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Abstract: Electrocardiogram (ECGs) signals are the primary means by which physicians diagnose cardiovascular-related illnesses such as
abnormal heart rhythms, heart attack, and rheumatic heart. Automatically analyzing electrocardiogram (ECG) signals is a complex machine
learning problem. This is because ECGwaveforms can exhibit significant variability in their morphological (shape) and temporal (time-based)
characteristics across different individuals. Doctors can reliably analyze electrocardiogram (ECG) signals using visual inspection of the signal
waveform. However, doctors often find it challenging to analyze lengthy ECG records within a short time frame. Furthermore, the human eye
has limitations in detecting subtle morphological variations within ECG signals. Although ECG signals can reveal a diverse range of heart
conditions, the task of observing and categorizing long-term ECG beats can be challenging even for experts. Furthermore, because of the large
volume of data, there is a significant risk of missing important information. As a result, effective computational techniques are essential to
tackle this challenge. This paper introduces a deep learning approach for improving the classification of electrocardiogram (ECG) signals. The
novelty in our approach is applying range normalization, which scales input data to a range of 0 to 1 before feeding it into neural network
layers. Themethod classifies ECG signals into five categories, evaluated using theMassachusetts Institute of Technology and BostonHospital
and PTB datasets and adhering to AAMI standards. A comparison of normalization techniques with a convolutional neural network (CNN)
classifier shows that the proposed method achieves average F1-scores of 99%, 85%, 95%, 81%, and 99% for the N, S, V, F, and Q classes,
respectively. The overall accuracy of 98.73% demonstrates that the proposed technique outperforms existing methods.
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1. Introduction

Heart-related diseases are the leading causes of illness and death
worldwide [1–3], with their growing prevalence imposing a
substantial economic strain on healthcare systems [4]. Developing
and middle-income countries account majority of cardiovascular
disease (CVD) fatalities globally [5]. Risk factors associated with
CVDs include tobacco use, obesity, a sedentary lifestyle,
excessive alcohol consumption, and an unhealthy diet [6].
Avoiding risk factors [7] and early detection of CVD using
physiological and biochemical factors [8] can help reduce
cardiovascular fatalities. Early detection provides clinicians with
information to intervene before they progress to severe stages.
Continuous monitoring and analysis of electrocardiogram (ECG)
signals play a crucial role in improving the diagnosis,
management, and prevention of various cardiovascular ailments.
Heart rate monitors are becoming increasingly common in daily
life, with the electrocardiogram (ECG) established as a standard
diagnostic tool for CVDs [9]. Widely used in healthcare, ECG is
employed in various settings, including intensive care units,
routine medical care, and remote monitoring through devices like

Holter monitors [10]. A Holter monitor, a portable ECG device,
continuously records the heart’s electrical activity remotely [11].
Its sensors are attached to the skin to detect the heart’s electrical
signals during each beat. Electrocardiogram remains a key
diagnostic method for the early detection of heart conditions.

An electrocardiogram (ECG or EKG) is a non-invasive method
used to assess heart activity by converting the electrical impulses
produced during the polarization and depolarization of cardiac
tissue into a waveform signal. This signal is essential for measuring
heart rate, identifying regular and irregular heart rhythms, and
evaluating the strength and timing of electrical signals as they travel
through different regions of the heart. Consequently, ECGs are
indispensable in both diagnostic and research settings, aiding in the
detection and analysis of cardiac abnormalities as well as the study
of other conditions that may impact heart function.

Owing to its ease of use and non-intrusive approach, the ECG is
extensively utilized to evaluate cardiac health, offering crucial
information about the heart’s wellbeing. Despite being one of
the oldest and most fundamental cardiac assessments, the
electrocardiogram (ECG) offers a wealth of information for
diagnosing cardiac issues. Based on relatively straightforward
electro-physiological principles, ECG signals can be quickly and
easily obtained with modern equipment. It has been proven a*Corresponding author: Jonah Kenei, Technical University of Kenya, Kenya.
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reliable tool for monitoring the cardiovascular system [12],
delivering comprehensive information about heart and
cardiovascular health [13]. It captures the heart’s rhythm and
electrical activity, commonly used to detect arrhythmia, a major
cardiovascular condition [14]. Patients with arrhythmia (irregular
heartbeats) may experience both cardiovascular and non-
cardiovascular comorbidities. The ECG is a well-established
diagnostic tool that enjoys universal acceptance. It displays
changes in the heart’s electrical activity over time and provides
crucial physiological data commonly used to assess heart function
[15]. For example, doctors use it to determine whether a patient’s
heartbeat is normal or irregular, offering cardiologists valuable
insights into diagnosing heart-related diseases. Analyzing and
processing ECG signals is essential for diagnosing cardiovascular
conditions, with a growing research focus on classification
increasingly supported by machine learning (ML) algorithms [16].
According to the literature, most classification methods employ
convolutional neural networks (CNNs), which have shown
success in numerous classification tasks [17]. Currently, the
prevalence of CVDs is rising, posing a significant global health
challenge [18]. ECG data provide extensive information for
diagnosing cardiac issues, and with the increasing volume of ECG
signals generated daily, many heart conditions can be identified
from these signals [19]. Various classifiers are employed to
classify heartbeats, making heartbeat classification a vital step in
assessing cardiac function. An ECG offers a graphical
representation of heart signals, measuring the heart’s electrical
activity and commonly identifying abnormalities. The
electrocardiogram (ECG) displays waves generated during heart
activity, providing valuable information such as heart rate,
rhythm, and morphology [20]. Each heartbeat corresponds to an
ECG signal characterized by a recurring sequence of P, QRS, and
T waves. Recently, there has been considerable interest in
accurately classifying ECG signals using deep learning models.
Many researchers have investigated various deep learning
techniques in this domain [21]. This research actively contributes
to the early detection and management of cardiac disorders in
clinical settings [22]. The detection and classification of heart
arrhythmias using ECG signals have also been a prominent focus
of study [23]. This research aims to introduce a deep learning
approach that improves the accuracy and performance of ECG
data classification. The following contributions are proposed:

1) We present an overview of cutting-edge deep learning
approaches, with particular emphasis on deep learning methods.

2) We present a deep learning-based methodology for classifying
normal and arrhythmic heartbeats from ECG data.

3) Using an actual ECG dataset, we evaluate the methodology and
compare its results to those of contemporary methods.

The rest of this paper is organized as follows: Section 2 reviews
related work on ECG signal classification using machine learning
techniques. Section 3 presents the methodology in detail, while
Section 4 discusses the experimental evaluation of the proposed
approach. Finally, Section 5 concludes with key insights and
directions for future research.

1.1. Background

The human body’s tissues and organs produce electrical signals
known as biopotentials that indicate the state of each organ or tissue’s
function. These voltages, or electrical impulses, are produced by
bodily physiological processes. The heart (electrocardiogram),
brain (electroencephalogram), and muscle (electromyogram) are a

few examples of organs that produce biopotentials. It is possible
to identify both normal organ function and abnormal organ
function bymeasuring these biopotentials from the human body [24].

An ECG captures the heart’s electrical activity as it occurs on
the skin’s surface. This electrical activity consists of a series of waves
that cause the heart to constrict and relax. The ECG detects these
waves as changes on the skin’s surface. Each successive cycle on
the ECG corresponds to the depolarization and repolarization of
the atria and ventricles. The signals measured on the skin can be
correlated with heart activity, making the ECG a key tool for
diagnosing heart-related issues.

The electrical activity of the human heart is represented by
electrocardiogram (ECG) signals, which consist of various
waveforms: P, QRS, and T. Heart disorders are diagnosed by
analyzing the duration and shape of each waveform, as well as the
distances between distinct peaks [25]. ECGs are utilized in
various healthcare settings to monitor and record the heart’s
electrical activity. They capture the heart’s depolarization and
repolarization, providing valuable insights into the condition of
the heart [26]. ECGs are crucial for diagnosing heart diseases,
including abnormal heart rhythms, heart attacks, and heart failure.
An electrocardiogram (ECG) records the electrical activity of the
heart over time. The device used to capture this activity is called
an electrocardiograph, a diagnostic medical instrument invented
by Willem Einthoven [27]. Electrodes attached to a patient’s chest
record the heart’s electrical activity, which is then displayed as a
graph over time [28, 29]. The electrical currents generated by the
heart’s depolarization and repolarization propagate not only within
the heart but also throughout the body. An array of electrodes
placed on the body surface can measure this electrical activity.
The recorded tracing is referred to as an electrocardiogram (ECG),
and the different waves that comprise it represent the sequence of
depolarization and repolarization of the atria and ventricles. As
illustrated in Figure 1(A), a typical ECG signal includes three
types of waves: the P wave, QRS complex, and T wave [30].
Figure 1(B) illustrates the three segments of a typical ECG signal.

Physicians make decisions based on the interval and
morphological information of an ECG signal, utilizing the shapes of
the waves and the rhythm of the heartbeat [31]. Classifying ECG
heartbeats is essential for diagnosing cardiac conditions, such as
arrhythmias. However, the manual review of ECGs is time-
consuming for cardiologists, highlighting the need for automated
ECG analysis [32]. The primary challenge with manual analysis lies
in the difficulty of recognizing and categorizing various waveforms
and morphologies in ECG signals, as well as in other time-series
data [32]. Cardiac anomalies are often indicated by subtle
fluctuations in the amplitude and duration of the ECG signal, which
are challenging to detect with the naked eye [33]. Therefore, a
computer-aided diagnosis system can assist physicians in
monitoring cardiac health effectively. Recording the heart’s
electrical activity (ECG) is commonly employed to diagnose and
monitor heart conditions. A trained cardiologist is typically needed
to analyze these signals; however, this expertise is not always
readily accessible. This study presents a classification system for
ECG data that categorizes the signals into five heartbeat classes.

The ECG signal is valuable for diagnosing cardiac arrhythmia
as it offers insights into the heart’s function. Heart arrhythmia is a
common indicator of CVD. In modern medical practice,
cardiologists must carefully examine the ECG signal to diagnose
heart-related conditions. It plays a crucial role in cardiology,
particularly for identifying arrhythmic beats.

On the other hand, automating the classification of various heart
diseases can provide objective diagnostic results and save time for
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cardiologists. This has led to growing interest in computer-based
classification tools that can assist physicians in making more
informed decisions based on ECG signals. One application of
pattern recognition techniques is in analyzing ECG signals. The
aim of pattern recognition is to automatically categorize a
structure into one of several predefined classes. The Figure 1(B)
above illustrates a segmented ECG signal.

By analyzing ECG data, physicians can diagnose various types
of arrhythmias. They evaluate the intervals and morphological
features of the ECG signal, such as the shape of the three primary
waves and the heartbeat rhythm [30]. Doctors use
electrocardiograms to identify patterns in these heartbeats and
rhythms, assisting in the diagnosis of different heart conditions.
By examining the electrical signals of each heartbeat recorded in
the ECG, they can detect any irregularities in heart function. An
ECG primarily monitors the heart’s activity, including its rate
(heart rate) and the regularity of the beats (heart rhythm).

1.2. Classification of ECG signals

Cardiologists and physicians often use ECG alongside other
tests for diagnosing and monitoring heart conditions. Due to
complex patterns associated with different heartbeats in the ECG
signals, analyzing manually ECG signals is a difficult and time-
consuming process. ECG signals are characterized as time-series
data, and the challenge lies in detecting and categorizing the
various waveforms and morphologies within the signal, a
common issue with time-series data. To address these

challenges, many studies have explored the application of ML
techniques for the precise classification of heartbeats in ECG
signals [12]. However, these techniques have limitations,
including the need for manual feature extraction and a steep
learning curve for the models [34]. In this paper, we present a
model that classifies each ECG heartbeat into four AAMI
heartbeat categories, with an additional category for unknown
heartbeats. This approach can help physicians quickly identify
different types of heartbeats, potentially saving valuable time in
healthcare delivery.

1.3. Covariate shift problem

In deep neural networks, covariate shift is a prevalent issue
that impacts supervised ML techniques. Recent literature on
ECG signal classification using deep learning methods has
demonstrated superior performance compared to traditional
shallow ML techniques [35]. Deep learning allows for automatic
feature learning, eliminating the need for hand-crafted features
[36]. However, training deep neural networks poses challenges
[37], primarily due to a phenomenon known as internal
covariate shift [38]. This issue involves continuously changing
input distributions, which slows down the training process and
prolongs convergence to a global minimum. Consequently, long
training times represent a fundamental challenge in deep
learning [39]. Deep feedforward neural networks are particularly
susceptible to covariate shift [40], which diminishes their
training efficiency [41]. The problem of internal covariate shift

Figure 1. (A). ECG signal. A – PR segment, B –QRS complex, C – ST segment, D – PQ interval and E – ST interval. (B). A segmented
heartbeat from ECG signals.
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was first identified by Ioffe and Szegedy in 2015 [38]. Covariate
shift refers to changes in the input distribution between the training
and testing phases [42]. This shift occurs continuously during the
training of feedforward neural networks, as modifications to a
layer’s parameters impact the input distribution for all
subsequent layers. The presence of covariate shift is known to
hinder the training efficiency of deep neural networks [43].
CNNs have become widely used for classifying ECG signals. A
CNN consists of multiple convolutional layers that apply
convolutional operations to inputs in order to detect various
features. Moreover, advanced CNN techniques utilize batch
normalization to address the issue of internal covariate shift and
speed up neural network training [44]. Batch normalization [37]
helps mitigate the impact of internal covariate shift, enabling
faster training rates [45].

2. Related Work

In recent years, artificial intelligence has been applied to the
analysis of ECG signals. ML, particularly deep learning
techniques, has proven to be highly effective in identifying
various ECG waveforms and events, significantly enhancing the
detection accuracy of different heart conditions. Classifying ECG
signals is a crucial yet challenging task. To address this challenge,
several approaches have been proposed in the literature. A variety
of signal processing and ML methods have been utilized for
classifying ECG signals [46].

Traditionally, identifying segments of the P-QRS-T interval in
electrocardiogram signals and classifying heartbeats were
accomplished through signal processing techniques. These
methods involved decomposing ECG signals into wavelet-like
components using approaches such as Fourier and wavelet
transformations. Key features, such as irregularities in rhythm or
rhythm frequency, became more apparent due to these
transformations. These approaches attained an accuracy of 93%
on the Massachusetts Institute of Technology and Boston Hospital
(MIT-BIH) Arrhythmia Dataset [47].

ML techniques have outperformed signal processing methods
in both performance and generalization, making them widely used
today. Numerous studies, including those by Cömert et al. [48], Su
et al. [49], Dey et al. [50], Wasimuddin et al. [51], and Petmezas
et al. [52], showcase the use of ML methods for ECG signal
classification. These techniques can be broadly categorized into
traditional methods and deep learning approaches. Traditional
algorithms, such as support vector machines (SVM) [53] and K-
Nearest Neighbors (KNN) [54], have been commonly applied to
classify ECG signals. For example, Saini et al. [55] employed
KNN to detect QRS waves in ECG signals, while Walsh [56]
utilized SVM for classifying ECG signals. However, traditional
ML techniques are constrained by manually crafted features,
often leading to suboptimal performance. State-of-the-art
approaches documented in the literature primarily employ deep
learning models, which have shown enhanced accuracy in
diagnosing cardiovascular conditions using ECG signals. CNNs
and recurrent neural networks (RNNs) are the most widely used
deep learning methods for ECG classification. In recent years,
numerous deep learning techniques have been introduced for
classifying ECG signals with neural networks. For example,
Kachuee et al. [12] utilized a CNN to classify ECG signals from

the MIT-BIH and PTB databases, focusing on five AAMI EC57
classes for the MIT-BIH data and two classes for the PTB data.
Zhang et al. [57] classified ECG signals into eight micro-classes
using deep learning techniques. Cheng et al. [58], Murugesan
et al. [59], and Xie et al. [60] have combined CNNs and
RNNs for ECG signal classification. Recent research highlights
the effectiveness of CNNs in classification tasks, emphasizing
that accurate heartbeat classification is essential for
diagnosing CVDs.

3. Methodology

3.1. Problem formulation

In this work, we approach ECG heartbeat classification as a
time-series classification task, where a classifier extracts key
information from ECG data to accurately predict the
corresponding heartbeat class. The model takes signal input and
outputs a class indicating the heartbeat’s category. Our aim is to
reduce the cross-entropy between the predicted and true
distributions. The purpose of supervised learning is to build a
model that effectively links inputs to outputs accurately. To
accomplish this, we require a technique that automatically labels
each ECG heartbeat with a class such as “Normal”,
“Supraventricular ectopic”, “Ventricular ectopic”, “Fusion”, or
“Unclassifiable”. This classification task necessitates a training
dataset H ¼ hi ; h2; :::; hnð Þ. ECG heartbeats have been pre-
labeled with their corresponding classes. We then construct a classi-
fication model capable of assigning the correct class Ci to a new
heartbeat hi. This represents a multi-class classification problem.

3.2. Research objectives

In this research, we introduced a one-dimensional CNN with
layer normalization techniques to categorize ECG data into five
distinct heartbeat classes. We conducted a comparative analysis
of two distinct CNN architectures: one leveraging conventional
batch normalization and the other employing the novel
range normalization approach. The following were the study’s
objectives:

1) To first investigate the problem of heartbeat classification,
2) To classify heartbeats into five distinct categories: Normal (N),

Supraventricular (S) ectopic, Ventricular (V) ectopic, Fusion
(F), and Unknown (Q) – in alignment with the guidelines
established by the Association for the Advancement of
Medical Instrumentation [61], employing the ECG Heartbeat
Classification Dataset.

3) To improve classification methodology over previous
approaches.

3.3. Theoretical background

Supervised ML methods, such as neural networks, assume that
training and testing samples are drawn from the same distribution.
However, this assumption often does not hold in many
classification tasks. Common violations of this assumption include
class imbalance [62], concept drift [63], and covariate shift [64].
The covariate shift problem occurs when the distribution of
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variables in the training data differs from those in the testing data. To
mitigate this issue, it is essential to align the distribution of the
training data with that of the test data. Let’s consider the inputs X
to a model and its outputs Y. In a classification problem, the
training data represents samples from the joint distribution P(X,
Y), while ML generally models P(Y|X). The joint distribution
P(X, Y) can be decomposed in two ways:

P X; Yð Þ ¼ PðYjXÞP Xð Þ (1)

P X; Yð Þ ¼ PðXjYÞP Yð Þ (2)

where P(Y|X) represents the conditional probability of the output
given the input. P(X) represents the probability density function of
the input. P(Y) represents the probability density function of the
output. Covariate shift occurs when P(X) changes, while P(Y|X)
remains invariant.

One approach to address this issue is batch normalization, a
method for normalizing activations in the intermediate layers of
deep neural networks. Due to its effectiveness in enhancing
accuracy and accelerating training, it has become a widely
adopted technique in deep learning [65]. The process involves
standardizing the output of each layer to have zero mean and unit
variance. Consider a single neuron, and let xi ; . . . . . . ; xn be the
original outputs in a mini-batch, we add a normalization layer that
modifies the above outputs using the Equation (3) below:

BNðxiÞ ¼
xi � µ

σ
(3)

where μ represents the mean and σ denotes the variance, as defined
by Equations (4) and (5), respectively.

µ ¼ 1
n

Xn

i¼1

xi (4)

σ2 ¼ 1
n

Xn

i¼2

xi � µð Þ2 (5)

This normalization technique is commonly employed to stabilize
training, accelerate convergence, and enhance the generalization
of deep neural networks.

3.4. CNN

This feedforward neural network consists of multiple layers of
neurons that extract key features from input data, typically
represented as arrays or tensors. A typical CNN includes
convolutional and pooling layers, followed by fully connected
layers. Nonlinear functions like Rectified Linear Units (ReLU)
enable CNNs to learn complex patterns in the data [66]. In this
paper, we present a CNN-based model for supervised automatic
arrhythmia classification. The ground truth labels, denoting the
arrhythmia types, were assigned by expert cardiologists and
utilized for supervised training. These class labels were mapped to
the spectrogram representations of each heartbeat segment.

3.5. Overview of our approach

This study presents a novel layer normalization technique for
classifying ECG signals. We developed a one-dimensional (1D)
CNN to classify ECG data into five categories and incorporated
layer normalization to enhance automatic classification of the five
distinct heartbeat types. We implemented a 1D-CNN due to its
suitability for time-series data, such as ECG signals, where
samples are consistently collected at regular intervals [67]. Our
CNN architecture consists of three convolutional blocks (nine
layers), followed by three fully connected layers and an output
softmax classification layer. In this work, we introduced ‘range
normalization,’ a standard min-max procedure that scales all
variable values to a specified range, such as [0,1]. This technique
is used to normalize the inputs to our neural network layers by
scaling them to a range of 0 to 1. In our proposed normalization
approach, we incorporate a normalization layer that continuously
takes the output from the proceeding layer, normalizes it, and then
forwards it to the next layer.

The input layer feeds the ECG beats into the model. Each beat
sequentially passes through a series of convolution and max-pooling
layers, converting them into feature maps of varying widths. These
feature maps are then analyzed to generate an automated class
prediction for the dense layer. Both input and output values are
normalized to the range [0,1] using the range normalization
technique. Equation (1) is applied to normalize the data value xxx
from the interval [a, b] to the interval [0,1]:

Xnew ¼ X � Xmin

Xmax � Xmin
(1)

This layer is applied to the output of the convolution layer using
Equation (1), which performs a linear transformation to map the
data to the desired range of [0,1]. Suppose there are nnn values
xix_ixi (i= 1,2, : : : ,ni= 1,2, : : : ,ni= 1,2, : : : ,n) that need to be
mapped to the range [0,1]. The corresponding results yiy_iyi
(i= 1,2, : : : ,ni= 1,2, : : : ,ni= 1,2, : : : ,n) can be obtained using the
following Equation (2):

yi ¼
xi � xmin

xmax � xmin
(2)

where xmin and xmax represent the minimum and maximum values of
xi. Since this is a linear function, the minimum value of yi occurs
when xi equals xmin, which also corresponds to the maximum value
of yi. Substituting xmin into xi gives us ymin=0. Similarly, we also find
that ymax=1. Consequently, the new values yi will be distributed
within the range [0,1] as desired. Note that a special case may arise
when xmin ¼ xmax, indicating that all values of xi are identi-
cal (xi ¼ xmax).

In this scenario, the denominator of Equation (2) is 0, leading to
a “division by zero” error. To resolve this, we can set yi’s to 0.5.

Internal covariate shift is a significant challenge in training deep
neural networks, as it affects both the learning process and the
convergence time of the models [68]. This often happens during
neural network training due to the changing distribution of inputs,
which can slow down the model’s training process. Because the
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output of each layer is passed to the next, changes in a layer’s
parameters also influence the input distribution for the following
layers.

To mitigate this issue, it is essential to maintain consistent data
distribution. Batch normalization is a technique utilized in deep
learning models, including CNNs and RNNs. It represents a
significant advancement in deep learning and is widely used in
modern neural network architectures. This method has also
inspired several other normalization techniques [69]. This
approach has proven effective in reducing distribution variance,
thereby accelerating the training process and improving model
performance [70]. To assess the effectiveness of range
normalization, we propose a CNN model that incorporates batch
normalization.

The pooling layer utilizes the feature space from previous
layers to create a new feature space by extracting the maximum
values from specific regions. Its primary purpose is to reduce the
dimensionality of the feature maps by half, thereby decreasing
the computational load and mitigating the risk of overfitting. The
CNN also includes a flattened layer, which converts the input
features from the preceding layer into the required output size
before passing them to the dense layer. The final layer employs
Softmax to normalize the results from previous layers,
generating a probability distribution across the different classes
[71]. We selected CNNs for our ECG classification approach
due to their ability to automatically and adaptively learn relevant
features, recognizing temporal patterns from time-series ECG
data. Moreover, CNNs provide a notable advantage in noise
resistance over other methods.

3.6. Description of the dataset

The dataset employed in this study is sourced from the
renowned MIT-BIH Arrhythmia Dataset, a benchmark widely
used for heartbeat classification [72, 73]. First released in 1987 by
the MIT and BIH, it includes ECG recordings from 47 subjects,
with a sampling rate of 360 Hz. The dataset spans 47 patients,
comprising 25 males aged 32 to 89 and 22 females aged 23 to 89,
of which 60% are inpatients. Each ECG record is meticulously
annotated by cardiologists, resulting in nearly 110,000 computer-
readable reference labels for individual heartbeats [51]. The MIT-
BIH database categorizes 15 distinct heartbeat types, aligning
them with the five primary classes defined by the AAMI
standard [50].

This dataset is extensively used for arrhythmia classification
through deep learning methods. For this study, the dataset was
sourced from the MIT-BIH database via the PhysioNet service
(http://www.physionet.org) in plain text format. The MIT-BIH

database is a publicly available resource that includes ECG
signals linked to various arrhythmia. It contains two distinct types
of heartbeat signals from the MIT-BIH Arrhythmia Dataset and
the PTB Diagnostic ECG Database, both of which are well-
regarded in the field of heartbeat classification. These collections
provide a sufficient number of samples to effectively train a deep
neural network. The ECG signals encompass both normal
heartbeats and those affected by a range of arrhythmic conditions.

3.7. Preprocessing of the dataset

Prior to acquisition, the dataset underwent preprocessing steps
including signal filtering and segmentation into fixed-length
segments of 188 samples. Furthermore, the signals were cropped,
down-sampled, and zero-padded to generate shorter beats,
optimizing them for deep learning applications [12]. The resulting
ECG dataset is partitioned into two subsets: training and test data.
A summary of the heartbeat class distribution is presented in
Table 1, while Figure 2 visualizes the percentage distribution of
heartbeats across each class within the training and test datasets.
Figure 3 illustrates example of each of the five heartbeat types
found in the dataset.

4. Experimental Results and Discussion

In this section, we evaluate the effects of batch normalization
and range normalization on our CNN model’s performance. We
detail the performance metrics used and discuss the resulting
outcomes.

4.1. Performance metrics

The proposed deep CNN models were evaluated using the
following standard metrics: F1 score, accuracy, precision, and
recall. These metrics are derived from the concepts of true
positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN).
Accuracy: the ratio of correct predictions to total predictions.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(3)

Precision (P): the ratio of total instances that are predicted to be
positive

Precision ¼ TP
TPþ FP

(4)

Table 1. Heartbeat classes

Class Heartbeat type Number of ECG heartbeats (Training data) Number of ECG heartbeats (Test data)

N Normal 72,471 18,118
S Supra ventricular ectopic 2,223 556
V Ventricular ectopic 5,788 1,448
F Fusion 641 162
Q Unclassifiable 6,431 1,608
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Recall (R): the ratio of the actual positive instances that were
predicted correctly by the model

Recall ¼ TP
TPþ FN

(5)

F1 score: the weighted average of Precision and Recall

F1 score ¼ 2 x
P x R
Pþ R

(6)

4.2. Results and discussion

The performance of the proposed techniques was assessed by
partitioning the dataset into 70% for training and 30% for
validation during the training phase, with accuracy and loss
metrics computed. Following training, the models were tested on
a separate, unseen dataset for ECG signal classification. The

initial experiments focused on evaluating the model’s performance
through accuracy and validation loss.

The results of Classification accuracy and cross-entropy loss
of batch normalization versus range normalization is shown in
Figure 4.

The performance of the models on the test dataset, evaluated
using Precision, Recall, and F1 score, is summarized in Table 2.
The results indicate that both models performed exceptionally
well. However, the CNN with range normalization demonstrated a
1% improvement in precision for classifying Supraventricular
ectopic beats and unclassifiable beats, as well as a 4%
improvement in the classification of Fusion beats.

In terms of Recall, the CNN with range normalization
outperformed by 1% in classifying Ventricular ectopic beats,
whereas the CNN with batch normalization achieved a 1% higher
recall for Fusion beats. Regarding the F1 score, the CNN with
batch normalization provided 2% better results in classifying
Fusion beats. We conducted a comparative analysis between the
proposed deep CNN model with range normalization and a CNN

Table 2. Findings from the performance evaluation based on F1 score, recall, and precision

CNN batch normalization CNN range normalization

Class Precision Recall F1 score Precision Recall F1 score

N 0.99 1.00 0.99 0.99 1.00 0.99
S 0.91 0.79 0.85 0.92 0.79 0.85
V 0.95 0.95 0.95 0.95 0.96 0.95
F 0.83 0.76 0.79 0.87 0.75 0.81
Q 0.99 0.98 0.99 1.00 0.98 0.99

Figure 2. Distribution of the different heartbeat types in the dataset
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model employing batch normalization to evaluate the efficacy of the
range normalization strategy in enhancing classification
performance.

To evaluate the effectiveness of the proposed approach, the
results were compared with state-of-the-art methods, as
summarized in Table 3. Numerous techniques have been
developed for classifying ECG heartbeats in the MIT-BIH
dataset, often leveraging deep learning architectures combined

with various classification algorithms. Both the proposed
models and the state-of-the-art methods were trained and tested
using the MIT-BIH ECG dataset. Compared to previously
reported classification outcomes, our technique achieved
superior accuracy in arrhythmia classification. Additionally, the
proposed method offers a relatively lightweight CNN
architecture that is well-suited for handling one-dimensional
ECG data efficiently.

Figure 3. An example of each of the five heartbeat types found in the dataset is displayed visually

Table 3. Comparison of our proposed approach to other existing methods

Reference Approach Database Average accuracy (%) Precision (%) Recall (%)

[12] Deep residual CNN MIT-BIH 93.40 95.20 95.10
[74] Augmentation + CNN MIT-BIH 93.50 92.80 93.70
[75] DWT + SVM MIT-BIH 93.80 – –

[76] DWT + random forest MIT-BIH 94. 60 – –

[77] CNN + genetic algorithm MIT-BIH 98.45 98.00 98.00
[78] CNN+LSTM MIT-BIH 98.13 96.80 98.00
[78] 1-D CNN MIT-BIH 97.55 96.00 97.51
[79] CNN + Gaussian Mixture MIT-BIH 98.25 97.58 96.79
Our approach CNN + range normalization MIT-BIH 98.73 98.46 98.48
Our approach CNN + batch normalization MIT-BIH 98.68 98.56 98.62
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5. Conclusion

In this study, we presented an advanced classification model for
analyzing electrocardiogram (ECG) signals. To address the covariate
shift problem frequently encountered in deep learning models,
particularly those used for ECG classification, we introduced a novel
normalization technique. By incorporating this layer normalization
method into a CNN, we successfully classified heartbeats into the
five standard categories defined by the AAMI standard.

The proposed normalization approach offers an innovative
alternative to existing techniques by standardizing inputs within
neural network layers. Its primary aim is to reduce the number of
training epochs required to optimize the model while stabilizing
the overall learning process. When applied to the MIT-BIH
Arrhythmia Dataset, the proposed model achieved an accuracy of
98.73%, outperforming leading classification models. It also
demonstrated a precision of 98.46% and a recall of 98.48%.
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