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Abstract: The purpose of this study was to evaluate the feasibility of a generalizable deep learning (DL)-based system with no a priori
knowledge of fundus photographs to generate monocular depth map information about optic disc structures from this imaging modality.
Images of 30 stereo pairs of fundus photographs centered on the optic disc of 30 subjects were analyzed with this DL system to generate
monocular depth maps using zero-shot cross-dataset transfer. These maps were registered onto reference standard depth maps derived
from optical coherence tomography. Accuracy of the DL system was assessed by the root of mean squared error (RMSE) between the
estimate and reference standard. 47% of the total images from the dataset were successfully processed, with mean RMSE of 0.081. Our
findings demonstrate that single image, monocular depth estimation with a generalizable DL system using zero-shot cross-dataset
transfer applied to retinal color fundus photographs is feasible and has potential.
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1. Introduction

Stereo color fundus photography is an established imaging
method used to document the optic disc and estimate damage
from optic neuropathies such as glaucoma, using the parallax
between the stereo pair taken at slightly different angles [1, 2].
However, the stereo process is subjective as the angle is non-
standard in all cameras used clinically. Specialized stereo viewer
devices are not always readily available, and personal viewing
techniques, such as parallel or cross-eye viewing, can be
impractical and time-consuming. Furthermore, automated software
tools to quantify depth information, such as enlargement of the
cup, from stereo fundus photographs are lacking.

Monocular image acquisition is more patient-friendly and is
standardly utilized for evaluation of retinal diseases, such as with
telemedicine and artificial intelligence systems for diabetic
retinopathy detection [3–6]. However, depth information from
monocular images is limited. Monocular estimations, such as cup-
disc ratio, or monocular cues, such as vessel overpass or deep
localized notching, provide limited qualitative depth information.

Optical coherence tomography (OCT) can precisely measure the
relative depth information of the optic disc [7, 8]. However, because of
their cost, OCT systems are not readily installed in most screening-
based settings, such as non-ophthalmic medical offices, rural
communities, or underdeveloped nations, whereas fundus cameras
are more readily available. Furthermore, software tools to
automatically generate depth information from OCT data are not
integrated with commercial OCT systems or readily available as
standalone.

There have been limited prior studies investigating depth
estimation in fundus images. Two studies used pre-deep learning
(DL) stereo-based methods: (1) Nakagawa et al. investigated an
automatic reconstruction method for the quantitative depth
measurement of the optic nerve head from a stereo retinal fundus
image pair [9]. (2) Tang et al. developed a depth from stereo
algorithm and evaluated it on a set of stereo fundus images that
have OCT-based ground truth references [10].

Chakravarty et al. correlated multiple depth estimates from
shading, color, and texture gradients in single-color fundus images
with an OCT-based depth reference [11]. Ramaswamy et al. [12]
performed supervised and unsupervised techniques on monocular
fundus images to compute depth maps and found similar accuracy
when evaluated on the dataset of Tang et al. [10] Shankaranarayana
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et al. developed a DL-based framework for estimation of depth from a
monocular stereo image [13]. They trained and validated their
framework using the dataset from Tang et al. and reported they
achieved significant improvement in depth estimation over the
previously proposed methods. To the best of our knowledge, their
framework is the only prior report using DL for the estimation of
depth from a monocular fundus image. However, they used a five-
fold cross-validation strategy, which may have overestimated the
performance of their system given the relatively small dataset.

Ranftl et al. developed a robust DL system that generates
monocular depth information from images [14]. Their
generalizable DL system was extensively trained and validated on
massive datasets, such as 3D films. They tested their system using
zero-shot cross-dataset transfer, which tests against images not
seen during training of their system. Their rationale for this
approach was that “systematically testing models on datasets that
were never seen during training is a better proxy for their
performance ‘in the wild’ than testing on a heldout portion of
even the most diverse datasets that are currently available”.

The goal of our pilot study was to evaluate the feasibility of
applying the DL system developed by Ranftl et al. to generate
monocular depth maps from fundus images. We utilized zero-shot
cross-dataset transfer applied to the dataset from Tang et al. and our
primary metrics were the portion of images successfully processed
and the root of mean squared error (RMSE) between the estimate and
the ground truth generated by OCT. We show the feasibility of using
this DL system and believe that this pilot study lays the framework
for further work as larger fundus image datasets with ground truth
depth references become available. Furthermore, monocular depth
estimation may have important potential for applications such as
glaucoma screening using conventional monocular fundus images.

2. Research Methodology

2.1. Dataset

Images of 30 stereo pairs of fundus photographs centered on the
optic disc of 30 subjects with a depth reference standard for each stereo
image based on OCT were obtained from the Iowa Normative Set for
Processing Images of the Retina (INSPIRE) stereo dataset [15]. These
images were not annotated with clinical diagnoses.

Prior investigators [9–13] utilized the INSPIRE dataset as this
was the only publicly available fundus image dataset that has a
ground truth depth reference at the time of their respective reports.
To the best of our knowledge, this dataset remains the only
publicly available fundus image dataset that has a ground truth
depth reference, hence we used this dataset for our analysis.

Tang et al. report the image acquisition methodology as follows
[10]. Color slide stereo photographs centered on the optic disc of
both eyes were acquired using a fixed-base Nidek 3Dx digital
stereo retinal camera. The stereo images were down-scaled to
768 × 1,019 pixels by automatically locating the optic disc in the
4,096 × 4,096 images. SD-OCT scans were acquired using a
Cirrus OCT scanner in the 200 × 200 × 1,024 mode. Surfaces of
the retinal layer were detected in the raw OCT volume using 3D
segmentation. Depth information was recorded as intensities and
registered manually with the reference stereo photographs to
provide ground truth for performance evaluation.

2.2. Depth map generation

Ranftl et al. developed a Python programming language-based
DL model for generating monocular depth information from

images [14]. Technical implementation details of their model with
training, validation, and testing metrics were previously published.
Their model was trained with multi-objective optimization on
several established datasets containing images along with depth
maps from domains such as scenes, landscapes, and movies. For
testing purposes, they utilized zero-shot cross-dataset transfer,
which tested their model on datasets that were never seen before
during model training [16, 17].

We applied zero-shot cross-dataset transfer using the INSPIRE-
stereo dataset as test input to the monocular depth map generation
system developed by Ranftl et al., termed “Models for computing
relative Depth from a Single image” (MiDaS) [18]. We used this
technique for two reasons: (1) because there is a lack of large
stereo datasets with ground truth depth references, upon which to
perform conventional transfer learning [19–22]; and (2) to
evaluate MiDaS on a never previously seen during training
dataset. MiDaS was run with PyTorch on a Linux-based high-
performance computing environment.

Tang et al. reported that the down-scaled stereo images in the
INSPIRE-stereo dataset were cropped for their analysis; however,
their crop size was not reported [10]. Since the optimal fundus
photograph crop size for MiDaS was unknown, we evaluated two
sets of crop sizes: (1) 251 × 251 pixel crops and (2) 502 × 502
pixel crops. All crops were manually made by a study author
(RG), a practicing ophthalmologist, and were centered around the
optic disc. Thus, depth maps were generated for 120 images
derived from 60 images across 30 stereo pairs for the 2 crop sizes.

2.3. Registration methods

Tang et al. report that the accuracy of the disparity map
generated by their algorithm was measured by the RSME between
the estimate and the ground truth generated by the OCT scans
[10]. They report that to exclude those nonoverlapping regions
and focus only on the main structure—cupping of the optic nerve
—both maps were cropped to 251 × 251 pixels centered at the
optic disc for comparison. To calculate RMSE, we attempted to
register each MiDaS-generated depth map to its corresponding
OCT ground truth reference using the automated registration tool
bUnwarpJ supplied with ImageJ2 [23].

Since the optimal crop size of the MiDaS-generated depth map
for registration to the reference OCT was unknown, we evaluated 3
registration methods: (1) using the 251 × 251 depth map generated
from the 251 × 251 pixel crop processed byMiDaS; (2) from a 251×
251 pixel crop (centered at the optic disc) of the 502 × 502 pixel
depth map generated from MiDaS processing of a 502 × 502
pixel color fundus image crop; and (3) from an entire 502 × 502
pixel depth map generated from MiDaS processing of a 502 ×
502 pixel color fundus image crop. In the remainder of this paper,
methods 1, 2, and 3 are termed: “251 × 251 depth map”, “502 ×
502 depth map cropped to 251 × 251”, and “502 × 502 depth
map” respectively. An example illustrating these methods is
shown (Figure 1).

2.4. Processing failures

The number of images across stereo pairs and the number of
stereo pairs that were successfully processed were tabulated for
each method. An image was considered successfully processed if
both the MiDaS depth map was generated and image registration
to the OCT reference succeeded. Images that could not be
successfully processed were excluded from statistical analysis.
RMSE was computed for each image, and summary statistics by
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methodwere tabulated. Author RGmanually reviewed each case that
failed processing and qualitatively assigned them into 1 of 3
categories: (1) the MiDaS-generated depth map was qualitatively
sufficient, but the image registration software failed to register the
image to the OCT reference; (2) the MiDaS-generated depth map
was of inadequate quality; or (3) the MiDaS-generated depth map
was inadequate because of over-sensitivity to vessels. Failed cases
were tabulated by registration methods.

2.5. Statistical analysis

Statistical analysis was performed in R (version 3.6.3; The R
Foundation). The Wilcoxon signed rank test was used to test for
differences between pairwise matched data for combinations of

methods. The level of significance set at 0.05 was adjusted using
the Bonferroni correction accordingly. Boxplots were generated
with the Python package matplotlib.pyplot.

3. Results

Summary statistics are shown (Table 1). A greater portion of
the total images and stereo image pairs were successfully processed
by the 502 × 502 depth map method compared to the other two
methods. The median RMSE was lowest for the 502 × 502
depth map cropped to 251 × 251 method (Table 1, Figure 2).
To directly compare the 3 methods, an analysis was performed
on the intersection of the images successfully processed by
3 pairwise combinations of methods.

Figure 1. Representative example of an INSPIRE-stereo image successfully processed in this study. (A) A 768× 1019 pixel image from
one of the stereo pairs. (B) Accompanying 768× 1019 pixel OCT-based depth reference. (C) 251× 251 pixel crop of (B) centered on the
optic disc. (D) 251 × 251 pixel crop of (A) centered on the optic disc. (E) MiDaS-generated depth map of (D). (F) Depth map in
(E) registered onto reference (C) with RMSE of 0.032. (G) 502 × 502 pixel crop of (A) centered on the optic disc. (H) MiDaS-
generated depth map of image in (G). (I) Depth map in (H) registered onto reference (C) with RMSE of 0.014. (J) 251 × 251
pixel crop centered on optic disc of (H). (K) Cropped depth map (J) registered onto reference (C) with RMSE of 0.020
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3.1. Comparison of registration methods

3/60 (5%) images were successfully processed by both the
251 × 251 depth map and 502 × 502 depth map cropped to
251 × 251 methods (combination 1). 6/60 (10%) images were
successfully processed by both the 251 × 251 depth map and
502 × 502 depth map methods (combination 2). 8/60 (13.3%)
images were successfully processed by both the 502 × 502 depth
map cropped to 251 × 251 and 502 × 502 depth map methods
(combination 3). Median RMSE for the combinations were as
follows. Combination 1: 0.032 and 0.020 for the 251 × 251 depth
map and 502 × 502 depth map cropped to 251 × 251 methods
(p= 0.75), respectively. Combination 2: 0.068 and 0.015 for the
251 × 251 depth map and 502 × 502 depth map methods
(p= 0.03), respectively. Combination 3: 0.027 and 0.015 for the
502 × 502 depth map cropped to 251 × 251 and 502 × 502
depth map methods (p= 0.02), respectively. Using a Bonferroni-
adjusted level of significance set to 0.0167, none of these
comparisons reached statistical significance. 3/60 (5%) images
were successfully processed by the intersection of all 3 methods
and were the same images from combination 1.

4/30 (13.3%), 3/30 (10.0%), and 7/30 (23.3%) stereo pairs were
successfully processed by the 251× 251 depth map, 502× 502 depth
map cropped to 251 × 251, and 502 × 502 depth map methods,
respectively. Median RMSE values by (left/right) stereo pair were:
0.117 and 0.162 (p= 0.86) for the 251 × 251 depth map method,
0.033 and 0.019 (p= 0.50) for the 502 × 502 depth map cropped
to 251 × 251 method, and 0.029 and 0.026 (p= 0.94) for the
502 × 502 depth map method (Figure 3).

3.2. Processing failures

No images were rejected by MiDaS. Causes of failed image
processing are listed (Table 2) and examples shown (Figure 4).
Across the 3 registration methods, most failed cases occurred
because of inadequate quality generated depth maps. The 251 ×
251 depth map method had a higher portion of failed cases due to
over-sensitivity to vessels compared to the other 2 registration
methods. Very few cases were attributable to failed registration to
the OCT reference of an adequate quality generated depth map.

Causes of failed processing for each of 6 possible pairwise
permutations of registration methods were tabulated (Table 2).
Each permutation pair is such that the first image registration
method successfully processed an image and the second
registration method failed. The following were observed: (1) most
cases where the 251 × 251 depth map method succeeded but the
other 2 methods failed were because they generated inadequate
quality depth maps; (2) most cases where the 251 × 251 depth
map method failed but the other 2 methods succeeded were also
due to inadequate quality, but 25–32% were due to over-
sensitivity to vessels; (3) the vast majority of cases where the
502 × 502 depth map method succeeded but the 502 × 502 depth
map cropped to 251 × 251 failed occurred because the cropped
depth map was inadequate quality; (4) only 3 cases occurred
where a 251 × 251 crop of a failed 502 × 502 depth map changed
to successful processing.

4. Discussion

Depth estimation of intraocular structures has important
potential clinical application, such as assessment of optic nerve
cupping that occurs with glaucoma. OCT can precisely measure
relative depth information of structures such as the optic disc, but
may be prohibitively expensive in certain clinical settings,
whereas fundus cameras are typically more available. Moreover,
software tools to generate OCT-based depth maps are not
currently integrated or readily available standalone.

Depth estimation techniques that utilized stereo fundus
photographs have been reported. Nakagawa et al. found that their

Table 1. Summary statistics

251 × 251 depth map method
502 × 502 depth map cropped
to 251 × 251 method 502 × 502 depth map method

No. (%) images successfully processed 18 (30.0) 11 (18.3) 28 (46.7)
Mean (Stdev) RMSE 0.290 (0.502) 0.040 (0.035) 0.081 (0.132)
Median RMSE 0.107 0.022 0.028
Range RMSE 0.019–1.887 0.014–0.127 0.010–0.633

Figure 2. Boxplots of RMSE by registered depth map method.
Data displayed per method are derived from all successfully
processed images for the corresponding method. Each box
indicates the median and first and third quartiles. The
whiskers show the 10th and 90th percentiles. Circles: outliers
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depth values obtained from stereo image pairs were in accordance
with reference values obtained with the Heidelberg Retina
Tomograph [9]. Tang et al. tested the performance of their depth
from stereo algorithm utilizing the INSPIRE-stereo dataset [10].
Using a depth reference standard for each stereo image based on
OCT, they found a mean RMSE of 0.1592, which performed well
compared to previous algorithms developed by other groups that
they tested.

Although stereo fundus photography is an established
technique [1, 2], it is not routinely performed in clinical practice,

whereas monocular fundus photographs are more commonly
acquired. Monocular depth estimation, however, is a challenging
task that is less straightforward technically than stereo depth
estimation as described in the report by Eigen et al. [24].
Although there have been several reports analyzing monocular
image-based depth estimation for generic scenes [24–26], there
have been limited reports in the domain of monocular fundus images.

Shankaranarayana et al. developed a DL-based framework
for estimation of depth from a monocular stereo image [13]. To
the best of our knowledge, their framework is the only prior

Figure 3. Boxplots of RSMEby depthmapmethods and by stereo pairs. (A)–(C): Boxplots showing 3 pairwise combinations of depth
map methods, where images for analysis are common to methods being compared. (D)–(F): Boxplots showing comparisons between
first and second images from stereo pairs by depth map method, where images are from cases where both stereo pairs were
successfully processed. No comparisons in (A)–(F) reached statistical significance. Each box indicates the median and first and
third quartiles. The whiskers show the 10th and 90th percentiles. Circles: outliers

Medinformatics Vol. 00 Iss. 00 2024

05



report using DL for this task, in contrast to the prior report of
Chakravarty et al. who correlated multiple depth estimates from
shading, color, and texture gradients using techniques predating
modern DL [11]. Shankaranarayana et al. report they achieved
significant improvement in depth estimation over the previously
proposed methods, with their best mean RMSE being 0.0059.
Although their study used pretraining and data augmentation
techniques, they may have overestimated performance because
they utilized five-fold cross-validation on the relatively small
INSPIRE-stereo dataset. Moreover, their depth estimation
network was architected to target the task of monocular depth
estimation from fundus photographs.

The motivation for our study was that stereo fundus
photographs are not routinely acquired compared to conventional
monocular images. Our goal was to study the feasibility of a
DL-based system for generating monocular depth estimation. We
believe the strengths and novelties of our study are as follows: (1)
we applied a generalizable DL-based system and (2) utilized zero-
shot cross-dataset transfer given the small size of the INSPIRE-
stereo dataset. The key finding from this study was that
monocular depth estimation using digital color fundus
photographs of the optic disc with this DL system is feasible.
47% of the total images from the INSPIRE-stereo dataset were
successfully processed with a depth map generation method,
yielding mean RMSE of 0.081.

Our approach, which has not been applied previously to the
considered problem of DL-based monocular depth estimation, was
the use of a zero-shot cross-dataset transfer. Furthermore, another
novelty of our study is that we analyzed a generalizable DL
system with no a priori knowledge of fundus photographs. This is
in contrast to the prior report of Shankaranayana et al. [13], who
architected their DL system for the target domain of fundus
images. Our results indicate the robustness of the generalizable
DL system when applied to a never-encountered imaging domain.

A direct performance comparison between the systems
developed by others [10–13] and Ranftl et al. was not possible
because we could not successfully process the complete INSPIRE-
stereo dataset. However, a strength of our study was that
application of zero-shot cross-dataset transfer resulted in about

Table 2. Causes of failed image processing

Registration Inadequate quality depth map Vessel sensitivity

251 × 251 depth map method* 3 (7%) 25 (60%) 14 (33%)
502 × 502 depth map cropped to 251 × 251 method† 2 (4%) 43 (88%) 4 (8%)
502 × 502 depth map method‡ 0 (0%) 28 (88%) 4 (12%)
Permutation 1: (A, C)⁑ 0 (0%) 10 (83%) 2 (17%)
Permutation 2: (A, B) 0 (0%) 13 (87%) 2 (13%)
Permutation 3: (C, A) 2 (9%) 13 (59%) 7 (32%)
Permutation 4: (B, A) 1 (12%) 5 (63%) 2 (25%)
Permutation 5: (C, B) 2 (10%) 18 (90%) 0 (0%)
Permutation 6: (B, C) 0 (0%) 3 (100%) 0 (0%)

*Denoted as “A”
† Denoted as “B”
‡ Denoted as “C”
⁑ Denoted as (Registration Method 1, Registration Method 2), where first method succeeded, and second method failed.

Figure 4. Examples of images that failed processing. (A)
Example image with (B) adequate quality generated depth
map that failed registration to the OCT reference. (C)
Example image with (D) inadequate quality generated depth
map. (E) Example image with (F) generated depth map that is
sensitive to retinal vasculature and could not be successfully
registered to the OCT reference
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half of the INSPIRE-stereo images being successfully processedwith
a very good RMSE result. This finding has important implications
since the MiDaS model was trained on a very different domain
such as 3D movie scenes. The INSPIRE-stereo domain in contrast
is fine scale in structure relative to these large-scale image
domains. Furthermore, the MiDaS model was not architected with
a priori knowledge of fundus images.

4.1. Effect of crop size

The optimal crop size for MiDaS depth map generation and
registration to the OCT reference was unknown and explored. To
the best of our knowledge, prior reports have not investigated the
question of optimal crop size. Tang et al. reported that they
cropped the images from their dataset but did not report the
crop size [10]. Shankaranarayana et al. cropped the optic nerve-
head region and did not explore other crop sizes [13]. Our
analysis indicated that a larger crop of the original image
resulted in a greater percentage of images successfully
processed, specifically 46.7% (502 × 502 pixel crop) vs. 30%
(251 × 251 pixel crop). Restricting the images to the
intersection of images successfully processed by the two crop
sizes, we found that there was a trend for the 502 × 502 pixel
crop size to have higher mean RMSE (0.068) compared to the
251 × 251 pixel crop size (0.015), though not statistically
significant (p = 0.03) when corrected for multiple comparisons.
While not statistically significant, there was a trend for crops of
the larger generated depth maps to have greater mean RMSE
compared to the uncropped depth maps. The effect of crop size
is illustrated with an example (Figure 1). Further study with
larger datasets to understand the behavior of the DL system
with variation in crop sizes will be informative.

Overall, across the methodologies we found that most failed
processing cases were due to inadequate quality depth map
generation. This finding is not surprising given the nature of zero-
shot cross-dataset transfer and one would expect this failure rate
to decrease as larger datasets become available to employ transfer
learning.

4.2. Limitations

Certain study limitations are noted. (1) One of the two steps
necessary for successful image processing in this study was image
registration to the OCT reference. We did not test image
registration tools other than the one described in this study. We
note that manual review of failed cases found very few were due
to image registration (Table 2). (2) Sample sizes in the statistical
analysis of pairwise combinations of depth map methods were
small and type I and II errors may have occurred. We used a
Bonferroni correction to adjust for multiple comparisons. To the
best of our knowledge, the INSPIRE-stereo dataset was the only
publicly available dataset at the time our study was conducted.
Future reanalysis as larger datasets become available would be
insightful. (3) Although not a study goal, we found no statistically
significant differences in mean RMSE between stereo image pairs
when both were successfully processed. Similar to (2), this sub-
analysis was limited by small sample sizes. (4) This study was not
designed to assess the performance of MiDaS to discriminate
between normal and glaucomatous optic discs based on cupping
in-depth maps. This type of analysis requires a very large dataset
of normal and glaucomatous images with ground truth references,
presently unavailable. (5) Failed processing cases were manually
reviewed because automated tools are presently unavailable.

Incorporating a validated automated tool in a future study would
be beneficial.

5. Conclusions

In summary, we believe that this pilot study demonstrates that
monocular depth estimation with a generalizable DL system
(MiDaS) using zero-shot cross-dataset transfer applied to color
fundus photographs is feasible and has potential. Conceivably,
applying conventional transfer learning, such as with fine-tuning,
to train and validate MiDaS using a large set of color fundus
photographs could result in a higher number of successfully
processed images and lower RMSE. As larger datasets with
ground truth references become available, exploring this approach
will be important future work and could have potential
applications for glaucoma screening and decision support systems
utilizing monocular fundus photography.

As new monocular depth estimation models using encoder
backbones evolve, future work analyzing the performance of
models using vision transformer architectures would be an area of
interest to explore [27, 28]. Increasing the size of datasets via
synthetic data generation with Variational AutoEncoder
Generative Adversarial Network [29] would be an interesting
avenue of exploration, once such methodologies are further
developed and validated.

Future clinical applications can potentially investigate the
practical application of monocular depth estimation with this
generalizable DL system. For example, it would be insightful to
obtain depth information about choroidal lesions, such as
choroidal nevi or melanomas, using monocular color fundus
photography or multicolor imaging [30]. Future work can also
potentially grade the degree of papilledema using monocular
depth estimation on images processed with a validated DL-based
system that can differentiate among optic disks with papilledema,
normal disks, and disks with nonpapilledema abnormalities [31].
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