instance, can show how tumor suppressors and
oncogenes interact with other genes to promote the growth of
tumors in cancer research. Researchers can find possible treatment
targets and biomarkers by mapping these networks. Additionally,
because different cell types or states may exhibit diverse
regulatory networks, GRNs offer insights into cellular
heterogeneity. This information is especially crucial for fields
such as developmental biology and regenerative medicine, where
tissue engineering and therapy tactics can be informed by
knowledge of the regulatory environment [55]. Transcriptomics
provides an effective instrument for investigating the functional
landscape of the genome through differential expression analysis
and GRN assembly. The comprehension of basic biological
processes is aided by these methods, which also have useful
applications in biotechnology, medicine, and agriculture [56].

6.1.3. Metagenomics: Microbial community profiling,
functional potential prediction

A thorough characterization of microbial communities is made
possible by the analysis of DNA extracted directly from
environmental samples; a process known as metagenomics.
Researchers may investigate the variety and makeup of
microorganisms in many environments, such as soil, the ocean,
and the human body, thanks to this field. By sequencing the
whole genomes of all the microorganisms in a sample, microbial
community profiling eliminates the need to culture each individual
species. Through the identification of various species’ existence

and relative abundance, this method offers a picture of the
microbial landscape. While shotgun metagenomic sequencing
provides a more comprehensive perspective by incorporating
viruses and fungi, techniques like 16S rRNA gene sequencing are
frequently utilized for bacterial and archaeal profiling [57].
Microbial community profiling frequently yields large,
complicated data sets that require analysis using sophisticated
bioinformatics methods. By allocating sequences to recognized
species or operational taxonomic units following sequence
similarity, these methods aid in taxonomic classification [57].

An additional key aspect of metagenomics is functional potential
prediction, which focuses on the genes and metabolic pathways that
are present in a microbial community. To predict the functional
traits of the community, such as energy generation, nutrient cycling,
or pathogenicity, the metagenomic data must be analyzed. The
presence of particular genes or gene clusters that encode enzymes
and other proteins involved in metabolic processes is used to infer
the functional potential. By mapping these genes to well-known
metabolic pathways, programs like Kyoto Encyclopedia of Genes
and Genomes (KEGG) and MetaCyc shed light on the functional
roles that bacteria play in their particular surroundings [58].
Understanding ecosystem activities and biogeochemical cycles is
made possible by the capacity to anticipate functional potential
from metagenomic data. Metagenomics, for instance, can show how
microbial communities influence the global climate processes by
contributing to the cycling of carbon and nitrogen in marine
environments. Similar effects on plant health and soil fertility can
be observed in soil ecosystems due to the functional potential of
bacteria. Within the framework of human health, metagenomic
analyses of the gut microbiota have revealed pathways related to
vitamin production, immune system modulation, and food
component digestion [59].

Furthermore, metagenomics allows researchers to identify genes
associated with virulence factors or antibiotic resistance, offering
crucial insights for public health and medical procedures. One of
the biggest obstacles to treating infections is the proliferation of
genes for antibiotic resistance in both pathogenic and non-
pathogenic microorganisms. Antibiotic resistance can be monitored
and controlled with the help of metagenomic analysis, which can
trace the distribution and prevalence of these resistance genes in
diverse settings [60]. All things considered, metagenomics provides
an effective method for examining the variety, dynamics, and
functional potential of microbial communities. Researchers can
obtain a comprehensive understanding of microbial ecosystems and
learn about the roles that microorganisms play in environmental
processes, illness, and health by combining taxonomic
characterization with functional potential prediction [61].

6.1.4. Epigenomics: Methylation pattern analysis and histone
modification prediction

Heterologous modification prediction and methylation pattern
analysis are fundamental to the field of epigenomics, which is the
study of heritable variations in gene function without alterations
to the DNA sequence. The importance of developing patterns for
the prediction of epigenetic modifications is illustrated as a
flowchart in (Figure 5) [62]. DNA methylation is a key epigenetic
mechanism in which a methyl group is added to the cytosine
residues in DNA, typically at CpG dinucleotides. This
modification can decrease DNA accessibility to the transcriptional
machinery, which in turn can suppress gene expression. It does
this by altering the binding affinities of transcription factors or
drawing chromatin-compacting proteins. Normal cellular
differentiation and development depend on methylation patterns,
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and abnormalities in these patterns are frequently linked to illnesses
like cancer [63]. One essential component of epigenomic research is
the analysis of DNA methylation patterns. High-resolution maps of
the methylation sites throughout the genome are produced by
methods like bisulfite sequencing. Comprehending these patterns
is especially crucial for cancer research, as abnormal methylation
may function as a target for therapy as well as a biomarker for
diagnosis and prognosis [64].

Yet another significant component of the epigenome is histone
modifications, which are chemical alterations to the histone proteins
that encircle DNA. Depending on their kind and position,
these modifications—which include acetylation, methylation,
phosphorylation, and ubiquitination—can either activate or repress
transcription. For instance, acetylation of histone tails is typically
linked to an open chromatin conformation and active transcription,
but depending on the particular lysine residue altered, certain
methylation marks can either inhibit or activate transcription.
Understanding chromatin dynamics and gene regulation requires the
prediction and analysis of histone alterations [65]. Histone
modification mapping throughout the entire genome is made
possible by technologies like ChIP-seq. This technique includes
precipitating DNA-protein complexes unique to changed histones
using antibodies, which are subsequently sequenced to determine
the chromosomal sites of these modifications. The collected
information shows areas of active or repressed transcription and
offers a thorough picture of the chromatin landscape. In order to
forecast histone changes and understand their functional
ramifications, computational techniques—such as ML algorithms—
are utilized. This aids in the clarification of the intricate regulatory
networks that control gene expression [66].

The field of epigenomic studies holds significant implications
for comprehending disease, differentiation, and development. The

dynamic alterations in methylation and histone modifications play
a crucial role in embryonic biology by directing cell fate decisions
and defining cellular identity. To ensure that differentiated cells
preserve their identity over cell divisions, these epigenetic marks
are also crucial in preserving cellular memory. The epigenome is
frequently disturbed in disease states, including cancer, which
results in alterations in gene expression that fuel malignancy.
Tumorigenesis can be facilitated, for example, by mutations in the
enzymes that write, read, or remove histone marks. These
mutations can cause aberrant gene silence or activation [67].
A more comprehensive understanding of the epigenetic regulation
of the genome is possible through the combination of data
on methylation and histone modifications. To create epigenetic
therapeutics and comprehend how the epigenome affects health
and illness, a holistic perspective is essential [68].

6.1.5. Microbiome research
Research on the various microbial communities that live in a

variety of settings, such as the human body, soil, oceans, and
more, is greatly aided by studies on microbiomes. The process of
classifying these microbial communities entails recognizing and
cataloging the many microbial species that exist within a
particular environment. The main methods for doing this are high-
throughput sequencing technologies, like whole metagenome
sequencing, which offers a more comprehensive perspective of all
microbial life, including viruses, fungi, and protists, and 16S
rRNA gene sequencing for bacteria and archaea. Through the
examination of these microbes’ genetic material, scientists can
ascertain the species makeup, variety, and relative abundance
within a given microbial community [69]. Understanding the
dynamics and structure of microbial communities is just as
important to their classification as identifying their species. This

Figure 5. Importance and application of predicting epigenetic patterns
Note: DNA methylation, histone post-translational changes, chromatin conformation, and non-coding RNA regulation are all instances of
epigenetic inheritance. Epi-drugs, crop improvement against stresses, and illness detection and therapy all use patterns that forecast these four
modifications.
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involves researching the ways in which microbial populations
fluctuate over time and in reaction to different stimuli, including
sickness, nutrition, and environmental circumstances. For
example, changes in the microbial composition of the human gut
microbiome have been associated with a number of health issues,
such as diabetes, obesity, inflammatory bowel disease, and mental
health issues. Comprehending these changes can offer valuable
perspectives on the origins of various illnesses and direct the
creation of diagnostic and treatment approaches [70].

Beyond species identification, functional annotation of
microbial communities makes predictions about the metabolic and
functional capacities of the microbiome. This procedure entails
assigning recognized functions, including enzymatic or metabolic
pathways, to genes found in the microbial genome. It is common
practice to assign functions to genes based on their sequences
using programs like MetaCyc and KEGG. Functional annotation
is important because it establishes a connection between the
existence of particular microorganisms and their possible
functions in the environment or host organism, such as the cycling
of nutrients, the breakdown of contaminants, or the synthesis of
bioactive substances [71]. Microbial communities’ functional
capacity can have a significant impact on human and
environmental health. Microbes are crucial to the decomposition
of organic matter, carbon sequestration, and nutrient cycling in
environmental microbiomes, such as those found in soil and
marine environments. The resilience and stability of ecosystems
depend on these mechanisms. The digestion of dietary fibers, the
production of vital vitamins, and immune system modulation are
just a few of the functions of the gut microbiota about human
health. A healthy microbial balance is crucial because dysbiosis,
or an imbalance in the content and function of the microbiome,
has been linked to several disorders [72].

Additionally, research on the microbiome aids in the discovery of
biomarkers for the diagnosis and prognosis of disease. Certain
functional features or microbiological profiles can act as markers of
disease states or therapy responses. As an illustration, specific
bacterial signatures have been linked to colorectal cancer and may
operate as non-invasive biomarkers for early identification.
Furthermore, knowledge of the functional activities of bacteria can
guide the creation of innovative therapies that attempt to modify the
microbiome beneficially, such as probiotics and prebiotics. These
treatments have the power to improve or repair microbiological
processes that support well-being and ward off illness [73].

7. Challenges and Future Directions

The integration and harmonization of diverse datasets present
significant challenges in the rapidly developing fields of genomics
and personalized medicine. Genomic data are frequently generated
from different platforms and technologies, each with unique
formats, resolutions, and quality metrics. Comprehensive analyses
that can uncover new insights into biological processes and
disease mechanisms depend on the integration of these
heterogeneous data sources; however, differences in data types,
such as sequencing depth, coverage, and annotation standards, can
complicate this integration. Moreover, harmonizing datasets from
different populations or study designs requires careful
consideration to prevent biases and guarantee that the results are
generalizable [74]. Another major obstacle to applying these
technologies to genomic data is the interpretability of ML models.
Even though deep learning models in particular have
demonstrated considerable promise in locating intricate patterns
across huge datasets, ML algorithms frequently serve as “black

boxes”, providing little information about the process by which
particular predictions are generated. In therapeutic contexts, where
knowing the reasoning behind a model’s predictions is essential
for fostering trust and helping patients make educated decisions,
this lack of interpretability might be problematic. For instance, to
predict the risk of a disease using genomic data, physicians and
patients must both be aware of the specific genetic variants that
are influencing the risk and how [75].

Given how sensitive and private genetic data is, ethical and
privacy concerns should be taken very seriously when gathering,
storing, and analyzing it. Strict privacy regulations are necessary
since genetic data may be misused for discriminatory purposes,
such as insurance or job discrimination. Moreover, questions of
consent and people’s power to regulate how their genetic
information is used are brought up by the sharing of genomic data
for study. It is essential to put in place data governance systems that
provide informed consent, safeguard personal information, and
permit restricted access to data. Also, developments in methods like
safe multi-party computation and differential privacy are being
investigated to allow genomic data analysis without jeopardizing
personal privacy. These methods can assist in striking a
compromise between the ethical requirement to preserve participant
anonymity and the necessity for data access in research [76].

Comprehensive answers to these problems are becoming
increasingly important as the science of genomics expands.
International collaboration and standardization efforts will assist
the integration and harmonization of heterogeneous datasets,
guaranteeing that data from various sources may be easily merged
and evaluated. Within the field of ML, creating more
comprehensible models and techniques for elucidating intricate
algorithms will augment the therapeutic usefulness of these
instruments, permitting more transparent and practical insights [77].

8. Conclusion

The study of genomics has experienced a revolution with the
introduction of ML, which has until recently unseen prospects for
understanding the intricate biological mechanisms that underlie
both health and illness. ML approaches have made it possible to
analyze large amounts of genomic data efficiently, as this review
has shown. This has resulted in substantial breakthroughs in fields
like variant calling, disease mutation identification, and microbial
community profiling. In addition to improving our knowledge of
genetic variants and how they relate to diseases, these
technologies have opened the door for more individualized
medical care. The transformational promise of these technologies
is best demonstrated by their capacity to uncover novel disease
biomarkers, predict phenotypic features from genomic data, and
clarify GRNs. Despite these developments, there are still several
difficulties, namely data integration, model interpretability, and
ethical issues. Integration of datasets and consistent, dependable
studies are significantly hampered by the variety of genomic data
sources and the absence of standards. The creation of strong
bioinformatics tools and universal data standards that can
harmonize various data types is necessary to address these issues.
Moreover, integrating computational predictions into clinical
practice requires ML models to be interpretable. To promote
confidence and acceptance in clinical settings, it is critical to
create techniques that can clarify how ML algorithms arrive at
their predictions as these algorithms get more complex. Genomic
research also raises ethical and privacy concerns, especially when
it comes to handling and distributing genetically sensitive data.
Preserving personal privacy and avoiding improper use of data is
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critical. Establishing thorough ethical standards and data governance
frameworks that guarantee informed consent, openness, and data
protection is essential as the sector develops. These steps will
assist in striking a compromise between the ethical requirement to
protect people’s genetic information and the necessity for data
accessibility in research.
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