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Abstract: In breast cancer, neoadjuvant chemotherapy (NAC) provides a standard treatment option for patients who have locally advanced
cancer and some large operable tumors. A patient will have a better prognosis when he has achieved a pathological complete response (pCR)
with the treatment of NAC. There has been a trend to directly predict pCR to NAC from histological images based on deep learning (DL).
However, the DL-based predictive models numerically have better performances in internal validation than in external validation. In this
paper, we aim to alleviate this situation with an intrinsic approach. We propose an experts’ cognition-driven ensemble deep learning
(ECDEDL) approach. Taking the cognition of both pathology and artificial intelligence experts into consideration to improve the
generalization of the predictive model to the external validation, ECDEDL can intrinsically approximate the working paradigm of a
human being which will refer to his various working experiences to make decisions. ECDEDL was validated with 695 whole slide
images (WSIs) collected from the same center as the primary dataset to develop the predictive model and perform the internal validation
and was also validated with 340 WSIs collected from other three centers as the external dataset to perform the external validation. In
external validation, ECDEDL improves the AUCs of pCR prediction from 61.52(59.80–63.26) to 67.75(66.74–68.80) and the accuracies
of pCR prediction from 56.09(49.39–62.79) to 71.01(69.44–72.58). ECDEDL was quite effective for external validation of predicting
pCR to NAC from histological images in breast cancer, numerically approximating the internal validation.
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1. Introduction

With the advances of deep learning (DL) [1], mostly deep neural
networks [2–4] which are the state-of-the-art machine learning

techniques, various studies have shown that DL-based artificial
intelligence (AI) models have significant effectiveness and potentials in
medical diagnostic or prognostic prediction [5–8]. There has been an
increasingly standardized paradigm of constructing DL-based AI models
for medical diagnostic or prognostic prediction: Primarily, clinical data
and corresponding diagnostic and prognostic results are collected as a
training dataset. Subsequently, a DL architecture is selected and
optimized on the collected training dataset to produce a DL-based AI
model that can predict the diagnostic or prognostic results corresponding
to the clinical data; Finally, the produced DL-based AI model is
validated on some new data that contain clinical data and corresponding
diagnostic and prognostic results unseen in the training dataset.
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Particularly, the validation procedure is an essential part in the
constructing paradigm, for it can reflect the expected predictive
performance and generalization of the produced DL-based AI
model in practical usage. The data required by the validation
procedure can be internal or external. Specifically, the internal
data is assumed to have the same distribution while the external
data is assumed to have a different distribution, compared with
the training data collected for producing the DL-based AI model.
Usually, we say that the data for the validation procedure are
internal and have the same distribution compared with the training
data when the data for the validation procedure and the training
data are collected from the same centers, since they share
common data production in the same centers. On the contrary, we
say that the data for the validation procedure are external and
have a different distribution compared with the training data when
the data for the validation procedure and the training data are
collected from different centers, since they probably have
uncommon data production in different centers. The validation
procedure is called internal validation when provided with internal
data, or external validation when provided with external
data. Both internal validation and external validation are essential
[9–13], since internal validation can reflect the feasibility of
constructing a DL-based AI model for a medical diagnostic or
prognostic prediction task while external validation can reflect the
potentials of the constructed DL-based AI model for a wider
usage in practice.

In breast cancer, neoadjuvant chemotherapy (NAC) [14, 15]
provides a standard treatment option for patients who have locally
advanced cancer and some large operable tumors. In clinical trials,
it has been shown that a patient will have a better prognosis when
he has achieved a pathological complete response (pCR) with the
treatment of NAC to reduce the tumor burden and promote breast-
conserving surgery [16]. In breast cancer imaging, there has been
a trend to directly predict pCR to NAC from histological images
using DL [17]. Following the paradigm of constructing DL-based
AI models for medical prediction, which has been described in the
first paragraph of this section, existing studies [18–22] have
provided alternative solutions for predicting pCR from
histological images in breast cancer. The application of these
alternative solutions can be summarized as directly building the
predictive model from the histological images via DL.

However, it has been a commonly known problem that the AI
models constructed for medical prediction numerically have better
performances in internal validation than in external validation,
which significantly affects the clinical safety of using AI models
[23]. The primary reason for this situation lies in that the
distribution of the external data for validation is different from the
distribution of the training data for the construction of the
predictive model, due to the significant variance of slide
preparation and microscope scanning. This issue is also known as
sample selection bias [24, 25] in statistics with small data, or out-
of-distribution validation [26] and domain adaption/generalization
[27–30] in machine learning with big data. According to a recent
survey [31], the out-of-distribution problem of external validation,
i.e., the problem of domain generalization is the primary challenge
for DL in breast cancer imaging. Therefore, it is important and
necessary to investigate advanced approaches for the out-of-
distribution problem of external validation in breast cancer imaging.

The usual methods for alleviating this out-of-distribution
problem of external validation in breast cancer imaging can be
divided into three categories [31], including data augmentation via
color distortion [32, 33], domain adaption from source domain to
target domain via adversarial learning [34, 35], and domain

generalization via feature alignment and domain-invariant feature
learning [36–38]. Having shown promising potentials to provide
alternative solutions for external validation of predicting pCR to
NAC in breast cancer from histological images, these existing
usual methods for as well have some limitations. Data
augmentation via color distortion usually can only imitate certain
aspects of variance due to the complex situation of the slide
preparation and microscope scanning. Domain adaption via
adversarial learning requires some image samples of the target
domain in advance, which is not suitable for the situation where
the target domain is unseen. Domain generalization via feature
alignment and domain-invariant feature learning does not require
some image samples of the target domain in advance, however,
only a very few methods have been particularly proposed for
tasks in medical analysis [39–42]. These approaches can be
summarized as addressing the problem via making the internal
data and external data less different, without targeting at the
pattern that probably will not change underlying both the internal
data and the external data.

In addition to these three categories of usual methods, two
recent works [43, 44] have proposed to employ federated learning
[45–47] to improve performance in multicenter DL without data
sharing, which have shown that federated learning can help to
provide alternative solutions relevant to the out-of-distribution
problem of external validation in medical prediction. However, a
federated learning solution requires each of the multiple centers
constructs a predictive model, and it also needs a central system
to manage communications between the predictive models of the
multiple centers for testing in practical usage. As a result, federate
learning is a technique that is more appropriate to solve the
problem of data privacy among multiple centers and requires high
expenses in the meantime. Thus, federated learning is theoretically
less intrinsic for external validation via requiring more managing
and computing resources to be implemented.

We observe that these existing alternative methods have the
paradigm that is different from the working paradigm of a medical
expert. Usually, a pathological expert commonly will refer to his
cognition, that has been accumulated via different working
experiences, about the medical data at hand to make decisions.
The out-of-distribution problem of the external data commonly
will not affect a well-trained expert that much to make usual
decisions, since a first-class expert is unlikely to become a third-
class expert in practice because of the distribution change of data.
Due to these insights, we argue that an intrinsic approach needs to
be proposed for addressing the out-of-distribution problem in
external validation.

In this paper, we propose an experts’ cognition-driven ensemble
deep learning (ECDEDL) approach for external validation of
predicting pCR to NAC from histological images in breast cancer.
The proposed ECDEDL, which takes the cognition of both
pathology and AI experts into consideration to improve the
generalization of the predictive model to the external validation,
has three innovations: (1) Proposing a data preparation strategy
that takes into account the cognition of pathology experts about
viewing a histological image in breast cancer, which results in a
Tumor dataset and a Stroma dataset respectively extracted from
histological images; (2) Proposing a learning paradigm that takes
into account the cognition of AI experts about exploiting
complementary information among the pathologically variant
contents of histological images to improve the generalization of
the predictive model, which results in an ensemble DL [48]
framework; (3) Constructing a new approach for the external
validation of predicting pCR to NAC from histological images in
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breast cancer, by integrating the proposed pathology experts’
cognition-driven data preparation strategy and the proposed AI
experts’ cognition-driven learning paradigm. Regarding these
three innovations, the proposed ECDEDL approach is different
from the existing approaches [39–44] for the out-of-distribution
problem of external validation in medical prediction.

Since the cognition of both pathology and AI experts have been
taken to construct the predictive model, the proposed ECDEDL
approach, to some extent, approximates the working paradigm of
a human being which will refer to his various working
experiences to make decisions. As the cognition of experts is less
likely to be affected by data distribution shift in practice, the
proposed ECDEDL approach for external validation is more likely
to be invariant to the significant variance of slide preparation and
microscope scanning of the external data.

As far as we know, this paper is the first that has proposed an
experts’ cognition-driven approach, which is particularly for
addressing the out-of-distribution problem in external validation. On
the basis of the task of predicting pCR to NAC from histological
images in breast cancer, the contributions of this work include the
following: (1) Proposing a novel ECDEDL approach for external
validation; (2) Implementing and evaluating the proposed ECDEDL
approach for improving the performance for external validation; (3)
The proposed ECDEDL approach shows significant effectiveness in
improving the performance for external validation.

2. Materials and Methods

This section is structured as follows: Primarily in Section 2.1,
we give descriptions for the components of the proposed ECDEDL
approach; Subsequently in Section 2.2, we present specific
implementation details of ECDEDL. Finally, in Section 2.3, we
discuss the evaluating strategy of ECDEDL for external validation.

2.1. Proposed ECDEDL

ECDEDL constitutes of a pathology experts’ cognition-driven
data preparation strategy, an AI experts’ cognition-driven learning
paradigm, and the feeding relation between them. The methodology
of ECDEDL for external validation of predicting pCR to NAC
from histological images in breast cancer is shown in Figure 1.

2.1.1. Pathology experts’ cognition-driven data preparation
strategy

We propose a data preparation strategy which respectively
extracts a Tumor dataset and a Stroma dataset from the collected
histological images. This data preparation strategy is established
by referring to the cognition of pathology experts about viewing a
histological image in breast cancer, which is that tumor and
stroma are likely to be paid more attention than the whole content
of the histological image and can probably possess potential
predictive ability for predicting pCR to NAC from histological
images in breast cancer. Moreover, two recent studies [49, 50]
have shown that tumor and stroma areas of histological images in
breast cancer can both be predictive for pCR to NAC. Proving
that the cognition of pathology experts indeed can have
effectiveness in constructing appropriate DL-based AI models for
medical prediction, these two studies [49, 50] just can explain the
rationality of the proposed pathology experts’ cognition-driven
data preparation strategy for the external validation of predicting
pCR to NAC from histological images in breast cancer.

2.1.2. AI experts’ cognition-driven learning paradigm
We propose an AI experts’ cognition-driven learning paradigm

which is an ensemble DL framework. This learning paradigm is
established by referring to the cognition of AI experts about
exploiting complementary information among the pathologically
variant contents of histological images to improve the
generalization of the predictive model, which can be realized via
ensemble learning [48, 51, 52] based on data manipulation, which
is an effective basis for the realization of ensemble learning.
Moreover, some researches [29, 30, 53–55] have shown that
ensemble DL has the potential in addressing the out-of-
distribution problem of external validation. Proving that the
cognition of AI experts can also have effectiveness in constructing
better DL-based AI models, these researches [29, 30, 53–55] just
can explain the rationality of the proposed AI experts’ cognition-
driven learning paradigm for the external validation of predicting
pCR to NAC from histological images in breast cancer.

2.1.3. Feeding relation for construction of ECDEDL
Based on the pathology experts’ cognition-driven data

preparation strategy proposed in Section 2.1.1 and the AI experts’

Figure 1. Outline of the proposed ECDEDL approach for external validation of predicting pCR to NAC from histological images in
breast cancer
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cognition-driven learning paradigm proposed in Section 2.1.2, we
constructed ECDEDL by feeding the Tumor and Stroma datasets
of the data preparation strategy to ensemble DL framework of the
learning paradigm as the data manipulation basis, as the Tumor
and Stroma datasets of the data preparation strategy naturally fit
the data manipulation basis for the ensemble DL framework of the
learning paradigm.

2.2. Implementation details of ECDEDL

2.2.1. Data basis and preprocessing
The histological images used in this study to evaluate ECDEDL

for external validation are the same as our previous paper [50], in
which more details are provided. The used histological images
were 1035 whole slide images (WSIs) collected from four centers.
Among the 1035 WSIs, 695 WSIs collected from the same center
are used as the primary dataset to develop the predictive model
and perform the internal validation, and the rest 340 WSIs
collected from other three centers are used as the external dataset
to perform the external validation. More details are available at F.
Li et al. in 2022 [50]. Among the primary dataset, 555 WSIs are
used as the training dataset to develop the predictive model, and
the rest 140 WSIs are used as the internal dataset to perform the
internal validation.

As a WSI usually contains many repetitive and less informative
regions, pathological experts were invited to annotate representative
regions containing tumor and stroma on each of the collected WSIs.
The annotated representative region is called region of interest (ROI),
which ensures that the stroma inside the ROI was near the tumor and
surrounded by tumor cells. Small images from the ROIs annotated on
each of the collected WSIs were cropped at 233 × 233 μm squares
(256 × 256 pixels at 10 × magnification), which are called “tiles”.
More details about how the ROIs were annotated, readers can
refer to F. Li et al. in 2022 [50].

The data basis and preprocessing can be summarized as Table 1.

2.2.2. Technical details
For the preparation of the Tumor and Stroma datasets, we used a

previously developed image segmentation tool to extract the Tumor
and the Stroma contents from the collected histological images tiles.
Readers can refer to Yang et al. in 2024 [56], for the technical details
of the used image segmentation tool. Some examples of the Tumor
and Stroma datasets extracted from the original histological image
tiles are shown in Figure 2.

For the implementation of the ensemble DL framework, two
key points need to be considered: (1) the settings of deep
convolutional neural network (DNN) architecture and learning

strategy for generating base models and (2) the ensembling
criterion for forming the final predictive model. For point (1), we
employ existing state-of-the-art DNNs [57] and corresponding
learning strategy to generate base models. More specifically, we
respectively employed MobileNetV2 [58], ResNet101V2 [59], and
NASNetLarge [60] as the DNN architecture from light weight to
complex, which will be further discussed in the next section of
evaluating ECDEDL for external validation.

The details of the learning strategy include, optimizer: SGD
[61] with learning rate= 0.001, momentum= 0.9; batch size: 16;
epochs: 256; online augmentation: horizontal flip = True, vertical
flip = True, rotation range= 10, zoom range = [0.8, 1.2], width
shift range= 0.2, height shift range= 0.2, brightness range = [0.7,
1.3]; and weighted cross-entropy loss. For point (2) we employ
weighted average strategy to integrate the predictions of the base
models for forming the final predictive model. More specifically,
we weighted the base models according to their individual
predictive performance (default is fifty-fifty).

For the evolvement of ECDEDL, we firstly used the
corresponding learning strategy to optimize the DNN architecture
to produce two base models, respectively feeding the prepared
Tumor and Stroma datasets to the DNN architecture. Then, based
on the produced two base models, we weighted and averaged
their predictions to form the final prediction.

2.3. Evaluating strategy of ECDEDL for external
validation

We respectively trained four series of predictive models for
predicting pCR to NAC from histological images in breast cancer.
The trained four series of predictive models include the following:
(1) the predictive model produced by training the given DNN
architecture based on the original prepared data, examples of
which are shown in the top row of Figure 2; (2) the predictive
model produced by training the same DNN architecture based on
the Tumor dataset, examples of which are shown in the middle
row of Figure 2; (3) the predictive model produced by training the
same DNN architecture based on the Stroma dataset, examples of
which are shown in the bottom row of Figure 2; (4) the ensemble
model of the predictive models respectively produced based on
the Tumor and Stroma dataset, which represents the ECDEDL
approach.

The four series of predictive models were trained with the same
learning strategy described in Section 2.2.2. We respectively denote
the four series of predictive model as Direct model, Tumor model,
Stroma model, and TS-Ensemble model. We validate and
compare their performances using different metrics, to show the

Table 1. Summarization of data basis and preprocessing

Total 1035 WSIs

Primary dataset (695 WSIs from the same center) External dataset (340WSIs from other 3 centers)

Training dataset (555WSIs) Internal dataset (140 WSIs) Total (18304 tiles)

Total (32556 tiles) Total (6981 tiles)

Training (26045 tiles) Validation (6511 tiles)

Per WSI (59 tiles on average) Per WSI (50 tiles on average) Per WSI (54 tiles on average)

Model development Internal validation External validation
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effectiveness of the ECDEDL approach for external validation.More
specifically, we first compare the Tumor and Stromamodels with the
Direct model to show the effectiveness of the pathology experts’
cognition in ECDEDL. Second, we compare TS-Ensemble model
respectively with Tumor model and Stroma model to assess the
effectiveness of the AI experts’ cognition in ECDEDL. Then, we
compare TS-Ensemble model with the Direct model to show the
effectiveness of the ECDEDL approach for external validation,
since the Direct model can be regarded as the usual model
constructed without experts’ cognition. To avoid the effects of
possible experimental bias errors, we repeated the training and
validation of the four series of predictive models five times and
summarize corresponding evaluation metrics for a fair comparison.

We respectively employed MobileNetV2 [58], ResNet101V2
[59] and NASNetLarge [60] (from light weight to complex) as the
DNN architecture in the procedures of the training and validation
of the two series of predictive models, to show the stability of the
effectiveness of the ECDEDL approach for external validation
with different DNN architectures. Particularly, from light weight
to complex DNN architectures is chosen for experiments, in order
to simulate the situation of real-world applications regarding the
consideration of computing resource and efficiency. We employed
ROC and PR curves to evaluate the overall performances of
predictive models, and metrics of Precision, Recall, F1, and
Accuracy calculated at the threshold of probability 0.5 evaluate
the practical performances of predictive models, as well as
different probabilities from 0 to 1 to evaluate the ablation
performances of predictive models.

3. Results and Discussion

In this section, we show the effectiveness of the proposed
ECDEDL referring to the evaluating strategy in Section 2.3. The

results and discussion are enclosed in the experiments regarding
the training dataset, the internal dataset, and the external dataset in
Table 1. Primarily, different predictive models were produced
based on the training dataset. Subsequently, the predictive models
were respectively evaluated on the internal dataset and the
external dataset. Finally, the evaluated results were discussed to
show the effectiveness of the proposed ECDEDL for external
validation.

Basically, it is reasonable to assume the internal dataset is
independent and identically distributed (i.i.d) with the training
dataset, since they are from the same primary dataset. However,
we assume the external dataset is independent and non-identically
distributed with the primary dataset (both the training dataset and
the internal dataset), since it is independently and differently
collected regarding the primary dataset. Thus, a predictive model
produced based on the training dataset will have better
performance on the internal dataset than the external dataset. And,
the performance of a predictive model on the external dataset
closer to the performance on the internal dataset is better.

Notably, as the external dataset was collected with limited
number (340) of WSIs, the distribution of the external dataset can
inevitably be not able to fully represent the distribution of the
real-world external dataset beyond the primary dataset.

3.1. Effectiveness of experts’ cognition in ECDEDL

The ROC and PR curves of the Tumor model, the Stroma
model, and the Direct model on external data are shown in
Figure 3(A). In Figure 3(A), the curves were drawn with different
DNN architectures and repeated experiments. From Figure 3(A),
we can summarize that the Tumor model and the Stroma model
perform better than both the Direct model on external data, which
reflects that pathology experts’ cognition in ECDEDL is

Figure 2. Examples of original histological image tiles and extracted Tumor and Stroma tiles. Top: original histological image tiles;
Middle: extracted Tumor tiles; Bottom: extracted Stroma tiles
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significantly effective, leading to better performances for external
validation.

The ROC and PR curves of the TS-Ensemble model (ensemble
of the Tumor and Stroma models), the single Tumor model, and the
single Stroma model on external data are shown in Figure 3(B). In
Figure 3(B) the curves were drawn with different DNN
architectures and repeated experiments. From Figure 3(B), we can
summarize that the TS-Ensemble model performs better than both
the Tumor model and the Stroma model on external data, which
reflects that AI experts’ cognition in ECDEDL is comparatively
effective, leading to even better performances for external validation.

3.2. Overall performance of ECDEDL

The ROC curves of the TS-Ensemble model on external data
and the Direct model respectively on Internal data and external
are shown in Figure 4(A). In Figure 4(A), the curves were drawn
regarding different DNN architectures with repeated experiments
and their union results. The corresponding PR curves are shown
in Figure 4(B). The 95% confidence intervals (CI) of the AUCs
for ROC curves corresponding to Figure 4(A) and the APs for PR
curves corresponding to Figure 4(B) are shown in Table 2. From

Figure 4 and Table 2, we can summarize that the TS-Ensemble
model performs much better than the Direct model on external
data, and the performances of the TS-Ensemble model on external
data are close to the performances of the Direct model on internal
data. These results indicate that the overall performances of the
ECDEDL approach for external validation are quite effective,
approximating the internal validation.

3.3. Practical performance of ECDEDL

The 95% CI for the metrics of Precision, Recall, F1, and
Accuracy at the threshold of probability 0.5 for the TS-Ensemble
model on external data and the Direct model respectively on
internal data and external data are shown in Table 3.

From Table 3, we can summarize that the TS-Ensemble model
performs much better than the Direct model on external data, and the
performances of the TS-Ensemblemodel on external data are close to
the performances of the Direct model on internal data, regarding the
metrics of Precision, Recall,F1, andAccuracy. These results indicate
that the practical use of the ECDEDL approach for external
validation is also quite effective to be able to approximate the
internal validation.

Figure 3. ROC and PR curves of various models on external data. (A) The ROC and PR curves of the Tumor model, the Stroma
model, and the Direct (original) model on external data. (B) The ROC and PR curves of the TS-Ensemble model (ensemble of the
Tumor and Stroma models), the single Tumor model, and the single Stroma model on external data
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Figure 4. ROC curves of various models on internal dataset and external dataset. Internal: Direct model on internal data; External:
Direct model on external data; ECDEDL-External: TS-Ensemble model on external data. (A) ROC curves. (B) PR curves
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3.4. Ablation performance of ECDEDL

The visualized metrics of Precision, Recall, F1, and Accuracy
at the threshold of different probabilities from 0 to 1 for the
TS-Ensemble model on external data and the Direct model
respectively on internal data and external data are respectively
shown as Figures 5 and 6.

From Figures 5 and 6, we can observe that the change in the
probability threshold will change the performances of different pre-
dictive models. Specifically, the overall performances of Accuracy
and F1 will generally increase as the threshold of probability value
increases, when the threshold of certain probability value is not
exceeded. Meanwhile, the overall performances of Accuracy and
F1 will generally decrease as the threshold of probability value
increases, when the threshold of certain probability value is exceeded.

Notably, from Figure 6(A), we can observe that the F1 curves of
ECDEDL-External are generally over the F1 curves of External and
are close to the F1 curves of Internal, when the threshold of certain

probability value is not exceeded. This indicates that the ECDEDL
approach for external validation is quite effective to be able to
approximate the internal validation in terms of F1, when the
threshold of certain probability value is not exceeded. However,
as shown in the dashed bounding boxes in Figure 6(A), the F1
curves of ECDEDL-External are surpassed by the F1 curves of
External results, when the threshold of certain probability value is
exceeded. This indicates that the proposed ECDEDL approach
will be ineffective for external validation in terms of F1, when the
threshold of certain probability value is exceeded.

Particularly, from Figure 6(B), we can observe that the
Accuracy curves of ECDEDL-External are roughly over the
Accuracy curves of External and are close to the Accuracy curves
of Internal. This indicates that the ECDEDL approach for external
validation is quite effective to be able to approximate the internal
validation in terms of Accuracy at most thresholds of probability
values, which reflects the stableness of the ECDEDL approach in
improving the external validation.

Table 2. The 95% confidence intervals (CI) of the AUCs for ROC curves and the Aps for PR curves corresponding to Figure 4

Metrics-Architecture Internal(CI) External(CI) ECDEDL-External(CI)

AUC MobileNetV2 70.62(66.12–75.07) 60.55(58.57–62.53) 68.76(66.90–70.67)
ResNet101V2 74.02(70.87–77.11) 63.95(62.30–65.59) 65.99(65.15–66.88)
NASNetLarge 70.42(68.69–72.16) 60.07(56.06–64.12) 68.48(66.97–70.07)
Union 71.12(69.71–73.64) 61.52(59.80–63.26) 67.75(66.74–68.80)

AP MobileNetV2 47.56(38.95–53.76) 34.81(32.71–36.13) 42.51(40.31–43.72)
ResNet101V2 48.63(42.00–52.39) 36.08(34.14–37.23) 39.07(37.39–39.96)
NASNetLarge 45.24(40.70–48.12) 32.99(28.73–36.22) 43.79(41.94–44.55)
Union 45.15(42.95–49.21) 34.63(32.67–35.72) 41.79(40.04–42.58)

Table 3. The 95%confidence intervals (CI) for themetrics of precision, recall,F1, and accuracy of the TS-Ensemblemodel on external
data and the Direct model, respectively, on internal data and external data. Internal: Direct model on internal data; External: Direct
model on external data; ECDEDL-External: TS-Ensemble model on external data

Metrics-Architecture Internal(CI) External(CI) ECDEDL-External(CI)

Precision MobileNetV2 61.07(46.28–75.87) 40.32(37.59–43.05) 45.98(41.18–50.78)
ResNet101V2 47.24(43.24–51.25) 32.40(29.18–35.62) 40.87(37.66–44.08)
NASNetLarge 41.88(40.64–43.12) 29.05(26.60–31.50) 45.14(42.11–48.18)
Union 50.07(43.70–56.43) 33.92(31.03–36.82) 44.00(41.67–46.33)

Recall MobileNetV2 30.74(26.41–35.07) 29.43(16.18–42.67) 33.10(20.06–46.15)
ResNet101V2 45.48(34.13–56.82) 70.80(56.69–84.92) 51.72(42.25–61.20)
NASNetLarge 50.82(44.02–57.62) 78.62(65.47–91.77) 42.30(34.75–49.85)
Union 42.34(36.16–48.53) 59.62(46.20–73.03) 42.38(35.59–49.16)

F1 MobileNetV2 40.36(35.34–45.38) 31.55(20.96–42.14) 37.04(28.82–45.25)
ResNet101V2 45.77(38.03–53.50) 43.40(41.99–44.82) 45.10(41.51–48.70)
NASNetLarge 45.64(43.29–47.99) 41.92(40.35–43.49) 43.12(39.50–46.74)
Union 43.92(40.70–47.14) 38.96(34.63–43.29) 41.75(38.27–45.24)

Accuracy MobileNetV2 77.85(75.10–80.60) 70.44(67.97–72.91) 72.84(70.99–74.70)
ResNet101V2 74.55(72.55–76.54) 53.37(45.96–60.78) 68.27(65.47–71.07)
NASNetLarge 70.79(69.35–72.24) 44.46(35.74–53.18) 71.91(70.08–73.74)
Union 74.40(72.51–76.29) 56.09(49.39–62.79) 71.01(69.44–72.58)
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Figure 5. Precision and recall curves of various models on internal dataset and external dataset regarding thresholds of probabilities
from 0 to 1. (A) Precision curves. (B) Recall curves
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Figure 6. F1 and accuracy curves of various models on internal dataset and external dataset regarding thresholds of probabilities
from 0 to 1. (A) F1 curves. (B) Accuracy curves
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5. Conclusion

Directly predicting pCR to NAC in breast cancer from
histological images using DL has been shown to be a new trend
recently [17]. However, it has been a commonly known problem
that the AI models constructed for medical prediction have better
performances in internal validation than in external validation,
which significantly affects the clinical safety of using AI models
[23]. Moreover, a recent study [31] indicates that the poor
performance in external validation is the primary challenge for DL
applied to breast cancer imaging. Therefore, it is very meaningful
and necessary to investigate advanced approaches for the out-of-
distribution problem of external validation in predicting pCR to
NAC in breast cancer from histological images.

In this paper, we propose the ECDEDL approach for external
validation and show its effectiveness in predicting pCR to NAC
from histological images in breast cancer. Since the cognition of
both pathology and AI experts have been taken to construct the
predictive model, the proposed ECDEDL approach, to some
extent, approximates the working paradigm of a human being
which will refer to his various working experiences to make
decisions. The proposed ECDEDL approach is more intrinsic than
the existing alternative solutions and federated learning for
external validation of predicting pCR to NAC in breast cancer
from histological images. This property of the proposed ECDEDL
approach makes it can fundamentally be combined with existing
solutions and federated learning for addressing the problem.

Extensive experimental results and corresponding analysis in
this paper primarily indicate the following: (1) The experts’
cognition in the proposed ECDEDL approach is effective with
external validation; (2) The overall and practical performances of
the proposed ECDEDL approach for external validation are quite
effective, numerically approximating the internal validation. These
two indications reflect that the proposed ECDEDL approach is
closer to the working paradigm of an expert than some existing
alternatives solutions which simply ignored the experts’ cognition
in constructing predictive models for addressing problem.

The proposed ECDEDL approach still has limitations. The
selected experts’ cognition ought to have been widely
acknowledged because it is used to construct the predictive model
in the application of the ECDEDL-based solution for addressing
problem. In fact, the cognition of individual experts that has not
been generally accepted can bring personal bias to the final
predictive model, leading to biased predictions that can be
noxious. Thus, we should try to avoid introducing any expert’s
cognition that has not been generally accepted in constructing the
predictive model of the proposed ECDEDL approach. In addition,
although DNN architectures from light weight to complex have
been leveraged as the foundation models for investigating the
effectiveness of the proposed ECDEDL approach, only three types
of architectures were chosen for experiments. This might also lead
to biased results regarding the change of the DNN architecture in
implementing the proposed ECDEDL approach. Besides, the
number of WSIs collected for external validation was also limited,
and there might be fluctuations in the experimental results when a
larger number of WSIs are available for external validation.

This paper has demonstrated the promising potential of
ECDEDL for addressing the out-of-distribution problem of
external validation in predicting pCR to NAC in breast cancer
from histological images. In future works, it is interesting to
explore additional experiments to test the generalizability of the

ECDEDL approach across different cancer types or imaging
modalities. As the concept behind the proposed ECDEDL
approach is fundamentally a new paradigm for AI alignment [62],
which can be widely leveraged in building predictive models, we
particularly look forward to widely testing this paradigm in many
other types of cancer-related prediction problems or alternative
data preparation strategies [63, 64].

Recommendations

The proposed ECDEL approach has the potential to be effective
to improve the performance of predictive models for external
validation, numerically approximating the internal validation.
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