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Abstract: Lupus nephritis (LN) is an enervative autoimmune disorder characterized by chronic kidney inflammation and damage. Traditional
literature has highlighted the potential of various natural compounds, showcasing their diverse bioactive properties as therapeutic agents against
LN. In this in silico research study, we explored the interaction analysis between 65 phytocompounds from the plants ofGinkgo biloba,Boswellia
serrata, Astragalus membranaceous, Withania somnifera, Glycyrrhiza glabra, and Scoparia dulcis against 10 crucial target proteins (tumor
necrosis factor, interleukin-6, matrix metall1oproteinases, angiotensin-converting enzyme, nuclear factor kappa B 105, tissue inhibitor matrix
metalloproteinases, complement component 3, and complement decay-accelerating factor) associated with LN. The methodology
incorporated comprehensive computational approaches, encompassing data mining, molecular property calculation, molecular docking,
molecular dynamic simulation, and Molecular Mechanics/Poisson-Boltzmann Surface Area analysis. The study results indicate that
6-Prenylnaringenin is a promising candidate exhibiting stable interactions towards multiple targets, NF-kappa105 (−7.3 kcal/mol), and
tumor necrosis factor (−6.6 kcal/mol). These findings suggest their potential as lead molecules for further in-vitro investigation.
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1. Introduction

Lupus nephritis (LN), a specific consequence of systemic lupus
erythematosus (SLE), is an autoimmune condition that may require
harsh, protracted, and sophisticated therapy, but so far it is treatable.
In an autoimmune disease, the immune system of the body attacks
its cells. In LN, the immune system of the body affects the kidney’s
glomerular filtration unit. The delicate function of the kidneys in
filtering waste from the bloodstream is impacted by the presence of
LN,which leads to the accumulation of wastematerials in the body [1].

TheWorldHealthOrganization categorized LN for the first time in
1974. The current categorization consists of six classes: Class I, or
minimal mesangial LN; Class II, or mesangial proliferative LN;
Class III, or focal LN; Class IV, or diffuse LN; Class V, or
membranous LN; and Class VI, or enhanced sclerosing LN [2] based
on evaluating every glomerulus in a biopsy sample using light
microscopy and immunofluorescence data [3, 4]. The precise origin
of LN is uncertain; however, a blend of environmental and genetic
aspects was the potential cause. Genes such as HLA, TLR, Fas,
DNASE1, C1Q, C1R, and C1S have been associated with LN, and
the formation of anti-double-stranded DNA antibodies further
complicates its pathogenesis [5]. Environmental factors, including gut
microbiome composition, UV radiation, pollutants, drugs, and
infections, have also been linked to LN development. Certain
demographics, such as younger age, male gender, and specific ethnic
backgrounds, aremore predisposed to LNwithin the context of SLE [6].

Major symptoms of LN include calcium deposition, fatigue,
joint pain, high blood pressure, and edema. Calcium buildup in

kidneys leads to fibrosis. Fatigue results from kidney malfunction
causing waste product accumulation. Proteinuria severity varies
based on LN class, presenting as foamy urine [7]. Hematuria, the
presence of red blood cells in urine, is linked to renal vessel
damage. Hypertension may stem from fluid retention,
inflammation, vascular injury, and renin-angiotensin-aldosterone
system (RAAS) activation [8]. Edema typically affects ankles,
feet, legs, hands, and face. The antinuclear antibody (ANA) test is
a common diagnostic tool for LN, detecting antibodies to
chromatin constituents. Smith antigen-specific antibodies and
those to ribosomal P, when paired with anti-dsDNA, are specific
for LN [9]. Urinalysis checks for proteinuria and hematuria, and
blood tests evaluate renal function using indicators like serum
creatinine and ANA. Clinical examination and imaging
(ultrasound, CT, MRI) assess symptoms and organ damage. Daily
indicators include proteinuria, creatinine clearance, and low
complement levels. Kidney biopsy defines LN class, revealing
tubulointerstitial and glomerular damage. Repeated biopsies help
monitor renal activity, guiding therapy in class 4 LN [10].
Non-invasive urinary biomarkers, including autoantibodies, free
light chains, complement elements, and immune mediators, offer a
direct and important diagnostic and predictive tool for renal
diseases. Additionally, emerging therapeutic targets like tumor
necrosis factor (TNF), IL-6, MMPs, ACE, NF-kappa-B, TIMPs,
C3, and CD55 have been explored, offering promising avenues
for more targeted and effective treatments [11].

TNF and interleukin-6 (IL-6) have emerged as potential
therapeutic targets, with studies suggesting the efficacy of TNF
inhibitors like infliximab and IL-6 signaling inhibitors such as
tocilizumab in reducing inflammation and improving outcomes in
LN patients. Matrix metalloproteinases – MMP2 and MMP9 – play
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a significant role in LN, being gelatinases capable of degrading
glomerular basement membrane type IV collagen. Their expression
in renal biopsy specimens correlates with proliferative lesions in LN,
highlighting their involvement in disease development [12].
Angiotensin-converting enzyme (ACE) is a crucial component of the
RAAS and plays a key role in the pathogenesis of LN.
Dysregulation of ACE contributes to renal inflammation and fibrosis,
making ACE inhibitors or angiotensin II receptor blockers potential
therapeutic strategies to mitigate renal damage [13]. NF-kappa-B
p105 and NF-kappa-B p100 subunits, as regulators of immunity and
inflammation, may contribute to LN’s chronic inflammatory state.
The activation of the NF-kappa-B pathway, including p100, is
triggered in response to various stimuli, potentially contributing to
the production of pro-inflammatory molecules in LN [14].

Tissue inhibitors of metalloproteinase 1 (TIMP1) and TIMP2,
part of the tissue inhibitor of metalloproteinases family, play roles in
LN by regulating matrix metalloproteinases (MMPs) involved in
tissue remodeling [15]. An intricate balance between MMPs and
TIMPs is crucial, as an imbalance may contribute to pathological
processes in LN. Complement component 3 (C3) is a central
player in the complement system, regulating blood pressure,
inflammation, and immune complex clearance. Reduced serum C3
levels are associated with disease activity in SLE and LN, serving
as a prognostic marker for LN treatment response [16]. CD55,
also known as the decay-accelerating factor (DAF), plays a dual
role in LN. While it has a protective function by inhibiting the
activation of the complement system, abnormal regulation of
CD55 has been implicated in autoimmune diseases, potentially
contributing to inflammation and tissue damage in LN [17].

The advanced usage of herbal medicines for therapeutic
purposes has tremendously increased during the past decade. The
application of Ayurvedic plants is very effective in kidney
diseases. Ginkgo biloba [18], Boswellia serrata [19], Astragalus
membranaceous [20], Withania somnifera [21], Glycyrrhiza
glabra [22], and Scoparia dulcis [23] have shown shielding
properties against LN. Ginkgo biloba contains antioxidants and is
beneficial for the circulation of blood. It has renoprotective effects
from environmental pollutants like heavy metals, harmful
chemicals, and toxins. Ginkgo biloba has been reported to be
effective in treating early diabetic nephropathy [24]. The extract
of Ginkgo biloba has been extensively used as a supplement to
improve kidney function by reducing the number of Raynaud’s
phenomenon attacks and oxidative stress which are common in LN.
Boswellia serrata has anti-inflammatory and analgesic properties.
The active compounds in Boswellia serrata, such as boswellic acids,
have the potential to inhibit pro-inflammatory enzymes, leading to
the reduction of inflammation in the kidneys. This is particularly
beneficial for kidney diseases like Lupus Nephritis (LN), where
inflammation contributes to kidney damage and disease progression.
Studies were reported regarding its use in the management of chronic
kidney disease [25]. Active compounds of Astragalus are known to
have the property of immune modulation and anti-inflammation. It
helps to prevent the progression of acute kidney injury and diabetic
nephropathy. The phytocompounds in Astragalus can enhance
immune response while reducing inflammation which helps in
normal functioning of kidney and can enhance outcomes in patients
with LN. Ashwagandha has diuretic properties which help treat
kidney diseases such as kidney stones [26]. It is beneficial for
restoring the electrolyte balance and has curative effects on damaged
microtubules which will promote the overall renal function and can
make a positive impact in the treatment of LN. Glycyrrhiza glabra
has been accredited with antioxidant and anti-apoptosis effects.
Glycyrrhiza glabra is beneficial in the production of aldosterone and

cortisone production from the adrenal cortex and is used to treat
acute kidney damage [27]. The potential of Glycyrrhiza glabra in
regulating stress response makes it a significant drug candidate in
the treatment of LN. In vitro studies of Scoparia dulcis have shown
significant dissolution action in calcium oxalate kidney stones, and
it can be used to treat urolithiasis, hence called a stone melter in
Malayalam. Scoparia dulcis can improve the renal health in
individuals suffering from this autoimmune condition by reducing
urolithiasis which can be a complication of LN. This study mainly
aims at the bioactive compounds derived from herbal medicines,
intentionally excluding standard molecules for comparison allowing
us to explore more on the mechanisms of action and potential
synergistic effects of these natural compounds, providing a better
understanding of their therapeutic roles in LN.

This research work employs an in silico approach, integrating
data mining, network analysis, molecular docking, dynamics
simulations, and MMPBSA calculations to elucidate the interactions
between these therapeutic targets and bioactive compounds from
herbal medicines commonly used in LN treatment. Ginkgo biloba,
Boswellia serrata, Astragalus membranaceous, Withania somnifera,
Glycyrrhiza glabra, and Scoparia dulcis are investigated for their
potential to modulate the key molecular players in LN, providing a
comprehensive exploration of the intricate interplay between natural
compounds and the molecular basis of LN.

2. Materials and Methods

2.1. Target identification through network analysis

The target molecules related to the disease were listed through a
literature survey. The collected protein list is inputted to STRING
database (https://string-db.org/) for the network and interaction data
(Figure 1(A)). The protein-protein interaction network data were
exported to Cytoscape software version 3.10.1 (https://cytoscape.org/)
for network analysis incorporating parameters such as betweenness
centrality (BC) and node degree. In this network, genes are
represented as nodes, and edges denote interactions between nodes.
The degree of a node indicates the number of edges connected to it;
the highest degree of nodes represents significant biological function.
BC assesses the importance of a node by considering the number of
shortest paths passing through it. In this study, the PPI network was
scrutinized using these specified parameters and the top expressed
genes in the collected pool were identified (Figure 1(B)).

The ten proteins that are primarily involved in the LN pathology
were selected and those proteins with limited linking to the pathway
of LN or those showing functional redundancy with other proteins in
the pathway were excluded. The top 10 targets include TNF, IL-6,
Matrix metalloproteinase (MMP9, MMP2), Angiotensin-converting
enzyme (ACE), Nuclear factor kappa B 105 (NF-kB), Tissue inhibitor
matrix metalloproteinase (TIMP1 & TIMP2), Complement component
3 (C3), and Complement DAF (CD55), which were involved in the
pathogenesis of LN and are considered for the study. These molecules
have been implicated in the inflammatory response and immune
dysregulation characteristic of LN.

The 3D structures of the targets were downloaded from the
AlphaFold database [28] (Table 1). The downloaded protein
structures were analyzed using Discovery Studio Visualizer software.

2.2. Ligands

A comprehensive set of phytocompounds from a range of
traditional medicinal plants were chosen as ligands for the
interaction study. The selected plants included Curcumin, Ginkgo
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biloba, Boswellia serrata, Astragalus, Ashwagandha, Glycyrrhiza
glabra, and Scoparia dulcis. These plants have a history of use in
various traditional systems of medicine and are known for their
anti-inflammatory and immunomodulatory properties. A total of
1526 ligands were listed. These ligands were obtained from
reliable chemical databases and literature sources. The ligand
structure was retrieved from small molecule database PubChem
in.sdf format (https://pubchem.ncbi.nlm.nih.gov/).

2.3. Molecular and ADMET property calculation

Prior to molecular docking and interaction studies, the selected
ligands underwent an initial screening based on Lipinski’s Rule of
Five and molecular physicochemical properties. SwissADME [29]
and pkCSM [30] tools were employed to calculate the molecular
properties required for screening. These industry-standard
software tools enabled the calculation of molecular weight, LogP,
hydrogen bond donor and acceptor counts, and other relevant
physicochemical properties.

2.4. Screening of ligands

The ligands with calculated molecular properties were screened
under Lipinski’s Rule of Five and ADMET properties (Figure 2).
Lipinski’s Rule of Five or Pfizer’s Rule of Five [31] is a set of

guidelines used in drug discovery and medicinal chemistry to
evaluate the drug-likeness and potential for oral bioavailability of
chemical compounds. The Rule of Five is based on the idea that
certain physicochemical properties of a compound can influence
its ability to be absorbed through the gut wall and enter the
bloodstream effectively. The rule criteria include the following:

1) Molecular Weight: The molecular weight of the compound
should be less than 500 daltons (Da). This guideline helps
ensure that the compound is small enough to be efficiently
absorbed in the gastrointestinal tract.

2) Lipophilicity (LogP): The calculated partition coefficient (LogP)
of the compound should be less than 5. This parameter indicates
the compound’s hydrophilic/hydrophobic balance and influences
its solubility and absorption.

3) Hydrogen BondDonors: The compound should have nomore than
5 hydrogen bond donor atoms (nitrogen and oxygen). Hydrogen
bond donors play a role in interactions with biological receptors.

4) Hydrogen Bond Acceptors: The compound should have no more
than 10 hydrogen bond acceptor atoms (nitrogen and oxygen).
Hydrogen bond acceptors also influence interactions with
biological molecules.

ADMET calculations involve assessing the absorption,
distribution, metabolism, excretion, and toxicity properties of a

Figure 1. (A) Protein-protein networking image of the listed proteins. (B) Top 10 expressed genes

Table 1. AlphaFold structure details of targets considered for the study

Sl. No: Protein AlphaFold Gene Source organism UniProt ID Sequence length

1 TNF AF-P01375-F1 TNF Homo sapiens P01375 231
2 IL-6 AF-P05231-F1 IL6 Homo sapiens P05231 212
3 MMP9 AF-P14780-F1 MMP9 Homo sapiens P14780 701
4 ACE AF-P12821-F1 ACE Homo sapiens P12821 1301
5 NF-kB1 AF-P19838-F1 NFKB1 Homo sapiens P19838 961
6 MMP2 AF-P08253-F1 MMP2 Homo sapiens P08253 651
7 TIMP1 AF-P01033-F1 TIMP1 Homo sapiens P01033 201
8 TIMP2 AF-P16035-F1 TIMP2 Homo sapiens P16035 211
9 C3 AF-P01024-F1 C3 Homo sapiens P01024 1661
10 CD55 AF-P08174-F1 CD55 Homo sapiens P08174 381
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pharmaceutical compound. The process plays a crucial role in drug
discovery and development by helping to predict the behavior of
compounds within the body. Among the listed ligands, only 65
satisfied the rule and filtering parameters (Table 2).

The 2D structures of the considered phytocompounds were
downloaded from PubChem [31] database in.sdf format. Subsequently,
the ligands were converted into. pdbqt format using OpenBabel [32].

2.5. Molecular docking

The AutoDock Vina software (v.1.2.0.) was employed for the
molecular docking analysis of the selected Proteins and ligands
[33]. Primarily, the ligand structure retrieved from PubChem was
prepared using Open Babel software 2.4.1. Prior docking steps
such as the addition of polar hydrogen, Kollman charges, and grid
box generation were carried out in the purified protein structure.
The grid box was defined using the Graphical interface program
of the AutoDock tool with a grid spacing of 1 Å for ten proteins
and Table 3 shows the corresponding grid box value of
considered proteins. The resulting prepared structure was saved in.
pdbqt format. AutoDock Vina calculates and generates the top 10
protein-ligand interaction poses based on binding affinity.

2.6. Molecular interaction analysis

The molecular interaction analysis of the docked protein ligands
(complex) was performed using Discovery Studio Visualizer 2017
(https://discover.3ds.com/discovery-studio-visualizer-download).
The dock complex was analyzed, screened, and ranked based on
binding affinity and H-bond interactions. The poses with the lowest
binding affinity and the highest number of H-bonds were considered
for further analysis, i.e., molecular dynamic simulation study.

2.7. Molecular dynamics simulation

Molecular dynamics simulations of the selected protein-ligand
complexes were conducted using the GROMACS version 2020.6
MD package [34, 35]. The process commenced with the removal
of crystal water from the protein and ligand complex, followed by
the generation of topology files separately for both molecules. The
protein topology file was created using the Charmm36 force field
(Charmm36-jul 2021.ff). For ligands, the topology file was
prepared through the CGenFf server. The box dimensions were
8.276 × 8.353 × 6.398 nm, with a volume of 442.24 nm3 and
updated configuration expands these dimensions to 10.276 ×

Figure 2. Screening process of phytocompounds

Table 2. Ligands considered for the Insilco analysis

Sl No: Plant Phytocompound (PubChem ID)

1 Ginkgo biloba • 1,3-Dimethoxybenzene (9025)
• 2,5-Diisopropyl-P-Xylene (2521)
• Allantoin (204)
• Aromadendrin (122850)
• Asarinin (5204)
• Choline (305)
• Menthalactone (94349)
• Santonin (221071)
• L-Rhamnose (25310)

• 1,4-Dimethoxybenzene (9016)
• Cianidanol (9064)
• Cis-3-Hexen-1-Ol (5281167)
• Curcumin
• (969516)
• Flavylium
• (145858)
• Ginkgotoxin (76581)
• Globosterol (53477610)

2 Boswellia serrata • 1-Isopropyl-4-Methylenebicyclo [3.1.0]Hex-2-Ene
(524198)

• 10-Epi-Gamma-Eudesmol
(6430754)

• 3,5-Dimethoxytoluene (77844)
• Alpha-Campholenic-Acid
(12302349)

• Epicubenol (12046149)
• Methylisoeugenol (637776)
• Serratol (86577759)
• Terpinolene (11463)
• Tricyclene (79035)
• Undecenol (22506525)
• Beta-Ocimene (18756)

(Continued)
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10.353× 8.398 nm, resulting in a volume of 893.44 nm³. The periodic
boundary conditions are applied in all three dimensions
(X, Y, and Z). Then the systems were solvated within a dodecahedron
box utilizing the transferable intermolecular potential with a three-point
(TIP3P) water model, followed by addition of ions (neutralization using
Na+ and Cl− ions). Employing the steepest descent integrator, energy
minimization was performed to resolve steric conflicts between proteins
and water molecules. After energy minimization, ligand restraining and
temperature coupling were performed. The modified Berendsen
thermostat (V-rescale) is applied in the simulation to control the
temperature of both the protein-ligand complex and the solvent (water
and ions) [36]. This ensures that the system’s kinetic energy remains
stable at the desired reference temperature of 300 K throughout the
simulation. The systems were subjected to volume equilibration – NVT
ensemble (constant number of particles, volume, and temperature) and
followed by equilibration of pressure – NPT ensemble, by keeping the

number of particles (N), the system pressure (P), and the temperature (T)
constant. Both steps were carried out for 1, 00,000 steps, resulting in a
cumulative time of 200 ps. A pressure of 1 atm and temperature of
300 k were sustained. A production molecular dynamics run of
50,000,000 steps was performed for 100 ns, as demonstrated in studies
exploring the interaction of TNF-α with saponins from Vietnamese
ginseng and the binding of NF-κB protein with sulindac acid [37, 38].

2.8. Trajectory analysis

Analysis of the resulting trajectories encompassed various aspects,
including root mean square deviation (RMSD), root mean square
fluctuation (RMSF), SASA, radius of gyration (Rg), and H-bond
interactions, utilizing the GROMACS version 2020.1 package.
Trajectory plot analysis was executed using Xmgrace. The stability
validation of the protein and the complexes was performed by
comparative analysis of RMSD and RMSF. The protein compactness
was studied by plotting the Rg. The number of Hydrogen bonds
formed between the protein and ligands for 100 ns was depicted. For
visualizing the post-MD simulation complexes, tools such as DS
Visualizer, Visual Molecular Dynamics, and Pymol were employed.
Dynamic Cross-Correlation Matrix analysis was also carried out to
understand how different atoms within a molecule move in relation
to each other. This method calculates the dynamic cross-correlation
between residue pairs, producing a matrix. Each element in this
matrix shows the correlation coefficient, indicating the extent to
which the movements of two atoms are linked.

2.9. Molecular Mechanics/Poisson-Boltzmann
Surface Area (MMPBSA)

The docked complex poses considered for MD simulation were also
subjected toMMPBSA, toestimate thebinding-free energy. gmx_mmpbsa

Table 2. (Continued )

Sl No: Plant Phytocompound (PubChem ID)

3 Glycyrrhiza glabra • (1r,3s,4r,7r,9s,12s,13r,17s,19r,20r,22s)-
9-Hydroxy-3,4,8,8,12,19,22-Heptamethyl-14-Oxo-
23-Oxahexacyclo[18.2.1.03,16.04,13.07,12.017,22]
Tricos-15-Ene-19-Carboxylic Acid (88302)

• 2,3,5-Trimethylpyrazine (26808)
• 2,3-Butanediol (262)
• 2,4-Difurfurylfuran (53423642)
• 2-(4-Methylphenyl)Propan-2-Ol
(255195)

• 2-Acetyl-1-Furfurylpyrrole
(20560368)

• 2-Acetyl-5-Methylfuran (14514)
• 2-Acetylpyrrole (14079)
• 2-Ethyl-6-Methylpyrazine (26332)
• 2’-Hydroxyacetophenone
(68490)

• 2’-Methoxyacetophenone
(77698)

• 2-Pentylfuran (19602)
• 2-Phenylbutanoate (3881907)
• 3-Methyl-3-Hepten-2-One
(5364798)

• Dihydro-5,5-Dimethyl-2(3h)-Furanone (18398)
• Ethyl Phenylacetate (759)
• Geraniol (637566)
• Hydroxyacetone (8299)
• Lavandulol (5464156)
• Ligustrazine (14296)
• N-Acetylpyrrole (521947)
• Oct-1-En-3-Ol (18827)
• Piperitenone (38115)
• Pratol (5320693)
• Texasin (5281812)
• Ambrettolide (5365703)
• Anabasine (2181)
• Cuscohygrine (1201543)
• 4-Aminopyridine (1727)
• 4-Carvomenthenol (11230)
• 5,6,7,8-Tetrahydro-2,4-Dimethylquinoline (185667)
• 4-Methylcoumarin (11833)
• 6-Prenylnaringenin (155094)
• 7-Methoxyco33umarin (10748)

4 Scoparia dulcis • 2-Benzoxazolinon (6043)
5 Withania somnifera • Anahygrine (12306778)

• Delta-Cadinene (441005)
• Nicotine (89594)

Table 3. Grid box generated for ten proteins

PROTEIN

DIMENSIONS GRID CENTER

x y z x y z

TNF 80 86 94 −17.917 22.960 −23.170
IL-6 100 84 76 −14.705 −19.582 0.322
MMP9 126 126 126 −5.117 −0.711 −12.712
ACE 126 112 120 5.222 0.000 0.000
NF-kB105 86 84 68 −22.000 −20.376 4.558
MMP2 102 108 112 −15.608 10.200 4.171
TIMP1 106 48 66 −12.349 0.740 −1.249
TIMP2 74 100 66 −0.330 −12.900 −1.223
C3 126 126 126 −11.969 9.930 9.493
CD55 126 126 126 0.454 8.693 2.696
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tool [39] developed for GROMACS was employed for MMPBSA
calculations. The binding energy was further decomposed on the per-
residue basis to estimate the binding-free energy of individual residue to
the MGAM-TW/WA interaction. The estimation of binding-free energy
of ligand-protein complexes in a solvent can be calculated by

ΔGbind ¼ ΔG complex � ½ΔGproteinþΔG lig�

ΔG complex – overall free energy of the complex, ΔG protein – free
energy of isolate protein, ΔG lig – free energy of isolate ligand,

Conceptually, the MMPBSA approach can be explained as

ΔGbind ¼ΔE gasþΔG sol ¼ ΔE vdwþΔE ele

þΔGpolar þΔGnonpolar

where ΔE gas (gas-free energy) = average molecular mechanic
potential energy in a vacuum (van der Waals (ΔE vdw) +
electrostatic (ΔE ele) interactions),

ΔG sol ¼ polar solvation ðΔGpolarÞ energy
þ nonpolar solvation ðΔGnonpolarÞ energy

3. Result and Discussion

In silico analysis of the multiple targets and phytocompounds
(Curcumin, Ginkgo biloba, Boswellia serrata, Astragalus,
Ashwagandha, Glycyrrhiza glabra, and Scoparia dulcis) was
performed to identify potential molecules for the treatment of LN.
The methodology employed for this analysis encompassed Data
mining, Network analysis, Molecular and physicochemical property

calculation and Screening of Ligands, Molecular docking, Interaction
Analysis, Molecular dynamic simulation, Trajectory analysis, and
MMPBSA calculations.

The initial data set of receptor and ligand molecules was
subjected to various analyses, and the 10 targets – TNF, IL-6,
matrix metalloproteinase (MMP9 & MMP2) ACE, NF-kB105,
tissue inhibitor matrix metalloproteinase 1 (TIMP1 & TIMP2),
complement component 3 (C3) and complement DAF (CD55) and
65 ligands were considered for the study. Out of the listed 1526
ligands, only 65 satisfied the rule and filtering parameters. The
molecular docking results were screened and ranked based on
binding affinity and no of h-bond interactions. The top-ranked 10
poses from each target are compiled in Table 4.

Dock results of the phytocompounds against the targets exhibit
the binding affinity ranges from −9.6 kcal/mol to −5.8 kcal/mol.
Among the top-ranked 100 ligand poses from 10 dock complexes,
the top 3 ligands from each target (total 30) were carried out for
the next level of analysis, i.e., MD simulations to validate the
interaction stability.

Phytocompounds that interact with TNF include Asarinin
(ARG 107, ASN 122; −6.9 kcal/mol), 6-Prenylnaringenin (GLU
192, GLU 186; −6.6 kcal/mol), and Cianidanol (LEU 218, PHE
220, PRO 215; −6.5 kcal/mol) and those interact with IL-6
include 6-Prenylnaringenin (SER 204, GLU 87; −7.1 kcal/mol),
Aromadendrin (GLU 200; −6.9 kcal/mol), and Cianidanol (MET
95, LEU 193, ARG 196, SER 204; −6.8 kcal/mol). The ligands
which show better binding affinity towards MMP9 include 1r, 3s,
5r-6, 6-Dimethyl-2-methylidene-bicyclo [3.1.1] heptan-3-ol (LYS
461, ASP 422; −8.6), Asarinin (TRP 825, ASN 816, TYR 740;
−8.6), and Santonin (HIS 520, HIS 360; −8.2), whereas Asarinin
(ARG 125, SER 229; −9.4), Santonin (HIS 360, HIS 520; −8.6),

Table 4. Top-ranked 10 receptor ligand poses from each target

Sl No: Protein Name H-bond
No. of
H-bonds

Binding
affinity

(kcal/mol)

1 TNF Asarinin ARG 107, ASN 122 2 −6.9
2 6-Prenylnaringenin GLU 192, GLU 186 2 −6.6
3 Cianidanol LEU 218, PHE 220, PRO 215 3 −6.5
4 Pratol GLY 224 1 −6.5
5 Globosterol GLY 184, ALA 185, CYS 145 3 −6.4
6 Flavylium ASN 122 1 −6.1
7 Aromadendrin ALA 160, ARG 158, THR

165, TYR 163
4 −6

8 Santonin GLN 178, ARG 179 2 −6
9 Texasin PRO 182, GLY 184, ALA 185 3 −6
10 4-Methylcoumarin VAL 226, GLN 225 2 −5.9
1 Interleukin-6 6-Prenylnaringenin SER 204, GLU 87 2 −7.1
2 Aromadendrin GLU 200 1 −6.9
3 Cianidanol MET 95, LEU 193, ARG 196,

SER 204
4 −6.8

4 Asarinin ASN 172 1 −6.7
5 Curcumin LEU 92, LYS 114 2 −6.5
6 Texasin GLU 200, SER 204, PRO 93,

PHE 201
4 −6.5

7 Flavylium GLN 203 −6.1
8 Globosterol SER 136, GLU 70 2 −6
9 Pratol THR 71, SER 75, LYS 74,

GLU 134, ARG 132
5 −6

10 10-epi-gamma-Eudesmol GLU 121 1 −5.8
(Continued)
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Table 4. (Continued )

Sl No: Protein Name H-bond
No. of
H-bonds

Binding
affinity

(kcal/mol)

1 MMP9 1r,3s,5r-6,6-Dimethyl-
2-methylidene-
bicyclo [3.1.1]
heptan-3-ol

LYS 461, ASP 422 2 −8.6

2 Asarinin TRP 825, ASN 816, TYR 740 3 −8.6
3 Santonin HIS 520, HIS 360 2 −8.2
4 Ginkgotoxin ASN 816 1 −8.2
5 2,3,5-Trimethylpyrazine TRP 825, ARG 729 2 −8.2
6 Anabasine ARG 729, TRP 825 2 −8.2
7 2-Benzoxazolinone ASN 816 1 −8.1
8 Aromadendrin TYR 530, HIS 520, THR 525 3 −8
9 Choline LEU 168, ASP 169 2 −7.7
10 Rhamnose GLU 418, HIS 360, HIS 520,

GLU 391, HIS 394
4 −7.2

1 ACE Asarinin ARG 125, SER 229 2 −9.4
2 Santonin HIS 360, HIS 520 2 −8.6
3 Aromadendrin GLU 418, HIS 520, TYR 530,

THR 525, ASP 72, TYR 398
6 −8.6

4 Globosterol HIS 1118, HIS 992, GLU 989 3 −8.4
5 6-Prenylnaringenin TYR 530, HIS 360, HIS 520,

GLU 391, HIS 390, HIS 394
6 −8.3

6 Ambrettolide TYR 1128 1 −8.2
7 Cianidanol LYS 973, ASN 675, GLU

7448
3 −8.2

8 Pratol GLU 767, LYS 1116 2 −8.1
9 Texasin ARG 409, ASP 365 2 −8.1
10 Curcumin ASN 523, SER 362, ASP 365,

TYR 398
4 −7.9

1 NF-kappa-B
p105

6-Prenylnaringenin PRO 93, SER 197 2 −7.3
2 Texasin PHE 201, GLU 200, SER 204,

PRO 93
4 −7

3 Asarinin ASN 172 1 −6.8
4 Cianidanol LEU 193, ARG 196, MET 95,

SER 204
4 −6.8

5 Curcumin LEU 92, LYS 114 2 −6.5
6 Aromadendrin ARG 207, SER 197 2 −6.3
7 Flavylium GLN 203 1 −6.2
8 Globosterol PRO 169 1 −6.2
9 Santonin SER 104, GLN 103 2 −6.1
10 Pratol THR 71, SER 75, ARG 132,

LYS 74, GLU 134
5 −6

1 MMP2 Globosterol ALA 959, GLU 989 2 −9.6
2 Asarinin TYR 965, ALA 961, HIS 958,

HIS 988
4 −9.3

3 Santonin HIS 360, HIS 520 2 −8.6
4 6-Prenylnaringenin GLN 886, ASP 1020 2 −8.5
5 Aromadendrin TYR 1128, HIS 1118 2 −8.4
6 Cianidanol GLU 1016, TYR 1128, GLU

748, ASN 675, ALA 961
5 −8.2

7 Curcumin LYS 518, VAL 357 2 −8.2
8 Serratol THR 387 1 −8.2
9 Pratol HIS 958, TYR 1128, HIS

1118, ASN 675
4 −8.1

10 Ambrettolide GLN 288, SER 289 2 −7.8
1 TIMP1 Asarinin THR 120, GLN 113 2 −8.1
2 Aromadendrin ALA 34, SER 38 2 −7.8
3 Pratol SER 38 1 −7.7
4 Globosterol HIS 118 1 −7.6

(Continued)
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Aromadendrin (GLU 418, HIS 520, TYR 530, THR 525, ASP 72,
TYR 398; −8.6) shows better interaction with ACE. Those
ligands which show highest binding affinity with NF-kappa-B
p105 were 6-Prenylnaringenin (PRO 93, SER 197; −7.3), Texasin
(PHE 201, GLU 200, SER 204, PRO 93; −7), and Asarinin (ASN
172; −6.8). Likewise, Globosterol (ALA 959, GLU 989; −9.6),
Asarinin (TYR 965, ALA 961, HIS 958, HIS 988: −9.3),
Santonin (HIS 360, HIS 520; −8.6) shows good interaction with
the protein MMP2, Asarinin (THR 120, GLN 113; −8.1),
Aromadendrin (ALA 34, SER 38; −7.8), Pratol (SER 38: −7.7)
with TIMP1, Asarinin (ARG 1532, HIS 1630, GLN 1521; −9),
Globosterol (ARG 1532, GLN 1645, ASP 1525; −8.4), 6-
Prenylnaringenin (LYS 1431; −8.2) interact with C3 and
Globosterol (HIS 1118, HIS 992, GLU 989; −9.6), Asarinin

(ARG 125, SER 229: −9.1) & Pratol (LYS 1116, GLU 767;
−8.7) exhibit better interaction with CD55.

The interaction stability of these 30 complexes was analyzed.
The result contains both stable and unstable interactions. Few
ligands maintain interactions with the same amino acid residues as
observed in the molecular docking result. In contrast, others
exhibit distinct interactions, primarily attributed to energy
fluctuations and changes in conformational geometry. After
molecular dynamics simulation, the trajectories were analyzed to
understand the spatial fluctuations of protein. Among the
subjected 30 ligand molecules, only 2 receptor-ligand complexes
– NF-kappa105_6-prenylnaringenin and TNF_6-Prenylnaringenin
show stable interactions. The MMPBSA of the complexes was
calculated (Table 5).

Table 4. (Continued )

Sl No: Protein Name H-bond
No. of
H-bonds

Binding
affinity

(kcal/mol)

5 6-Prenylnaringenin SER 130, GLN 135, SER 123 3 −7.5
6 Curcumin VAL 125, SER 130, ARG 185 3 −7.4
7 Cianidanol PHE 124, ALA 109, SER 38 3 −7.3
8 Texasin SER 38, ALA 34, ALA 109,

PHE 124
4 −7.1

9 Santonin HIS 97, SER 99, ARG 98 3 −6.4
10 Flavylium ASN 53 1 −6.4
1 TIMP2 Aromadendrin THR 135, LEU 126 2 −7.5
2 6-Prenylnaringenin ASP 128, LEU 126, ILE 183 3 −7.2
3 Asarinin ARG 68 1 −7.1
4 Globosterol LEU 126, ASP 128 2 −6.9
5 Serratol VAL 32 1 −6.8
6 Texasin VAL 32, ILE 130 2 −6.6
7 Cianidanol VAL 32, LEU 126 2 −6.6
8 Curcumin LEU 126 1 −6.5
9 Pratol ASP 176, GLU 180, THR 179 3 −6.4
10 Santonin VAL 32 1 −6.4
1 C3 Asarinin ARG 1532, HIS 1630, GLN

1521
3 −9

2 Globosterol ARG 1532, GLN 1645, ASP
1525

3 −8.4

3 6-Prenylnaringenin LYS 1431 1 −8.2
4 Cianidanol LYS 927, THR 800, ASP 599 3 −7.9
5 Pratol ARG 834, ASN 1442 2 −7.8
6 Aromadendrin ASP 599, SER 798, LYS 927,

ASP 832
4 −7.6

7 Santonin ARG 834, TYR 852 2 −7.6
8 Ambrettolide ILE 799 1 −7.5
9 Serratol TYR 852 1 −7.5
10 Curcumin GLN 216, SER 219, LYS 615,

ASN 609
4 −7.4

1 CD55 Globosterol HIS 1118, HIS 992, GLU 989 3 −9.6
2 Asarinin ARG 125, SER 229 2 −9.1
3 Pratol LYS 1116, GLU 767 2 −8.7
4 Aromadendrin GLU 418, HIS 520, TYR 530,

THR 525, ASP 72, TYR 398
6 −8.6

5 Santonin HIS 520, HIS 360 2 −8.6
6 6-Prenylnaringenin TYR 53.0, HIS 360, HIS 520,

GLU 391, HIS 390, HIS 394
6 −8.4

7 Texasin ARG 409, ASP 365 2 −7.7
8 Serratol GLN 288 1 −7.7
9 Cianidanol LYS 973, TYR 667 2 −7.5
10 Ambrettolide HIS 520, TYR 530 2 −7.4
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The compound’s favorable binding energies and interaction
stability may indicate their potency. The least binding affinity
constitutes the strongest binding.

In the NF-kappa105_6-prenylnaringenin complex, the dock
result has 2 h-bonds at PRO 93, SER 197 residues with a

binding affinity of −7.3 kcal/mol, and after molecular dynamic
simulation, the complex exhibit 4 h-bonds at GLU 87, ASN 88,
SER 197, and PRO 93, in which the SER 197 residue remains
stable (Figure 3). Also, the complex shows −15.38 kcal/mol
binding-free energy. The RMSD values vary from a minimum of

Table 5. Receptor ligand interaction after MD simulation and MMPBSA result

Sl No: Protein Name H-Bond
Affinity
(kcal/mol) MD

MMPBSA
(kcal/mol)

1 NF-kappa-B
p105

6-Prenylnaringenin PRO 93, SER 197 −7.3 GLU 87, ASN 88,
SER 197, PRO 93

−15.38

2 TNF 6-Prenylnaringenin GLU 192, GLU 186 −6.6 TYR 191, GLU 192,
GLU 186, LYS 188

−23.26

Figure 3. (A) 2D interaction diagram of NF-kappa105_6-prenylnaringenin dock complex. (B) 3D interaction diagram of
NF-kappa105_6-prenylnaringenin dock complex. (C) 2D interaction diagram of NF-kappa105_6-prenylnaringenin MD complex.
(D) 3D interaction diagram of NF-kappa105_6-prenylnaringenin MD complex
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0.2794797 nm at 0.1 ns to a maximum of 2.3947103 nm at
94.2000046 ns. The RMSF plot of the NF-kappa105_6-
prenylnaringenin complex shows that the entire protein shows
fluctuation between 0.2453 nm and 2.9046 nm. Among these,
MET 1 (2.9046 nm) has the highest fluctuation. In between 0 ns
and 50 ns, significant fluctuations (black line) were observed in
the region of residues from 50 to 150. These fluctuations point
out that the residues are undergoing substantial conformational
adjustments as they adapt to the simulation environment,
attaining equilibrium. During 50 ns – 100 ns, the fluctuations
were significantly reduced, particularly in the same residue
range (50–150) which exhibited high fluctuations in the initial
phase. This indicates attaining stability (protein residues
exhibiting less dynamic movement and more stable interactions)
compared to the initial phase of the system. The RoG plot of
NF-kappa105_6-prenylnaringenin inferred that the Rg deviation
ranges from 2.69639 nm (63.2 ns) to 3.52186 nm (4.4 ns) with
an average of 3.15635013 nm. A maximum of 5 H-bonds was
observed during the 100 ns MD simulation (Figure 4).

For TNF_6-Prenylnaringenin complex, the dock result has
2 h-bonds at GLU 192, GLU 186 residues with a binding affinity
of −6.6 kcal/mol, and after molecular dynamic simulation, the
complex exhibits 4 h-bonds at TYR 191, GLU 192, GLU 186,
LYS 188 residues in which the GLU 192, GLU 186 residues
remain stable (Figure 5). The complex shows −23.26 kcal/mol
binding-free energy. The RMSD values of the plot vary from a
minimum of 0.3118211 nm at 0.1 ns to a maximum of 2.7302127
nm at 44.80 ns. The RMSF plot of the TNF_6-Prenylnaringenin
complex shows that the entire protein shows fluctuation between
0.2507 nm and 1.7259 nm. Among these, MET 1 (1.7259 nm)
has the highest fluctuation. Within the 0 to 50 ns timeframe,
notable fluctuations (black line) were evident in residues 50 to
150, indicating significant conformational changes as the residues
adjusted to the simulation environment, seeking equilibrium. As
the simulation progressed to the 50 to 100 ns range, these
fluctuations significantly decreased, particularly within the same
residue range (50–150) that exhibited high fluctuations initially.
This reduction suggests that the protein residues have achieved

Figure 4. (A) RMSD plot of NF-kappa105_6-prenylnaringenin complex. (B) RMSF plot of NF-kappa105_6-prenylnaringenin
complex. (C) RoG plot of NF-kappa105_6-prenylnaringenin complex. (D) H-bond distribution plot of NF-kappa105_6-
prenylnaringenin complex
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greater stability, demonstrating less dynamic movement and
more stable interactions compared to the early phase of the
system. The RoG plot of TNF_6-Prenylnaringenin inferred that
the Rg deviation ranges from 2.16984 nm (82.90 ns) to 3.96803
nm (3.9 ns) with an average of 2.565139251 nm. A maximum of
6 H-bonds was observed during the 100 ns MD simulation
(Figure 6). The dynamic cross-correlation between residue
pairs of the complex of TNF_6-Prenylnaringenin and TNF_6-
Prenylnaringenin are depicted in Figures 7 and 8, respectively.
The insights derived from Figures 7 and 8 are summarized in Table 6.

The study underscores the potential of 6-Prenylnaringenin as a
promising drug candidate for the treatment of LN. The
phytocompound shows stable interactions with the target protein
NF-kappa B 105 (NF-κB p105) and TNF, which are significant
in the inflammatory pathways associated with LN. These
interactions were maintained throughout the simulation,
indicating strong binding affinities and interaction stability. The
binding affinity of 6-Prenylnaringenin to NF-κB p105 and TNF

suggests that it may effectively inhibit these proteins’ activity,
thereby reducing inflammation and immune response
dysregulation. Such modulation of inflammatory pathways is
critical in managing LN, where excessive immune responses
cause significant kidney damage. Additionally, the robust
hydrogen bonding and interaction stability observed post-
molecular dynamic simulations further emphasize the therapeutic
potential of 6-Prenylnaringenin. The RMSF analysis also
indicates that the protein-ligand complex maintains stability over
time, which is vital for its efficacy as a therapeutic agent.
Overall, this in silico study demonstrates the potential of
6-Prenylnaringenin as a clinical candidate for LN treatment. Its
ability to interact with NF-κB p105 and TNF and modulate key
inflammatory pathways underscores its promise in developing
new therapeutic strategies for this challenging autoimmune
condition. Further experimental validation and clinical studies
would be necessary to confirm these findings and translate them
into practical medical applications.

Figure 5. (A) 2D interaction diagram of TNF_6-Prenylnaringenin dock complex. (B) 3D interaction diagram of TNF_6-
Prenylnaringenin dock complex. (C) 2D interaction diagram of TNF_6-Prenylnaringenin MD complex. (D) 3D interaction
diagram of TNF_6-Prenylnaringenin MD complex
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Figure 6. (A) RMSD plot of TNF_6-Prenylnaringenin complex. (B) RMSF plot of TNF_6-Prenylnaringenin complex. (C) RoG plot of
TNF_6-Prenylnaringenin complex. (D) H-bond distribution plot of TNF_6-Prenylnaringenin complex

Figure 7. Heatmap of NF-kappa105_6-prenylnaringenin complex Figure 8. Heat map of TNF_6-Prenylnaringenin complex
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4. Conclusion

The study employs various computational techniques to
screen and evaluate the effectiveness of phytocompounds
derived from traditional medicinal plants as potential ligands
targeting key protein molecules associated with the pathway of
LN disorder. A total of 65 ligands and 10 targets – TNF, IL-6,
matrix metalloproteinase (MMP9 & MMP2) ACE, NF-kB 105,
tissue inhibitor matrix metalloproteinase 1 (TIMP1 & TIMP2),
complement component 3 (C3), and complement DAF
(CD55) were considered for the in silico analysis. The study
incorporated various bioinformatics approaches such as data
mining, molecular property calculation, molecular docking,
molecular dynamic simulation, and MMPBSA. The molecular
interaction analysis, along with molecular dynamics simulation,
indicates that two ligand molecules – 6-Prenylnaringenin and
Cianidanol – show stable and favorable interactions with the
targets. Among these, 6-Prenylnaringenin exhibits binding
affinity towards multiple targets, NF-kappa105 (−7.3 kcal/mol),
and TNF (−6.6 kcal/mol). Further in-vitro analysis is needed for
the validation of the potency of the identified lead molecule.

To confirm the potential of these phytocompounds against LN
beyond the constraints involved in the computational study, further
in vitro analysis and clinical research are needed. In vitro study will
provide better understanding about the safety and effectiveness of
the compounds in the treatment of LN. The study provides more
insights into the role of selected targets in LN, and the scope of
isolation of these lead molecules in treatment of LN These
studies will also help in confirming the real-world therapeutic
potential of 6-Prenylnaringenin, focusing on its mechanism of
action, dosage, and impact in clinical settings. They will
bridge the gap between computational insights and practical
applications, offering a more forward-looking perspective on
developing effective treatments for LN. Furthermore, exploring
the potential of the lead candidate in animal models could pave
the way for the development of effective herbal-based treatments
for this complex disorder.
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